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A Model to Estimate Turbulent Wall Shear and B.L. 
Thickness Over Hydro-dynamically Rough Surfaces by 

Perturbing Known Smooth Results
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[Abstract] It is not uncommon when utilizing hydro-dynamically smooth experimental or computational 
results that one would like to estimate the additional effect of wall roughness without performing either new 
experiments or computations.  Here we consider a simple analytical model based on inner law methods which 
extends smooth wall skin friction and boundary layer thickness to be valid for rough wall flows.  The 
approach described here uses a formal perturbation model of the compressible (adiabatic) skin friction, the 
rough wall equivalent (Van-Driest) log-law boundary layer thickness.  Though perturbation-based 
approaches provide a correction expression, they are not valid for many physically interesting problems 
where the roughness is more significant.  For these flows we solve the appropriate roughness expressions 
using an approximate procedure which is valid for a wider range of roughness.  Though useful to 
demonstrate behaviors associated with roughness and providing a connection to smooth expressions, this
approximate method is of less value when one requires compressibility corrections, whereby it is perhaps 
more appropriate to dispense with approximation and simple solve the full expression numerically.  We also 
note that the empirically based expression described by Fang et. al. (2003)1 is in excellent agreement with the 
inner law based model described here.

Nomenclature

A = turbulent spot wave amplitude
B = inner law turbulent profile coefficient, B=5.0
Cf = skin friction coefficient
Cp = pressure coefficient
k = roughness height, wave number (L)
M = Mach number
p = pressure (ML-1t-2)
R = ideal gas constant (L2t-2T-1)
Re = Reynolds number

mix = turbulent mixing length (L)

r = recovery coefficient
s = distance along cone surface (L)
T = temperature (T)
u = streamwise velocity (Lt-1)
v = cross-stream velocity (Lt-1)
v* = friction velocity (Lt-1)
x = stream wise spatial coordinate (L)
y = cross-stream spatial dimension (L)
z = friction variable (see equ. (3))
 = wall boundary layer thickness (L)
 = kinematic viscosity (L2t-1)
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 = ratio of specific heats
 = inner law turbulent profile coefficient, =0.41
 = absolute viscosity (ML-1t-1)
 = power-law viscosity constant
 = density (ML-3)
 = shear stress (ML-1t-2)

Subscripts/superscripts
( )’ = turbulent fluctuating quantity

)( = (over bar) mean flow turbulent quantity

rms = root means squarew = wall quantity
 = outer flow (free-stream) quantity

+ = inner law scaling (see White (1991)2)

aw = adiabatic wall

w = wall

I. Introduction

HE goal of this research is to provide an engineering level predictive capability to estimate the additional effect 
of wall roughness without performing either new experiments or computations. Models that provide rough and 

smooth (as a degenerate case) information for simple flat plate flows are well known2,3.   These models, however, do 
not allow us to take general skin friction/thickness input information and extend it to rough flows, but are inherently 
limited to a particular flow with a particular skin friction/B.L. thickness estimate.  The model derived here, can use 
any wall layer information and increase of data base for that flow to include rough behavior.   The family of models 
described by Fang et. al.1 and references provide a simple (and we believe accurate) connection between smooth and 
rough behavior, but are empirical correlations.   We attempt to derive such a model based on theoretical/inner law 
arguments.

The approach described here uses a formal perturbation expansion in terms of the “small” variable 
w

roughvk
k



*


, 

of the compressible (adiabatic) skin friction, and a rough wall equivalent (Van-Driest) log-law boundary layer 
thickness. As noted by White2, Van-Driest’s expression can be seen as a compressibility transformation valid for 
either smooth or rough flow, our focus is more properly placed upon incompressible smooth and rough flows and 
here is where we focus our perturbation expansion analysis. Though this type of expansion is instructive and 
intuitively satisfying, we will find that for many problems, k+ is NOT small, whereby the justification for the 
expansion is rather tenuous.   For these flows we solve the appropriate incompressible roughness expressions using 
an approximate “single pass” iteration procedure which is valid for a wide range of k+ values.   Finally we solve the 
complete inner law expressions numerically, which we believe is sensible especially when including compressibility 
corrections.

