SAND2008- 6886C

A MODIFIED GENERALIZED LIKELIHOOD UNCERTAINTY ESTIMATION (GLUE) METHODOLOGY

Hui-Hai Liu, Yingqi Zhang and James Houseworth

Earth Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road
Berkeley, California 94720, hhliu@Ibl.gov

The  Generalized  Likelihood — Uncertainty
Estimation (GLUE) methodology has been widely used in
many areas as an effective and general strategy for model
calibration and uncertainty estimation associated with
complex models. The application of the GLUE requires a
Jformal definition of a likelihood function. However, it has
been recognized that the choice of a likelihood function is
inherently subjective, which, in turn, introduces a new
kind of uncertainty—the epistemic uncertainty in the
GLUE methodology. In this study, we propose a practical
framework to address this uncertainty by using multiple
likelihood functions. The final uncertainty estimate results
are obtained by combining those results from individual
likelihood functions based on probability theory. Through
an analysis of the probabilities of four net infiltration
maps at Yucca Mountain, Nevada, we demonstrate that
(1) it is important to consider the uncertainty caused by
the subjectivity of the likelihood selection in the GLUE
application, and that (2) the proposed method can
effectively address this epistemic uncertainty.

L. INTRODUCTION

Uncertainties associated with hydrological models
may increase with the incorporation of more complex
processes. Good modeling practice should quantify and
reduce these uncertainties. Ref. 1 has provided a
comprehensive review on understanding, quantifying, and
reducing uncertainties in hydrological models. Among
different  uncertainty-analysis ~ methodologies, the
generalized likelihood uncertainty estimation (GLUE)
methodology (Ref. 2) has been widely used in the
hydrological literature, because it is relatively simple and
easy to understand and implement. However, the
application of GLUE requires a formal definition of a
likelihood function. As a result of difficulties in
rigorously defining a likelihood function for a given
hydrological problem, the application of GLUE itself
introduces epistemic uncertainty. (The epistemic
uncertainty refers to the uncertainty related to incomplete
or inadequate information in the model selection or
parameter determination.) The associated subjectivity
affects the calculation of model uncertainty, as shown

previously in Ref. 3. Therefore, proper consideration of
this epistemic uncertainty is essential for many practical
applications. Although there is a large body of literature
for the GLUE methodology, little attention has been given
to addressing epistemic uncertainty associated with the
selection of the likelihood function.

The main purpose of this study is to develop a
practical framework for considering the epistemic
uncertainty introduced by the subjectivity of likelihood
function selection in the GLUE methodology.

II. A MODIFIED GLUE METHODOLOGY
I1.A. Basic Concept of the GLUE Methodology

The GLUE methodology was first proposed in Ref. 2
as a framework to estimate uncertainty from equally
acceptable models or parameter sets. It recognizes that
equivalence of parameter sets or models in hydrological
systems exists in many cases. Therefore, rather than using
a single “optimal” parameter set or model, the GLUE
approach assesses uncertainty in those parameter sets or
models by weighting them according to how well a given
model (or parameter set) has performed. The evaluation
of the performance is based on a comparison between
model results and measured data. In particular, Ref. 2
emphasized that the use of the term “likelihood” in the
GLUE methodology is meant in a very general sense, as a
possibilistic measure of how well the model conforms to
the observed behavior of the hydrological system, and not
in the restricted sense of the maximum likelihood theory.
This flexibility is necessary because a seemingly
mathematically rigorous likelihood function may not be
satisfactory for complex practical problems, where the
assumptions used to derive the likelihood function cannot
be fully validated. Due to its simplicity and practicality,
the GLUE methodology has been widely used in
hydrological applications and other related areas. We
refer readers to Ref. 2 for the details of the GLUE
methodology.

As previously indicated, the choice of a likelihood
function is inherently subjective in the GLUE, and this
choice affects the calculation of model uncertainty [Ref.



3]. This means that the uncertainty in choosing a
likelihood function needs to be appropriately addressed in
the GLUE procedure.

