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[Abstract] It is not uncommon when utilizing hydro-dynamically smooth experimental or computational
results that one would like to estimate the additional effect of wall roughness without performing either new
experiments or computations. Here we consider a simple analytical model based on inner law methods which
extends smooth wall skin friction and boundary layer thickness to be valid for rough wall flows. The
approach described here uses a formal perturbation model of the compressible (adiabatic) skin friction, the
rough wall equivalent (Van-Driest) log-law boundary layer thickness. Though perturbation-based
approaches provide a correction expression, they are not valid for many physically interesting problems
where the roughness is more significant. For these flows we solve the appropriate roughness expressions
using an approximate procedure which is valid for a wider range of roughness. Though useful to
demonstrate behaviors associated with roughness and providing a connection to smooth expressions, this
approximate method is of less value when one requires compressibility corrections, whereby it is perhaps
more appropriate to dispense with approximation and simple solve the full expression numerically. We also
note that the empirically based expression described by Fang et. al. (2003)" is in excellent agreement with the
inner law based model described here.

Nomenclature

= turbulent spot wave amplitude

inner law turbulent profile coefficient, B=5.0
skin friction coefficient

pressure coefficient

roughness height, wave number (L)

Mach number

pressure (ML™'t?)

ideal gas constant (L*t°T™")

Reynolds number
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= turbulent mixing length (L)

= recovery coefficient

distance along cone surface (L)
temperature (T)

streamwise velocity (Lt")
cross-stream velocity (Lt™)
friction velocity (Lt")

stream wise spatial coordinate (L)
cross-stream spatial dimension (L)
friction variable (see equ. (3))

= wall boundary layer thickness (L)
= kinematic viscosity (L’t")
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= ratio of specific heats

inner law turbulent profile coefficient, k=0.41
absolute viscosity (ML™'t")

power-law viscosity constant

density (ML™)

= shear stress (ML't?)

Ao gT A=
I

Subscripts/superscripts

)y = turbulent fluctuating quantity

6 = (over bar) mean flow turbulent quantity
rms = root means squarew = wall quantity
00 = outer flow (free-stream) quantity

+ = inner law scaling (see White (1991)%)
aw = adiabatic wall

w = wall

I. Introduction

THE goal of this research is to provide an engineering level predictive capability to estimate the additional effect
of wall roughness without performing either new experiments or computations. Models that provide rough and
smooth (as a degenerate case) information for simple flat plate flows are well known®. These models, however, do
not allow us to take general skin friction/thickness input information and extend it to rough flows, but are inherently
limited to a particular flow with a particular skin friction/B.L. thickness estimate. The model derived here, can use
any wall layer information and increase of data base for that flow to include rough behavior. The family of models
described by Fang et. al.' and references provide a simple (and we believe accurate) connection between smooth and
rough behavior, but are empirical correlations. We attempt to derive such a model based on theoretical/inner law
arguments.

v
. . L . h
The approach described here uses a formal perturbation expansion in terms of the “small” variable k% = ——%—

VW

of the compressible (adiabatic) skin friction, and a rough wall equivalent (Van-Driest) log-law boundary layer
thickness. As noted by White”, Van-Driest’s expression can be seen as a compressibility transformation valid for
either smooth or rough flow, our focus is more properly placed upon incompressible smooth and rough flows and
here is where we focus our perturbation expansion analysis. Though this type of expansion is instructive and
intuitively satisfying, we will find that for many problems, k' is NOT small, whereby the justification for the
expansion is rather tenuous. For these flows we solve the appropriate incompressible roughness expressions using
an approximate “single pass” iteration procedure which is valid for a wide range of k" values. Finally we solve the
complete inner law expressions numerically, which we believe is sensible especially when including compressibility
corrections.

II. Governing Equations

Here we summarize the analytical development of the models. As discussed, we start by delineating the relevant
equations within the context of a perturbation method. Subsequently we consider an approximate solution that is
more broadly applicable and then a numerical implementation.
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A. Perturbation Expansion-Based Solution

The components required to perform this analysis include:

1. Access to hydro-dynamically smooth skin friction and boundary layer thickness results from measurement
or simulation, say, Cy and 8y. These are the conditions that we “perturb” about.

2. The governing equations are an incompressible rough wall skin friction model, an equivalent compressible
rough-wall (Van Driest) inner law skin friction expression and a boundary layer thickness result. We
examine several alternatives for the B.L. thickness expressions.