II. Governing Equations

Here we summarize the analytical development of the models.   As discussed, we start by delineating the relevant 
equations within the context of a perturbation method.   Subsequently we consider an approximate solution that is 
more broadly applicable and then a numerical implementation.

T
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A. Perturbation Expansion-Based Solution

The components required to perform this analysis include:

1. Access to hydro-dynamically smooth skin friction and boundary layer thickness results from measurement 
or simulation, say, Cf0 and δ0.   These are the conditions that we “perturb” about.

2. The governing equations are an incompressible rough wall skin friction model, an equivalent compressible 
rough-wall (Van Driest) inner law skin friction expression and a boundary layer thickness result.  We 
examine several alternatives for the B.L. thickness expressions.

Notice that while the smooth skin friction and boundary layer thickness may result from any flow (flat plate or 
otherwise), we are implicitly assuming that the near-wall behavior is adequately described by a flat plate flow a 
good approximation for flows where body curvature is a small effect.  More complex “outer” flows transmit this 
information to the near wall via the pressure gradient, however, as shown by Bond and Blottner4 neglecting 
convective and pressure gradient effects is often an excellent approximation.

Thus, if we define two perturbation series as:

)(... 2
10

  kOckcc fff      (1)

and

)(... 2
10

  kOk       (2)
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*


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kvk
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rough
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




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




fc
 (here we require that k/x<<<1).

The skin friction is computed utilizing an incompressible (with rough wall effects) inner-law skin friction model.   
The incompressible (both) smooth/rough skin friction model1 is written as:

1

2/1
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     (3)

Equation (3) is implicit in terms of the unknown cf and as posed, Equation (3) is valid for incompressible flow only.  
However, Van Driest has shown that incompressible skin friction can be extended to be valid for compressible flow 
by a stretching transformation.   This transformation takes the canonical form:



American Institute of Aeronautics and Astronautics
4

1

2

,Re,

;
)arcsin(

2

1

)eR
~

(
1

)Re(
1












c

w

rexc

xincf

c

xxincf

c

f

FF
a

M
F

c
F

Fc
F

c




      (4)
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the simple power law relationship: 67.0; 
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The appearance of the Mach number terms is via the Crocco-Buseman law1
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(an approximate energy integral for Pr1 that is 

a reasonable approximation for air).

Equation (3) also permits estimation of a boundary layer thickness, since for 




 y
u

u
1 .  Hence 

we can solve equation (3) for + as:
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Equations (4) and (5) is based solely on inner law analysis.  As written, equation (5) is expressed in terms of inner 

variables.   Let’s express it a more useful form as: 
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with: 
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Unfortunately, inversion of the inner law expression to obtain the boundary layer thickness tends to underestimate 
the actual boundary layer thickness since, which by definition, this expressions is only valid for the inner law.  A 
more direct streamwise integral is preferable.
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Following Tennekes and Lumley5, one can write a streamwise momentum integral (integrated to remove cross 
stream dependence) for flat plate flow expression as:
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Using equations (7) and (8) we can eliminate 
dx

dv*

and arrive at a governing equation for the normalized boundary 

layer thickness:
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Finally, using 1/7th power law profiles etc, one can infer that: xMc f 

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Thus, using equations (3) and (10) and the perturbation expansions, i.e. equations (1) and (2) it is possible to derive 
expressions for the first order terms, cf1 and δ1 in equations (1) and (2).  We examine the effect of the perturbation 

expansions on equations (3).   It is convenient to introduce the intermediate variable: )(... 2
10

  kOzkzz
which permits us to expand equation (3) to arrive at the correction term z1:
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With the “z” correction term known we can use: 
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Similarly, one can readily combine the boundary layer thickness expression: xMc f 
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These two expressions are, of course, intended to “extend” smooth results to be valid for rough flows.

B. Application of the Expansion

It is useful to consider a classical low speed  M∞<<1 problem.   Under classical low speed conditions with 
Rex=O(5E6), one finds that cf0 (smooth value) is approximately: cf0=0.005 (say). If k/x is on the order of 1E-3 we 

find that the roughness k+ is then:
2

Re
_ roughf

x

c

x

k
k 









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(obviously this not formally a small value, however we can proceed to check behavior)   This is sufficient 
information to estimate the roughness behavior as (using equation (12) we find that cf1=O(2E-5):
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American Institute of Aeronautics and Astronautics
7

which corresponds to 072.1 ff cc  Examination of classical rough wall behavior suggests that Cf rough1 is about 

0.0055.  The classical sand grain fully rough skin friction2 (Reynolds number independent is about 0.0065) 
suggesting that our prediction is on the high side.  The boundary layer thickness extension is: 
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have increased by approximately 72%. 