I1.B. A Modified GLUE Methodology

A modified GLUE methodology is developed
herein to address the epistemic uncertainty associated
with the selection of a likelihood function. It is difficult, if
not impossible, to define a single best likelihood function
for a given problem, while a number of acceptable
likelihood functions may exist. (According to Ref. 2, a
likelihood function in GLUE is considered to be
acceptable when it equals to zero for all the simulations
that are considered to exhibit behavior dissimilar to the
system under study and increases monotonically as the
similarity in behavior increases. These are not very
restrictive requirements and could be satisfied by many
likelihood functions.) Unlike the traditional GLUE
methodology, in which a single likelihood function is
used for a given problem, we propose to include all
acceptable likelihood functions for the uncertainty
analysis. The results from multiple likelihood functions
can be combined using probability theory. Let f, (z) be

the uncertainty estimation result using a single likelihood
function L;, and P(L=L;) be the probability for the
likelihood function L=L; to be true (e.g., the kth
likelihood function provides a true estimate). Then, the
final estimation results are:

f@=) [ (PL=Ly) (1)
k

In the case where f} (z) is represented in a discrete form,
Eq. (1) can be written as:

P(Z=z,)=) P(Z=z,L=L)P(L=L,) (2

where P(Z=z)) is the probability for the event Z = z(e.g.,
the jth model or values of the jth parameter set are true) to

occur, and P(Z = zj‘L = L, ) is the probability for Z=z;

to occur when L=L; (e.g., the kth likelihood function is
true). In the case study to be discussed in the next section,
Eq. (2) is used to demonstrate the implementation
procedure of our proposed method.

Our modified GLUE methodology can be considered
a generalization of the original version of the GLUE. If
the weight of an individual likelihood function Ly is
assigned to be one, then our approach is reduced to the
traditional GLUE. In other words, the traditional GLUE
puts all confidence (or belief) into a single likelihood
function, whereas our modified GLUE acknowledges the
existence of multiple likelihood functions accepted for a
given problem and considers all of them. Also, note that
Ref. 2 suggested ways of combining likelihood functions
to handle different types of observations. We use their

suggested method to handle data at different locations and
for different data types.

The modified GLUE methodology requires the
selection of likelihood functions and the specification of
weights for the different likelihood functions. In theory,
all the acceptable, independent likelihood functions need
to be considered. In practice, the selected likelihood
functions  should exhibit substantially  different
mathematical forms or have different theoretical bases
such that a relatively large range of likelihood-function
types are considered, and any overlaps between different
selected likelihood functions are avoided. Furthermore,
the selected likelihood functions should not be
theoretically inconsistent with the data and physical
processes considered in the model. Finally, the
methodology also requires the independent specification
of P(L=L;) — the probability that a likelihood function
provides the true information. This probability can be
thought of as likelihood function weights to be specified
by the user. The specification of weights for different
likelihood functions should be based on the confidence in
(or reliability of) these functions for the problem under
consideration. The weights are different if the confidence
in these functions is different.

Note that the methodology that has been used for
aggregating results of expert elicitation is similar to the
modified GLUE. Expert elicitations (or judgments) enter
several aspects of many scientific endeavors (Ref. 4).
During an expert elicitation procedure, equally qualified
experts from different related scientific areas may provide
different probability density functions for a given
parameter or analysis result. In most cases, a collective
opinion (represented by a pdf) is needed from results of
individual experts. An analogy exists between the expert
elicitation and the modified GLUE methodology. In Eq
(2), P(Z=z) and P(Z = Z,‘ L=1L,) correspond to the

collective and individual uncertainty analysis results from
experts, respectively. Each expert can be considered to be
equivalent to a likelihood function Zy in this study.
Similar probabilistic arguments were used in Ref. 4 for
developing a mathematical formulation for aggregating
results expert elicitations. Uniform weights were
suggested in their work.

III. APPLICATION

This section demonstrates application of the
modified GLUE  methodology to  determining
probabilities for infiltration maps at Yucca Mountain,
Nevada, the proposed site for disposal of high-level
nuclear waste. The advantage of using the modified
GLUE methodology for the problem under consideration
is also discussed.