Notice that while the smooth skin friction and boundary layer thickness may result from any flow (flat plate or
otherwise), we are implicitly assuming that the near-wall behavior is adequately described by a flat plate flow a
good approximation for flows where body curvature is a small effect. More complex “outer” flows transmit this
information to the near wall via the pressure gradient, however, as shown by Bond and Blottner* neglecting
convective and pressure gradient effects is often an excellent approximation.

Thus, if we define two perturbation series as:
c,=cpotkic, +.+ ok™) (1)
and
8 =8,+k"8, +..+ O(k™) @)

1/2

kv k 2
where &t =2 — Rex(— A <<land A=| — (here we require that k/x<<<1).
\% X C
f

w

The skin friction is computed utilizing an incompressible (with rough wall effects) inner-law skin friction model.
The incompressible (both) smooth/rough skin friction model' is written as:

0.3k"
Re =1.73(1+ 0.3k )e (22 — 4z +6— 2% Y21
© ( Je'(z —4z 46— D

©)

z=kA ; A= 2 ; k*zRex[ijll

X

Equation (3) is implicit in terms of the unknown c¢ and as posed, Equation (3) is valid for incompressible flow only.
However, Van Driest has shown that incompressible skin friction can be extended to be valid for compressible flow
by a stretching transformation. This transformation takes the canonical form:
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1 1 ~
Cf = Fcf,inc (FRex Rex) = Fcf,inc (Rex)

y—1 M )
F=—2_— . F=5F"
arcsin(a) u,

[e]

—l —l -1 * *
where: a’ = [gMi }[l + ¥M2 } ; y+ = yl; k' = ﬂ . We close the viscosity ratio through

T [0)
the simple power law relationship: Be _ (T;‘Oj ; @ = 0.67. The obvious benefit of this procedure is that
M,

w
one can analyze the incompressible expression only, then include appropriate stretching terms to map to a

1 - -
compressible expression, i.e. ¢, = F(cfo(Re) +k'c, (Re)+...+ o(k*? ))

c

The  appearance of the Mach number terms is via the  Crocco-Buseman  law'

2
Tl =1- F@Mrﬁ (lj (%J = i =1+ F@Mrﬁ (an approximate energy integral for Pr=1 that is
u

w o0 w 00

a reasonable approximation for air).

u
Equation (3) also permits estimation of a boundary layer thickness, since for — —>1 = " —>". Hence
u

00

we can solve equation (3) for &' as:

St :i:exp[fuf arcsin(a)—KB+ln(1+0-3k+)j ©)
v

avy

w

Equations (4) and (5) is based solely on inner law analysis. As written, equation (5) is expressed in terms of inner

. . ou,,
variables. Let’s express it a more useful form as: Rey = .
VDO
u -1 e Ku
Re; :[ fj[l—i_%Mij exp[— ‘farcsin(a)—KB+ln(l+0.3k+)j (6)
% av

1 1 ~1/2
with: uf = [14- Y Mij .
v \/2cf 2

Unfortunately, inversion of the inner law expression to obtain the boundary layer thickness tends to underestimate
the actual boundary layer thickness since, which by definition, this expressions is only valid for the inner law. A
more direct streamwise integral is preferable.
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Following Tennekes and Lumley’, one can write a streamwise momentum integral (integrated to remove cross
stream dependence) for flat plate flow expression as:

*

i(Av*uw ) =vu, d—A +Au,, dl =7 7
dx dx dx

where VA ZI(IJDO —u)dy =u,0 " and A is called “a normalized boundary layer thickness”. Additional

u 1, (A
information is available by matching the inner-law to the outer law i.e. —% Z—m(—J-FCOl’lSl‘.. This
u k (v,
expression can be differentiated as:
v\ d(u Vi Yu, \dv' 1 dA
1+— |— f = 14— :; —_— = (®)
Ku, )dx\ v Ku, \v~)dx kA dx

*

A%
Using equations (7) and (8) we can eliminate d_ and arrive at a governing equation for the normalized boundary
X

layer thickness:
1+1(VJ ) 1+2.5(VJ
dA KU, v U,
B e[ )
[ ‘fjﬂ— - 1—1.5(VJ
\% K u,
1/2
Since, = ( ij << 1, it is traditional to simplify equation (9) to give:
dA v , .
— — |x, which finally gives:
dx u,
*\2 1
5*:(‘}—} x:2c/[l+y—_Mijx (10)
u, ' 2