Let’s consider a second problem with skin friction and boundary layer thickness of (say) 0.0036 and 28 mm. The 
roughness is on the order of 2-6 mils (we actually use 4 mil) corresponding to 
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Following the empirical correlation of Fang et. al.1 we shall see that this solution is too high by a factor of 3 (!) 
which is unacceptable.

C. “One Pass Iterative” Approximate Solution for k+>1 to k+>>1

The preceding analysis was based upon an elementary perturbation analysis which involves introduction 

(assumption) of a series solution form as: )(... 2
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suggests that unless 

k<<<1 that k+ can easily be larger than 1 (as large as 100).  Hence, the assumption inherent to the perturbation series 
(and moreover the simplifications utilized) cannot be truly correct.   Moreover results derived using the perturbation 
approach yield solutions that are in poor agreement with data.   Here, we consider an alternative solution procedure 
that can more formally accept larger values of the dimensionless roughness. 

Our approach is to introduce an approximate, iteration scheme that is not dependent upon the size of the rough term.  
The procedure is based upon a simplification of equation (3) re-written here for convenience:
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From the definition of z: 
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dominant terms in equation (A.1) would be:
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The hydro-dynamically smooth solution form is: )(...73.1Re 22 zOze z
x  .  This reduced expression is of 

value as a way to estimate the Reynolds number Rex.  It is also of value as a way to test the value of the 
approximation inherent to equation (17).



American Institute of Aeronautics and Astronautics
8

Obviously, to use equation (17) we need to be able to solve for z.   Let’s consider a basic canonical transcendental 

equation of this form, say: 0)exp(2  xax .  The solution for this expression is:
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Where LambertW(β) is the special function solution6 of the transcendental expression   )exp( .   Though 

the LambertW function has well known properties (and approximations) it is not a convenient solution.   As such, 
we consider a specific (empirical) approximation for equation (A.3) which is found to be:
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Indeed over a large range of values for the grouping: 
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Accepting the approximation in equation (19) it is possible to explicitly write the solution for 
273.1Re ze z

x  as:

f
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























6/5

)73.1(4

Re
ln xz since z is defined in terms of cf we can write: 

 6/526/5

2

2

2

2

Re2.0ln

3362.0

)73.1(4

Re
ln

22

x
x

f
z

c 


























.   This expression is similar to White’s1 classical 

inner law model, i.e. 
 x

fc
Re06.0ln

455.0
2

 ; suggesting that our expression for the Rex using smooth skin friction 

results will be successful.  Indeed, we suggest that it is appropriate to modify one of the constants in our expression 

to better to conform to White’s result for via:  6/526/5

2

2

Re12.0ln

3362.0

)73.1(8

Re
ln

2

x
x

fc 



























We examine the skin friction for rough flows and solve: 
2)3.01(73.1Re zek z

x
 utilizing the preceding 

computations to write:






























6/5

2

2

_

))3.01(73.1(8

Re
ln

2

k

c

x

roughf


     (20)

Where we evaluate

2/1

2
;
















fc
z  using cf=cf_smooth a value known from our CFD computation.  
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Rex

Figure (2) Rough skin friction results; equation (20).  k+=0 (  6/52 Re12.0ln

3362.0

x

fc  ), Red; k+=0 (Whites2

solution 
 x

fc
Re06.0ln

455.0
2

 ), Green;  k+=10, Orange; k+=100, Blue; k+=1000, Violet

As a useful asymptotic test, we consider equation (20) where k+>>1 whereby the solution becomes independent of 

Rex and we have a “fully rough” solution.  Under these conditions with 
2

Re
_ roughf

x

c

x

k
k 










equation (20) 

simplifies:













































































2/1
_

2

2

6/5

2

2

_

)3.0)(73.1(8

2
ln

2

))3.01(73.1(8

Re
ln

2

rouff

x

roughf

c
x

k
k

c


     (20)

and we can explicitly (in terms of LambertW or using the same type of “logarithmic squared” approximation 



















x

k
c roughfullf

7.1ln

55.0

2

__ ) solve for  cf_rough.   We plot this result for k/x in figure 3.

cf
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k/x

Figure (3) Fully rough (Rex independent) skin friction results using: 



















x

k
c roughfullf

7.1ln

55.0

2

__ compared 

with correlation2

2

10__ log7.34.1





















k

x
c roughfullf adequate agreement.

