
A MODIFIED GENERALIZED LIKELIHOOD UNCERTAINTY ESTIMATION (GLUE) METHODOLOGY

Hui-Hai Liu, Yingqi Zhang and James Houseworth 

Earth Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road
Berkeley, California 94720, hhliu@lbl.gov

The Generalized Likelihood Uncertainty 
Estimation (GLUE) methodology has been widely used in 
many areas as an effective and general strategy for model 
calibration and uncertainty estimation associated with 
complex models. The application of the GLUE requires a 
formal definition of a likelihood function. However, it has 
been recognized that the choice of a likelihood function is 
inherently subjective, which, in turn, introduces a new 
kind of uncertainty–the epistemic uncertainty in the 
GLUE methodology. In this study, we propose a practical 
framework to address this uncertainty by using multiple 
likelihood functions. The final uncertainty estimate results 
are obtained by combining those results from individual 
likelihood functions based on probability theory. Through 
an analysis of the probabilities of four net infiltration 
maps at Yucca Mountain, Nevada, we demonstrate that 
(1) it is important to consider the uncertainty caused by 
the subjectivity of the likelihood selection in the GLUE 
application, and that (2) the proposed method can 
effectively address this epistemic uncertainty. 

I. INTRODUCTION 

Uncertainties associated with hydrological models 
may increase with the incorporation of more complex 
processes. Good modeling practice should quantify and 
reduce these uncertainties. Ref. 1 has provided a 
comprehensive review on understanding, quantifying, and 
reducing uncertainties in hydrological models. Among 
different uncertainty-analysis methodologies, the 
generalized likelihood uncertainty estimation (GLUE) 
methodology (Ref. 2) has been widely used in the 
hydrological literature, because it is relatively simple and 
easy to understand and implement. However, the 
application of GLUE requires a formal definition of a 
likelihood function. As a result of difficulties in 
rigorously defining a likelihood function for a given 
hydrological problem, the application of GLUE itself 
introduces epistemic uncertainty. (The epistemic 
uncertainty refers to the uncertainty related to incomplete 
or inadequate information in the model selection or 
parameter determination.) The associated subjectivity 
affects the calculation of model uncertainty, as shown 

previously in Ref. 3. Therefore, proper consideration of 
this epistemic uncertainty is essential for many practical 
applications. Although there is a large body of literature 
for the GLUE methodology, little attention has been given 
to addressing epistemic uncertainty associated with the 
selection of the likelihood function.

The main purpose of this study is to develop a 
practical framework for considering the epistemic 
uncertainty introduced by the subjectivity of likelihood 
function selection in the GLUE methodology.

II. A MODIFIED GLUE METHODOLOGY

II.A. Basic Concept of the GLUE Methodology

The GLUE methodology was first proposed in Ref. 2 
as a framework to estimate uncertainty from equally 
acceptable models or parameter sets.  It recognizes that 
equivalence of parameter sets or models in hydrological 
systems exists in many cases. Therefore, rather than using 
a single “optimal” parameter set or model, the GLUE 
approach assesses uncertainty in those parameter sets or 
models by weighting them according to how well a given 
model (or parameter set) has performed. The evaluation 
of the performance is based on a comparison between 
model results and measured data. In particular, Ref. 2 
emphasized that the use of the term “likelihood” in the 
GLUE methodology is meant in a very general sense, as a 
possibilistic measure of how well the model conforms to 
the observed behavior of the hydrological system, and not 
in the restricted sense of the maximum likelihood theory. 
This flexibility is necessary because a seemingly 
mathematically rigorous likelihood function may not be 
satisfactory for complex practical problems, where the 
assumptions used to derive the likelihood function cannot 
be fully validated.   Due to its simplicity and practicality, 
the GLUE methodology has been widely used in 
hydrological applications and other related areas. We 
refer readers to Ref. 2 for the details of the GLUE 
methodology.

As previously indicated, the choice of a likelihood  
function is inherently subjective in the GLUE, and this 
choice affects the calculation of model uncertainty [Ref. 
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3]. This means that the uncertainty in choosing a 
likelihood function needs to be appropriately addressed in 
the GLUE procedure. 