-1
Finally, using 1/7™ power law profiles etc, one can infer that: § ~ 160/»[1 + J/TM 2 jx

Thus, using equations (3) and (10) and the perturbation expansions, i.e. equations (1) and (2) it is possible to derive
expressions for the first order terms, cs and 9; in equations (1) and (2). We examine the effect of the perturbation

expansions on equations (3). It is convenient to introduce the intermediate variable: z = z, + k +Zl +...+0(k +2)

which permits us to expand equation (3) to arrive at the correction term z;:
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}-522+9z,—5)
(zg —225 +4)

z,=-0.3 E (11)

1/2

2 2 1

With the “z” correction term known we can use: z = KA = K| — =K |—|1-
Cr €ro €ro

cpk” +... | to derive

an expression for ¢y as:
1/2

Z=KA=K 2 =K 2 1- ! cpk’ +.
Cy Cro 2cp

\/E 3/2 \/E 3/2(ZS_SZ§+9ZO_5)

CpH=——Cr 2z, =03—c7,
S1 K PAURN K A

1/2

y Zy=EK| — 12
(23—225+4) 0 Cro 12

-1
Similarly, one can readily combine the boundary layer thickness expression: O =~ 166_/»[1+J/TM 2 jx with

equation (2) 8 =8, + k'8, +...+ O(k™) so that:

5= 16c_,,1[1 4 YT_IMi jx (13)

. Cri 4 . . + k) [
Suggesting that 6 = (1+——k")J, where cq is known from equation (12) and &~ =Re | — 7
C X
SO

Thus, equations (12) and (13) provide the unknown terms, ¢y and 8, in our expansions:

cp=Cp ke, +..+0k™)
(14)
5 =8,+k"8 +...+ O(k™)

These two expressions are, of course, intended to “extend” smooth results to be valid for rough flows.

B. Application of the Expansion

It is useful to consider a classical low speed M,<<Il problem. Under classical low speed conditions with
Re,=0(5Eb), one finds that cyp (smooth value) is approximately: c=0.005 (say). If k/x is on the order of 1E-3 we

k c rou,
find that the roughness k' is then: k' = Rex[—)/% , wherby k'=5E6(1E-3)(1/2*5E-3)"?=180=0(100)

X

(obviously this not formally a small value, however we can proceed to check behavior)  This is sufficient
information to estimate the roughness behavior as (using equation (12) we find that cg=0(2E-5):

¢ = ¢ o+ ke, =0.005+2x107(180) = 0.0086 (15)
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which corresponds to ¢ ;= 1.726_/,0 Examination of classical rough wall behavior suggests that C; rough' is about

0.0055. The classical sand grain fully rough skin friction’ (Reynolds number independent is about 0.0065)
suggesting that our prediction is on the high side.  The boundary layer thickness extension is:

-5

§=8,(1+k" =5 (1+(180)(2’“10
Cro

have increased by approximately 72%.

))=1.728,. The skin friction and the boundary layer thickness

Let’s consider a second problem with skin friction and boundary layer thickness of (say) 0.0036 and 28 mm. The
roughness is on the order of 2-6 mils (we actually use 4 mil) corresponding to

Re 1/ = (5x10°)(0. 0000254)(4),|—— 0. 0036 =21.6 Under these conditions we expect that the

skin friction is: ¢, ,=c,,+ k* ¢;; =0.0036+0.00011(21.6) = 0.0063, implying that c,=1.75¢,

Following the empirical correlation of Fang et. al." we shall see that this solution is too high by a factor of 3 (!)
which is unacceptable.

C. “One Pass Iterative” Approximate Solution for k™>1 to k"™>>1

The preceding analysis was based upon an elementary perturbation analysis which involves introduction
(assumption) of a series solution form as: ¢ ;= ¢, + k'c ntet 0(k+2). Obviously, this type of expansion is

. . . g+ k) [Cro
only (formally) useful for k'<<I. Unfortunately, the definition of k': k" =Re | — 7 suggests that unless
X

k<<<1 that k" can easily be larger than 1 (as large as 100). Hence, the assumption inherent to the perturbation series
(and moreover the simplifications utilized) cannot be truly correct. Moreover results derived using the perturbation
approach yield solutions that are in poor agreement with data. Here, we consider an alternative solution procedure

that can more formally accept larger values of the dimensionless roughness.