Following section B, one can examine the small skin friction problem associated with high speed flows with 
corresponding skin friction and boundary layer thickness of (say) 0.0036 and 28 mm.  The roughness is 
approximately (say) 4 mils.

Using the preceding equations we first estimate the smooth “z” value: 

66.9
0036.0

2
41.0

2
2/12/1


























fc
z  and Reynolds number as:

622 1052.2)66.9)(66.9exp(73.173.1Re xze z
x       (21)

Equation (21) is an estimate of the smooth Reynolds number.

We now must compute k+ using the definition:
10

Re
2

Re 

















 z

x

kc

x

k
k x

f

x  .  Though, we have 

smooth estimates for Rex and z, it is clear that these estimates cannot be correct since the problem (and this term in 
particular) are associated with rough flow.  A simple approximation to provide a better estimate is to evaluate the z 
term in the k+ definition using the fully rough approximation.  This gives: 

cf
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2
Re

2
Re

01
_

01 f

xroughfully

f

x

c

x

k
z

c

x

k
zk 

















 

. Where zfully_rough was given as: 

2/1

2

_

7.1ln

55.0
2







































x

k
z roughfull  .

The associated k+ value for the problem of interest is then found to be: 

56.15)77.6)(4)(1052.2)(1052.2)(41.0(Re 156 







  xx

x

k
k x      (22)

With the Reynolds number, Rex and k+ estimates available we use equation (20) to obtain the rough skin friction:

0044.0

))56.15(3.01)(73.1)(4(

1052.2
ln

)41.0(2
6/56

2

2

_ 



























x

c roughf      (23)

Thus we find that: 00 25.1
0036.0

0045.0
fff cc 








 a much smaller increase in skin friction value confirming the 

concern that a classical perturbation method is of limited value.

Let’s compare this value to the correlation1:

)1)((log889.01 10

0

_
 k

c

c

f

roughf
     (23)

Which suggests that this value: 17.1)1)56.15((log889.01 10

0

_


f

roughf

c

c
a lower, but similar value.  In 

the next section, solution are performed for this problem by solving the equation (3) numerically rather than using 

the approximate method developed here.   In this case we find that 17.1
0

_


f

roughf

c

c
verifying the approach 

developed here.  Though we develop a more complete description of compressibility in the next section, we note, 
that the expressions derived here can modified to included compressibility effects via equation (4).   We suggest, 
however, that the added computational burden of the compressibility make the simple formulas less attractive and 
full numerical inversion more sensible.
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D. Numerical Solutions and Compressibility Effects with Application to a Sharp Cone 

A fully iterative solution was performed for the preceding example using a Newton-Raphson method to solve for the 
implicit variable, cf, in Eq. (3).  Examination of Eq. (3) shows that this computation is not dependent upon cf0, 
except possibly as an initial guess to cf_rough.  The results of that computation are cf_rough = 0.00414, i.e. cf_rough / cf0 = 
1.15, which is in excellent agreement with Fang’s1 correlation.  Furthermore, k+ is calculated from Eq. (3) as 23.10, 
a similar but higher result to those values calculated previously.  Note that the larger value of k+ would cause our 
approximation in section C to deviate even farther from the Fang’s model and the numerical solution.   We suggest, 
however, that the approximate solution section C has been optimized to use the fully rough expression and use of the 
numerical k+ would not be consistent.