II.B. A Modified GLUE Methodology

A modified GLUE methodology is developed 
herein to address the epistemic uncertainty associated 
with the selection of a likelihood function. It is difficult, if 
not impossible, to define a single best likelihood function 
for a given problem, while  a number of acceptable 
likelihood functions may exist. (According to Ref. 2, a 
likelihood function in GLUE is considered to be 
acceptable when it equals to zero for all the simulations 
that are considered to exhibit behavior dissimilar to the 
system under study and increases monotonically as the 
similarity in behavior increases. These are not very 
restrictive requirements and could be satisfied by many 
likelihood functions.) Unlike the traditional GLUE 
methodology, in which a single likelihood function is 
used for a given problem, we propose to include all 
acceptable likelihood functions for the uncertainty 
analysis. The results from multiple likelihood functions 

can be combined using probability theory. Let )(zf k be 

the uncertainty estimation result using a single likelihood 
function Lk, and P(L=Lk) be the probability for the 
likelihood function L=Lk to be true (e.g., the kth 
likelihood function provides a true estimate). Then, the 
final estimation results are:
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In the case where )(zf k is represented in a discrete form, 

Eq. (1) can be written as:
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where P(Z=zj) is the probability for the event Z = zj (e.g.,  
the jth model or values of the jth parameter set are true) to 

occur, and )( kj LLzZP  is the probability for Z=zj

to occur when L=Lk (e.g., the kth likelihood function is 
true). In the case study to be discussed in the next section, 
Eq. (2) is used to demonstrate the implementation 
procedure of our proposed method.

Our modified GLUE methodology can be considered 
a generalization of the original version of the GLUE. If 
the weight of an individual likelihood function Lk is 
assigned to be one, then our approach is reduced to the 
traditional GLUE. In other words, the traditional GLUE 
puts all confidence (or belief) into a single likelihood 
function, whereas our modified GLUE acknowledges the 
existence of multiple likelihood functions accepted for a 
given problem and considers all of them. Also, note that 
Ref. 2 suggested ways of combining likelihood functions 
to handle different types of observations. We use their 

suggested method to handle data at different locations and 
for different data types.  

     The modified GLUE methodology requires the 
selection of likelihood functions and the specification of 
weights for the different likelihood functions. In theory, 
all the acceptable, independent likelihood functions need 
to be considered. In practice, the selected likelihood 
functions should exhibit substantially different 
mathematical forms or have different theoretical bases 
such that a relatively large range of likelihood-function 
types are considered, and any overlaps between different 
selected likelihood functions are avoided. Furthermore, 
the selected likelihood functions should not be 
theoretically inconsistent with the data and physical 
processes considered in the model. Finally, the 
methodology also requires the independent specification 
of P(L=Lk) – the probability that a likelihood function 
provides the true information. This probability can be 
thought of as likelihood function weights to be specified 
by the user. The specification of weights for different 
likelihood functions should be based on the confidence in 
(or reliability of) these functions for the problem under 
consideration. The weights are different if the confidence 
in these functions is different.
       Note that the methodology that has been used for 
aggregating results of expert elicitation is similar to the 
modified GLUE. Expert elicitations (or judgments) enter 
several aspects of many scientific endeavors (Ref. 4). 
During an expert elicitation procedure, equally qualified 
experts from different related scientific areas may provide 
different probability density functions for a given 
parameter or analysis result. In most cases, a collective 
opinion (represented by a pdf) is needed from results of 
individual experts.  An analogy exists between the expert 
elicitation and the modified GLUE methodology. In Eq 
(2), P(Z=zj) and )( kj LLzZP  correspond to the 

collective and individual uncertainty analysis results from 
experts, respectively.  Each expert can be considered to be 
equivalent to a likelihood  function Lk in this study. 
Similar probabilistic arguments were used in Ref. 4 for 
developing a mathematical formulation for aggregating 
results expert elicitations. Uniform weights were 
suggested in their work.  

III. APPLICATION  

This section demonstrates application of the 
modified GLUE methodology to determining 
probabilities for infiltration maps at Yucca Mountain, 
Nevada, the proposed site for disposal of high-level 
nuclear waste. The advantage of using the modified 
GLUE methodology for the problem under consideration 
is also discussed.



II.A. Infiltration Maps at Yucca Mountain and the 
Relevant Data

Net infiltration is a key hydrologic parameter for 
controlling percolation rate, groundwater recharge, 
potential seepage into waste emplacement drifts, and 
radionuclide transport. Ref. 5 developed net infiltration 
maps for the region immediately surrounding Yucca 
Mountain, based on present-day climate and two future 
climates. Forty infiltration maps were generated with the 
same probability of occurrence. From these forty maps, a 
cumulative distribution function (CDF) was obtained, and 
an annual mean net infiltration rate at different percentiles 
was found. Four infiltration maps, namely, 10th, 30th, 50th, 
and 90th percentile maps have been selected by the Yucca 
Mountain Project and will be used in a system 
performance analysis. However, during the process of 
generating net infiltration maps, only climate and 
shallow-soil-layer information has been taken into 
account because of computational limitations. Data from 
the deep unsaturated zone that provide additional 
information regarding infiltration/percolation processes at 
Yucca Mountain are not used. Using 10th, 30th, 50th, and 
90th percentile net infiltration maps, we can simulate 
temperature and chloride concentration values at different 
locations in the unsaturated zone of Yucca Mountain 
(Ref. 6). Figure 1 shows a comparison between simulated 
and measured temperature data at a vertical borehole, and 
Figure 2 between simulated and measured chloride 
concentration data at a horizontal tunnel, with simulation 
results from the unsaturated zone flow model using these 
four net infiltration maps as input. In this study, both 
chloride concentration and temperature data observed in 
the unsaturated zone were used for uncertainty analysis of 
the four selected net infiltration maps. 