Our approach is to introduce an approximate, iteration scheme that is not dependent upon the size of the rough term.
The procedure is based upon a simplification of equation (3) re-written here for convenience:

Re, = 1.73(1+ 0.3k )e’ (2° —4z+6—Lk+(z—l)) (16)
1+0.3k
1/2
From the definition of zz z=kA ; A= i we recognize that z>1 (typically O(10)) implying that the
C
S

dominant terms in equation (A.1) would be:

Re. =1.73(1+ 0.3k )e’z> +...+ O(z) (17

The hydro-dynamically smooth solution form is: Re,_ =1.73e”z” +...+O(z”). This reduced expression is of

value as a way to estimate the Reynolds number Re,. It is also of value as a way to test the value of the
approximation inherent to equation (17).
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Obviously, to use equation (17) we need to be able to solve for z. Let’s consider a basic canonical transcendental

equation of this form, say: ax” exp(x) — A = 0. The solution for this expression is:

A, 1/2
x = 2LambertW [4—} (18)
a

Where LambertW(p) is the special function solution® of the transcendental expression exp(a)= . Though

the LambertW function has well known properties (and approximations) it is not a convenient solution. As such,
we consider a specific (empirical) approximation for equation (A.3) which is found to be:

1/2 5/6
x =2LambertW [ij ~ In [ij (19)
4a 4a

A

1/2
Indeed over a large range of values for the grouping: [4—} we plot the expressions in equation (19):

204
154

104

0-r T T T T T T T T T T T T T T
10” 1ot 102 10° 1t 10° 108

PG
)
A

1/2 5/6
A
Figure 1 Comparison between f = 2LambertW [4—} and / =In [4—) , note the good
a a

agreement over multiple decades of the independent variable.

Accepting the approximation in equation (19) it is possible to explicitly write the solution for Re = = 1.73¢°z* as:
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5/6
Re, . . . .
z=In since z 1S defined n terms of Cr we can write:

4(1.73)
2 2
2K 2K 0.3362
c, = e = e R n? [0.2 Re i/é J . This expression is similar to White’s' classical
2 x
4(1.73)
, , 0.455 . . . e
inner law model, i.e. Cp =——F———7; suggesting that our expression for the Re, using smooth skin friction

n*[0.06Re |’

results will be successful. Indeed, we suggest that it is appropriate to modify one of the constants in our expression

. . 2K’ 0.3362
to better to conform to White’s result for via: ¢ ;R e R— =%
- Re In*[0.12Re¥* |
2 x
8(1.73)

We examine the skin friction for rough flows and solve: Re =1.73(1+0.3k")e"z ? utilizing the preceding

computations to write:

2k?

cfimugh 5/6
1n2 Rex
8(1.73(1+ 0.3k "))

1/2

(20)

Where we evaluatez =kA  ; A =| — | using ¢=ct smoon @ value known from our CFD computation.
C
A
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0008+
0,006
Cr
0,004
00024
T T T T T T 1
1% 10% 1.x 107 1% 10% 1.x 10°
X
Re,
, o _ . 0.3362 . .
Figure (2) Rough skin friction results; equation (20). k'=0 (¢ F RS s¢1)» Red; k=0 (Whites
"~ m’fo.12Re?
, 0.455 . . . ,
solution c,= 2—), 5 k'=10, Orange; k'=100, Blue; k'=1000, Violet
7" In*[0.06Re]

As a useful asymptotic test, we consider equation (20) where k'>>1 whereby the solution becomes independent of

1 2 . I - + k cfimugh .
Re, and we have a “fully rough” solution. Under these conditions with k™ = Re | — T equation (20)

X
simplifies:
2k 2k
Cfimugh = R 5/6 = (20)
In? Cx - 2
8(1.73(1+ 0.3k %)) In?

8(1 .73)(0.3)[ijc_l/sz

and we can explicitly (in terms of LambertW or using the same type of “logarithmic squared” approximation

0.55
} ) solve for c¢ rouen. We plot this result for k/x in figure 3.

Cr full rough =~
ln{l][kj
X
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0.02+

0.01+

cr 0.008-

0.0086

0.0044

T T T L | T LA | T T T 1]
102 108 10 10° 106

-2
X
with correlation’ Cr hll rough © (1 4+3.7log,, [%j} adequate agreement.