A particularly useful application is for friction on supersonic cones.  The skin friction for cones at zero angle of 
attack can be obtained from the flat plate theory using the supersonic turbulent cone rule 1,2,

cf,cone(Rex) = cf,plate(Rex/2)      (24)

The 5° sharp cone data of Keel7 provides an excellent test case for comparison of the theory to experiment.  Keel 
measured skin friction in a wind tunnel for both smooth and rough walls on a 5° sharp cone at freestream Mach 
numbers of 2.5 and 5 and Reynolds numbers from 106 – 2.5·107.  The measurement location was at x = 594 mm, and 
roughness heights of k = 0, 0.58, and 1.09 mm, were tested.  Data were collected for both an adiabatic wall, and a 
cold-wall (Tw = 0.35·Taw) case, however only the adiabatic wall data are examined here.  Smooth-wall skin friction 
measurements were ~ 0.001-0.003, resulting in k+ ~ 15-1575.  Since k+ >> 1 and compressibility is certainly 
important for these cases, the perturbation approach is not valid and the approximation section C is less desirable, 
and a full iterative solution to Eq. (3) is appropriate.

A numerical iterative solution to Eq. (3) was performed using the Newton-Raphson method over the range of 
conditions provided in Table 1.  Although Keel’s paper does not provide enough boundary conditions to solve the 
problem, i.e. either T0 or p0, etc. are required in addition to Mach and Reynolds number, a range of wind tunnel 
operating pressures typically used for these M-Re combinations were tested and the final solution was found to be 
insensitive to pressure.  The pressures reported below are averages of typical wind tunnel values.  Since both the 
Mach 2.5 and 5 cases are in the compressible flow regime, it’s necessary to apply the Van Driest compressible skin 
friction transformation of Eq. (4).  To do this, the Reynolds number is first transformed by FRex (see equation (4))
and divided by 2 to account for the supersonic cone rule, then the transformed Reynolds number is inserted into Eq. 
(3), and finally, the resultant incompressible skin friction is transformed into a compressible value.  The range of 

transformed Reynolds numbers, seR
~

,are provided in Table 1.  

M∞ Rex,edge (106) p0 (kPa) Medge
seR

~
(106) (k/s)

2.5

1.0
.
.
.

20.0

550 2.4

0.45
.
.
.

8.5

9.8·10-4, 1.8·10-3

5.0

1.0
.
.
.

20.0

414
.
.
.

1724

4.7

0.19
.
.
.

3.58

9.8·10-4, 1.8·10-3

Table 1.  Boundary Conditions for comparison to Keel’s skin friction data.
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Figure 4 shows a comparison of the theoretically predicted compressible skin friction values with Keel’s 
experimental data.  Results are plotted as a function of the boundary layer edge Reynolds number.  Data for Medge = 
2.4 are provided in the left figure, while those for Medge = 4.7 are on the right.  The theory shows fair agreement with 
the Mach 2.4 data, with particularly good agreement for k = 1.09 mm.  Agreement is less favorable with the Mach 
4.7 data, with the theory under-predicting by about 20-30%.  Nevertheless, this example shows that the theory may 
be suitable for design purposes, particularly at lower Mach numbers.  

   
   Figure 4.  Comparison of theoretically-derived compressible, turbulent skin friction on a 5° sharp cone with 

experiment.  Mach 2.4 data are shown on the left, while Mach 4.7 data are on the right.  

III. Conclusion

We have developed a model to estimate for the increase in a known friction and boundary layer thickness due to
roughness that may be utilized without performing either new experiments or computations.  A simple perturbation 

method was used to motivate the problem, but for 1
*



w

roughvk
k


(the small parameter) the use of this series is 

usually not valid.   For these flows we solved the appropriate incompressible roughness expressions directly using 
an approximate procedure which is valid for a wider range of k+ values.  Though useful to demonstrate behaviors 
associated with roughness and providing a connection to smooth expressions, the approximate method is of less 
value when one requires compressibility corrections, whereby it is perhaps more appropriate to dispense with 
approximation and simple solve the full expression numerically.  We also note that the empirically based expression 
described by Fang et. al. is in excellent agreement with the inner law based model described here.  More over their 
model is very convenient in application.

Further work must include examination of the procedure in a more comprehensive and systematic fashion.  This
effort should be both in terms of validating the method for simple problems, i.e. with knowledge of both smooth and 
rough behavior and more complex flows where the “local” flat plate assumption may not hold.   More complex flow 
problems may require the explicit appearance of the pressure gradient.  Geometric effect, e.g. axi-symmetric versus 
planar problems may also require a more formally explicit skin friction or boundary layer thickness model. 
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