II.B. Multiple Likelihood Functions

The modified GLUE methodology and four 
commonly used likelihood functions are used here for 
determining the probability for each of the four selected 
net infiltration maps based on Eq (2). 

The traditional likelihood function (with the 
assumption that the residuals are independent and follow 
a Gaussian distribution)  (Ref. 7) was chosen as our first 
likelihood function:
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where subscript i (= 1, …, 4) is the index of the net 
infiltration map; j (=1, …, K) is the index of spatial 
location (with a total number of K), X is the measured 
value (temperature or chloride concentration), x is the 
corresponding simulated value, and σ is the standard 
deviation of residuals, which is the measurement error if 

the model were perfect. The same notations are applied in 
the following equations.
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Fig. 1. A comparison between simulated and observed 
temperature distributions at borehole SD-12 (Refs. 6 and 
8).
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Fig. 2. A comparison between simulated and measured 
chloride concentration data at a horizontal tunnel (Refs. 6 
and 8).

Ref. 2 provided a likelihood function for 
observations from multiple sites, as shown in Eq. (4).
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where W*j is the weight for observation j such that 

  1* jW . N is a parameter chosen by the user.  Note 

if N = 0, then all the net infiltration maps will have the 

same likelihood value, and if N , the best 
simulation will be singled out, having a rescaled 
likelihood value of 1, with all others 0. The advantages of 
using this measure are that the parameter N gives us the 
flexibility of choosing to what degree the likelihood 
values of the maps are separated. In this study, the 



likelihood function defined in Eq. (4) (with N = 0.5 and N 
= 1) was chosen as the second  likelihood function. The 
weights Wj* were chosen to be the same for all 
measurements. 
      The third likelihood function is directly taken from 
Ref. 2:
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In this function, the measurement error is not accounted 
for in the formulation.
     The last likelihood function (equivalent to a simple 
fuzzy membership (Ref. 9)) is used to express a relative 
degree of belief that an infiltration scenario is a good 
estimate of the real infiltration history. Examples of this 
likelihood function include a triangular function, a 
trapezoidal membership function, and a beta distribution. 
For this analysis, the commonly used triangular function 
has been chosen, which can be expressed as (Ref. 9):
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where  defines acceptable error in an observation. In 
our case,  was chosen as the maximum residual 
(absolute difference between simulated quantities and 
measured quantities, for temperature values and chloride 
concentrations) from all locations and all infiltration 
maps. Our last likelihood function (L4i,) is then defined as 
the arithmetic means of the likelihood function fi,j at 
multiple locations. This treatment is equivalent to one of 
the methods suggested in Ref. 11– summation of all the 
individual likelihood functions at multiple locations. 
      Although a relatively small number of likelihood 
functions are used here, they represent four different types 
of likelihood functions expected to give different 
measures of comparison between simulated and observed 
results, and have been commonly used in the GLUE 
framework or related applications. 

II.C. Determination of probability values for 
infiltration maps

For a given likelihood function Lk , the probability of 
the ith infiltration map is
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where 
0

iP is the prior probability for the ith infiltration 

map. Eq. (2) is used to determine the final probability 

value considering all the likelihood functions. In this 
study, we consider P(L=Lk) to be the same for all the
likelihood functions. When using both of temperature and 
chloride data sets, the final likelihood function is a 
product of likelihood functions for each individual data 
set.

III. RESULTS  

We plot a box-and-whisker diagram (Fig. 3) for 
the probability values of the four infiltration maps, 
calculated using each of the likelihood functions and the 
combined two data sets. The diagram contains five 
summary statistics (the smallest value, lower quartile (25th

percentile), median (50th percentile), upper quartile (75th

percentile), and largest value). The final probability 
values for the four net infiltration maps considering all the 
likelihood functions from the boxplot are listed in Table 
1.  Results using each of the two data sets are very close 
to those from a combination of the two data sets. This 
supports the robustness of the modified GLUE and 
reasonableness of the estimated probability values (Table 
1).
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Fig.3. The box-and-whisker diagram for the probability 
values of the four net infiltration maps, calculated using 
each of the four likelihood functions (Ref. 8).

