

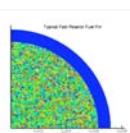
Numerical Modeling of Gaseous Fission Product Transport at the Meso-Scale: A Multi-physics Approach for Fuel Pin Swelling – FR09P1379

SAND2010-4808C

T. J. Bartel*(tjbarte@sandia.gov), L. N. Brewer*, R. Dingreville**, M. T. Lusk***, J. Robbins*, T. Seml***, L. Zhang**.
*Sandia National Labs, USA; **New York University-Polytechnic, USA; ***Colorado School of Mines, USA

NYU-Poly
POLYTECHNIC INSTITUTE OF NYU

Introduction


Goal:

Develop a validated and predictive capability to simulate the mechanical response of a fuel pin during a **rapid transient thermal event at the meso- to continuum scale** using fundamental physics models.

→ that is, to predict fuel pin clad strain during a rapid thermal transient

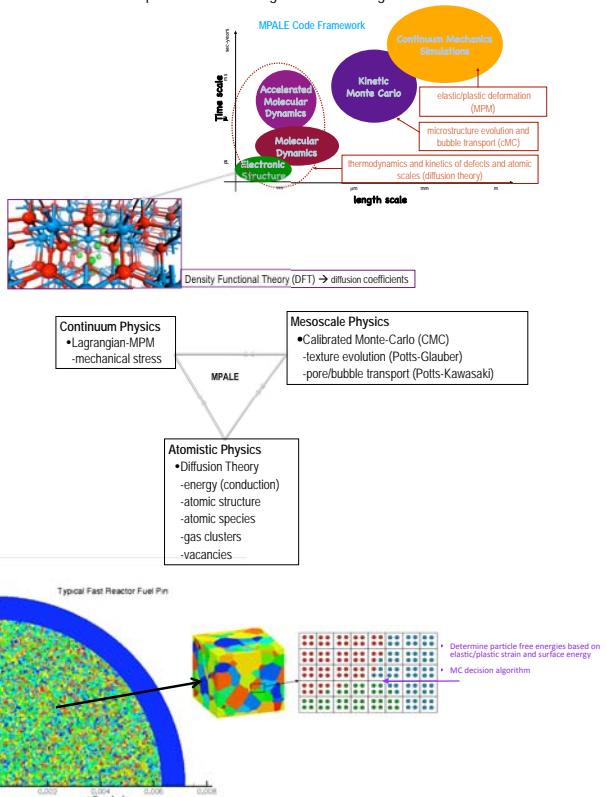
Physics Requirements:

- rapid thermal transient
- time accurate
- function of burn-up
- fission gas inventory and location
 - intra- and inter- grain
- mechanical response of polycrystalline materials
 - viscoelastic & viscoplastic constitutive models for fuel & clad
 - grain restructuring
- gas transport during transient thermal conditions
 - atomic, clusters and bubbles

Geometry Requirements:

• 3D

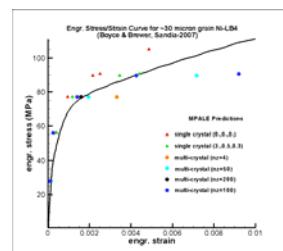
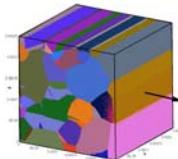
- radial cross-section (2D) plus small axial dimension (Z)
- assume 10 micron diameter grains, 5 mm diameter fuel pin
- 1/4 pin cross-section ~ 62,000 grains
- assume dZ = 100 grains, then computational domain => order 6.2 M grains


Computational Requirements:

- massively parallel computer

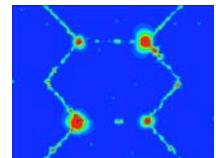
Method

3D Computational Code: MPALE



- directly couple phenomena at micro-scale and continuum scale (sub-grain to fuel pin)
- time split algorithm: material wave speed much higher than material transport or grain evolution
- lower length scale information computed with DFT and upscaled via diffusion models
- particle & cell based continuum mechanics algorithm (material point method)
- calibrated Monte-Carlo particle method for grain restructuring

Results

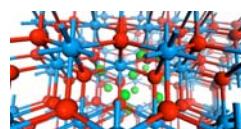
Continuum Mechanics


- validation of polycrystal elasticity and plasticity
- comparison with nickel tensile test
 - grain morphology from EBSD (2D data set)
 - 60 different Euler angle combinations

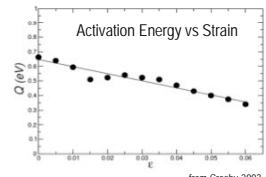
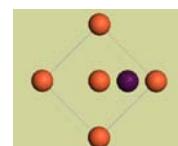
- current work: non-local plasticity and viscoelastic constitutive models for UO₂

Mesoscale Physics

- time calibrated Potts based algorithm (cMC) has been developed and validated
 - MCS => physical time step!
 - required to couple MC algorithm with continuum mechanics
- Potts-Kawasaki for bubble transport
 - example: pressurize bubble (ideal gas) from transient thermal condition


bubbles collect along grain boundaries

von Mises stress distribution after thermal transient



Atomistic Physics

- assume diffusion theory for transport
- issue: determine diffusion coefficients for actinides
 - function of temperature and strain (lattice spacing)
- strategy: use DFT to determine relative trends in diffusion coefficients
 - DFT functionals for actinides are not mature; uncertainty in absolute value of D is too large

$$D = D_0 \exp\left(-\frac{Q}{kT}\right)$$

- simulate vacancy transport in Cu to demonstrate strategy

Future Work

- Implement implicit time integration scheme to replace explicit scheme in MPALE
- Implement parallel non-local plasticity and viscoelastic constituent model
- Determine equivalent MC time calibration for Potts-Kawasaki
- Determine diffusion coefficient trends for UO₂ using DFT
- Investigate and implement material damage models for fuel and clad
- Validate with potential transient strain validation experiments @ SNL ACCR