Figure (3) Fully rough (Re, independent) skin friction results using: Cr full rough = compared

Following section B, one can examine the small skin friction problem associated with high speed flows with
corresponding skin friction and boundary layer thickness of (say) 0.0036 and 28 mm. The roughness is
approximately (say) 4 mils.

Using the preceding equations we first estimate the smooth “z” value:
5 1/2 5 12
zZ=K| — = 0.41[—) =9.66 and Reynolds number as:
¢, 0.0036
Re, =1.73¢°z> = 1.73exp(9.66)(9.66)* = 2.52x10° 1)

Equation (21) is an estimate of the smooth Reynolds number.

k) |c k) _
We now must compute k' using the definition: k" =Re | = |\/~-~ =k Re_| = |z . Though, we have
P x)V 2 \x

smooth estimates for Re, and z, it is clear that these estimates cannot be correct since the problem (and this term in
particular) are associated with rough flow. A simple approximation to provide a better estimate is to evaluate the z
term  in  the k' definition using the fully rough  approximation. This  gives:
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- k) |[Cro k) [€ro
k" =z lRex[; % = z_/,;”yjough Re, ; % . Where Zfully rough was given as:

-1/2

0.55
qullimugh ~ K\/E

The associated k" value for the problem of interest is then found to be:

k' =k Rex[fj =(0.41)(2.52x10°)(2.52x107°)(4)(6.77) " =15.56 (22)
X

With the Reynolds number, Re, and k' estimates available we use equation (20) to obtain the rough skin friction:

2
Ch ot = 204D = 0.0044 (23)

) 2.52x10° e
(4)(1.73)(1 + 0.3(15.56))

0.0045
0.0036

concern that a classical perturbation method is of limited value.

Thus we find that: ¢ /»=[ jc o= 1.25 ro@ much smaller increase in skin friction value confirming the

Let’s compare this value to the correlation':

cfimugh _ +
Sfrowh 1 40.889(log,, (k*) — 1) 23)

€ro

c rou, . .
Which suggests that this value: —="2" =] + 0.889(log,,(15.56) —1) =1.17 a lower, but similar value. In
C
SO
the next section, solution are performed for this problem by solving the equation (3) numerically rather than using

c f_rough p
——=—— =1.17 verifying the approach

the approximate method developed here. In this case we find that
C
VAU
developed here. Though we develop a more complete description of compressibility in the next section, we note,
that the expressions derived here can modified to included compressibility effects via equation (4). We suggest,
however, that the added computational burden of the compressibility make the simple formulas less attractive and

full numerical inversion more sensible.
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D. Numerical Solutions and Compressibility Effects with Application to a Sharp Cone

A fully iterative solution was performed for the preceding example using a Newton-Raphson method to solve for the
implicit variable, cg in Eq. (3). Examination of Eq. (3) shows that this computation is not dependent upon cy,
except possibly as an initial guess to ¢¢ rouen. The results of that computation are ¢ yougn = 0.00414, i.€. Ct rough / Coy =
1.15, which is in excellent agreement with Fang’s' correlation. Furthermore, k™ is calculated from Eq. (3) as 23.10,
a similar but higher result to those values calculated previously. Note that the larger value of k* would cause our
approximation in section C to deviate even farther from the Fang’s model and the numerical solution. We suggest,
however, that the approximate solution section C has been optimized to use the fully rough expression and use of the
numerical k” would not be consistent.

A particularly useful application is for friction on supersonic cones. The skin friction for cones at zero angle of
attack can be obtained from the flat plate theory using the supersonic turbulent cone rule '?,

Creone(Rex) = Ceplare(Rex/2) (24)

The 5° sharp cone data of Keel” provides an excellent test case for comparison of the theory to experiment. Keel
measured skin friction in a wind tunnel for both smooth and rough walls on a 5° sharp cone at freestream Mach
numbers of 2.5 and 5 and Reynolds numbers from 10° —2.5-10". The measurement location was at x = 594 mm, and
roughness heights of k = 0, 0.58, and 1.09 mm, were tested. Data were collected for both an adiabatic wall, and a
cold-wall (T, = 0.35-T,,) case, however only the adiabatic wall data are examined here. Smooth-wall skin friction
measurements were ~ 0.001-0.003, resulting in k' ~ 15-1575. Since k* >> 1 and compressibility is certainly
important for these cases, the perturbation approach is not valid and the approximation section C is less desirable,
and a full iterative solution to Eq. (3) is appropriate.