TABLE I.  Probability Values for the Four 
Infiltration Maps Considering All the Likelihood 

Functions

10th

Percentile 
Map (%)

30th

Percentile 
Map (%)

50th

Percentile 
Map (%)

90th

Percentile 
Map (%)

Probability 61.9 15.7 16.5 6.0

        Fig. 3 shows that the probability values are found to 
be considerably sensitive to the selected likelihood 
function.  For example, the probability value for the 10th

percentile map varies from 25.7% to 100% for individual 



likelihood functions. Among the four likelihood 
functions, the two extreme likelihood functions are the 
first one L1 and the last one L4. L1 puts all the weight on 
the infiltration map that gives the best matches to the 
observed data - with 100%, 0, 0, 0 for the 10th, 30th, 50th, 
and 90th percentile maps, respectively. L4 tends to even 
out the weights on different infiltration maps - with 
25.7%, 23.9%, 32.2%, 18.2% for the 10th, 30th, 50th, and 
90th percentile maps, respectively. These results support 
the importance to account for the epistemic uncertainty 
caused by the subjective likelihood functions, because of 
the difficulty in defining a single best likelihood function 
and the large degree of variability in probability values 
calculated from different likelihood functions (Fig. 3). 
Also note that the probability value for the 30th percentile 
map (Table 1) is a little lower than the probability value 
for the 50th percentile map as a result of difference 
between the prior probabilities of the two maps. 
         The determined probability values (Table 1) are 
compared with results from an expert elicitation. A group 
of seven experts was assembled to participate in an expert 
elicitation panel to provide their judgments concerning 
key uncertainties associated with unsaturated flow at 
Yucca Mountain. The resulting assessments and 
probability distributions provide a reasonable aggregate 
representation of the knowledge and uncertainties 
concerning unsaturated zone flow at Yucca Mountain. A 
comparison is made between the cumulative probability 
distribution of the average infiltration rate over the 
repository footprint obtained using the modified GLUE 
methodology, and the expert elicitation probability 
distribution (Ref. 12) for percolation flux through the 
repository footprint. The expert elicitation concluded that 
net infiltration over the repository footprint and 
percolation through the repository footprint are 
quantitatively similar, because flow through the 
unsaturated zone above the repository was expected to be 
predominantly vertical. This behavior is consistent with 
the results of the unsaturated zone flow model. 
         As shown in Fig. 4, the probability distribution 
obtained using the modified GLUE methodology is 
consistent with the aggregate flux probability distribution 
obtained by expert elicitation. The aggregate probability 
distribution is the equally weighted combination of the 
individual probability distributions developed for 
percolation flux through the repository by each of the 
seven experts. The figure also shows the distribution for 
average net infiltration rate over the repository footprint 
as developed by the infiltration model, which provides the 
prior probabilities used in the modified GLUE 
methodology. The substantial difference between the 
distribution from the infiltration model and the integrated 
result using the GLUE methodology shows the 
importance of incorporating the temperature and chloride 
data into the evaluation of infiltration flux. The 
consistency between the probability distributions obtained 

from the two independent studies (expert elicitation and 
the modified GLUE) suggests that the probability values 
for net infiltration maps estimated with the modified 
GLUE methodology are reasonable, and that the use of 
multiple likelihood functions provides a more robust 
estimate than using a single likelihood function. 

Expert Elicitation, UZ Flow Model, and 

Infiltration Model Results  
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II. CONCLUSIONS

      The GLUE methodology has been shown to be a 
powerful approach for conducting model calibrations and 
predictions for highly uncertain and complex hydrological 
systems. However, the choice of likelihood functions 
within the framework of GLUE is subjective, and 
different likelihood functions may give very different 
analysis results. To account for this uncertainty, we have 
proposed the modified GLUE methodology. Instead of 
seeking a single, best likelihood function for a given 
problem, we explicitly acknowledge that several 
acceptable likelihood functions may co-exist for a 
complex problem. Using the modified GLUE 
methodology, we performed an uncertainty analysis with 
each individual selected likelihood function, and then 
obtained the final result (based on a probabilistic 
framework) by weighting the results from individual 
likelihood functions using the probability for the 
corresponding individual likelihood function to be true. A 
similar methodology has been used in aggregating expert 
elicitation results in the literature.
        To demonstrate the implementation procedure of the 
modified GLUE methodology, we presented a case study 
for determining probability values for four selected net 
infiltration maps at Yucca Mountain, Nevada. This 
determination is based on prior information of the 
probabilities and comparisons between simulated and 
observed chloride concentration and temperature 
distributions in the unsaturated zone. Four selected 
likelihood functions are used in the case study. As 



expected, significant variability in analysis results exists 
among different  likelihood functions. The final analysis 
results obtained from the modified GLUE methodology 
are found to be very close to the independently obtained 
aggregation results of an expert elicitation of percolation 
flux distribution, supporting the practicality and 
robustness of the modified GLUE methodology.  From 
this application of modified GLUE methodology, we have 
demonstrated that (1) it is important to consider the 
uncertainty caused by the subjectivity of the likelihood-
function selection in the GLUE application, and that (2) 
the proposed method can effectively address this 
epistemic uncertainty. 
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