A numerical iterative solution to Eq. (3) was performed using the Newton-Raphson method over the range of
conditions provided in Table 1. Although Keel’s paper does not provide enough boundary conditions to solve the
problem, i.e. either Ty or po, etc. are required in addition to Mach and Reynolds number, a range of wind tunnel
operating pressures typically used for these M-Re combinations were tested and the final solution was found to be
insensitive to pressure. The pressures reported below are averages of typical wind tunnel values. Since both the
Mach 2.5 and 5 cases are in the compressible flow regime, it’s necessary to apply the Van Driest compressible skin
friction transformation of Eq. (4). To do this, the Reynolds number is first transformed by Frex (see equation (4))
and divided by 2 to account for the supersonic cone rule, then the transformed Reynolds number is inserted into Eq.
(3), and finally, the resultant incompressible skin friction is transformed into a compressible value. The range of

transformed Reynolds numbers, ﬁes ,are provided in Table 1.

M. | Reqee (109 po(kPa) Mg  Re_ (10°) (k/s)
1.0 0.45
2.5 I 550 2.4 I 9.8-10%,1.8:10
20.0 8.5
1.0 414 0.19
5.0 I I 4.7 I 9.8-10%,1.8:10
20.0 1724 3.58

Table 1. Boundary Conditions for comparison to Keel’s skin friction data.
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Figure 4 shows a comparison of the theoretically predicted compressible skin friction values with Keel’s
experimental data. Results are plotted as a function of the boundary layer edge Reynolds number. Data for Megge =
2.4 are provided in the left figure, while those for Mg, = 4.7 are on the right. The theory shows fair agreement with
the Mach 2.4 data, with particularly good agreement for k = 1.09 mm. Agreement is less favorable with the Mach
4.7 data, with the theory under-predicting by about 20-30%. Nevertheless, this example shows that the theory may
be suitable for design purposes, particularly at lower Mach numbers.

3] 3]

E M, =24 &; E M, =47
- B A———— -
sk o adn & 5k
i R -
4F 1F
B A s
[ a [
s s
— N u] — B XX %O,
x | o ! x | x wm
O o o O2F _—
[ a o i \ --------- Demm -
[ A - =
Dd:l a
| - o a
1= 1F \‘, =
i Laminar Theory ~——_ B Laminar Theorfo\-\_
B o Keel, k = 0.00 mm T T—— - o Keel, k = 0.00 mm T
- fa Keel, k = 0.58 mm B A Keel, k = 0.58 mm
OF % Keelk-1.09mm OF  x  keelk-109mm
L - -=-=- Present, k= 0.8 mm F mmm—-- Present, k= 0.58 mm
B Present, k= 1.09mm Present, k= 1.09 mm
,17 L Ll L Ll L Ll ,17 L Ll L Ll L Ll
10° 10° 10 10° 10° 10° 10 10°
Re, Re,

Figure 4. Comparison of theoretically-derived compressible, turbulent skin friction on a 5° sharp cone with
experiment. Mach 2.4 data are shown on the left, while Mach 4.7 data are on the right.

III. Conclusion

We have developed a model to estimate for the increase in a known friction and boundary layer thickness due to
roughness that may be utilized without performing either new experiments or computations. A simple perturbation

*

kmughv
v

w

usually not valid. For these flows we solved the appropriate incompressible roughness expressions directly using
an approximate procedure which is valid for a wider range of k" values. Though useful to demonstrate behaviors
associated with roughness and providing a connection to smooth expressions, the approximate method is of less
value when one requires compressibility corrections, whereby it is perhaps more appropriate to dispense with
approximation and simple solve the full expression numerically. We also note that the empirically based expression
described by Fang et. al. is in excellent agreement with the inner law based model described here. More over their
model is very convenient in application.

method was used to motivate the problem, but fork*™ = > 1 (the small parameter) the use of this series is

Further work must include examination of the procedure in a more comprehensive and systematic fashion. This
effort should be both in terms of validating the method for simple problems, i.e. with knowledge of both smooth and
rough behavior and more complex flows where the “local” flat plate assumption may not hold. More complex flow
problems may require the explicit appearance of the pressure gradient. Geometric effect, e.g. axi-symmetric versus
planar problems may also require a more formally explicit skin friction or boundary layer thickness model.
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