IL.A. Infiltration Maps at Yucca Mountain and the
Relevant Data

Net infiltration is a key hydrologic parameter for
controlling percolation rate, groundwater recharge,
potential seepage into waste emplacement drifts, and
radionuclide transport. Ref. 5 developed net infiltration
maps for the region immediately surrounding Yucca
Mountain, based on present-day climate and two future
climates. Forty infiltration maps were generated with the
same probability of occurrence. From these forty maps, a
cumulative distribution function (CDF) was obtained, and
an annual mean net infiltration rate at different percentiles
was found. Four infiltration maps, namely, 10™, 30®, 50™,
and 90" percentile maps have been selected by the Yucca
Mountain Project and will be used in a system
performance analysis. However, during the process of
generating net infiltration maps, only climate and
shallow-soil-layer information has been taken into
account because of computational limitations. Data from
the deep unsaturated zone that provide additional
information regarding infiltration/percolation processes at
Yucca Mountain are not used. Using 10™, 30", 50® and
90™ percentile net infiltration maps, we can simulate
temperature and chloride concentration values at different
locations in the unsaturated zone of Yucca Mountain
(Ref. 6). Figure 1 shows a comparison between simulated
and measured temperature data at a vertical borehole, and
Figure 2 between simulated and measured chloride
concentration data at a horizontal tunnel, with simulation
results from the unsaturated zone flow model using these
four net infiltration maps as input. In this study, both
chloride concentration and temperature data observed in
the unsaturated zone were used for uncertainty analysis of
the four selected net infiltration maps.

I1.B. Multiple Likelihood Functions

The modified GLUE methodology and four
commonly used likelihood functions are used here for
determining the probability for each of the four selected
net infiltration maps based on Eq (2).

The traditional likelihood function (with the
assumption that the residuals are independent and follow
a Gaussian distribution) (Ref. 7) was chosen as our first
likelihood function:

LS 0.5 (x; — X, )
L, 1;[1 (270 7)7"° exp{ — 20

where subscript i (= 1, ..., 4) is the index of the net
infiltration map; j (=1, ..., K) is the index of spatial
location (with a total number of K), X is the measured
value (temperature or chloride concentration), x is the
corresponding simulated value, and ¢ is the standard
deviation of residuals, which is the measurement error if
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the model were perfect. The same notations are applied in
the following equations.
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Fig. 1. A comparison between simulated and observed
temperature distributions at borehole SD-12 (Refs. 6 and
8).
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Fig. 2. A comparison between simulated and measured
chloride concentration data at a horizontal tunnel (Refs. 6
and 8).

Ref. 2 provided a likelihood function for
observations from multiple sites, as shown in Eq. (4).
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where W* is the weight for observation j such that
Z W, =1. Nis a parameter chosen by the user. Note )

if N =0, then all the net infiltration maps will have the
same likelihood value, and if N —> o0 , the best
simulation will be singled out, having a rescaled
likelihood value of 1, with all others 0. The advantages of
using this measure are that the parameter N gives us the
flexibility of choosing to what degree the likelihood
values of the maps are separated. In this study, the



likelihood function defined in Eq. (4) (with N = 0.5 and N
= ]) was chosen as the second likelihood function. The
weights W;* were chosen to be the same for all
measurements.

The third likelihood function is directly taken from
Ref. 2:

2

Ly, =1/(]] (x, - X)) (5)

In this function, the measurement error is not accounted
for in the formulation.

The last likelihood function (equivalent to a simple
fuzzy membership (Ref. 9)) is used to express a relative
degree of belief that an infiltration scenario is a good
estimate of the real infiltration history. Examples of this
likelihood function include a triangular function, a
trapezoidal membership function, and a beta distribution.
For this analysis, the commonly used triangular function
has been chosen, which can be expressed as (Ref. 9):

x,.j—Xj‘

&

f=1- (6)

where & defines acceptable error in an observation. In
our case, €& was chosen as the maximum residual
(absolute difference between simulated quantities and
measured quantities, for temperature values and chloride
concentrations) from all locations and all infiltration
maps. Our last likelihood function (Ly;,) is then defined as
the arithmetic means of the likelihood function f;; at
multiple locations  This treatment is equivalent to one of
the methods suggested in Ref. 11— summation of all the
individual likelihood functions at multiple locations.

Although a relatively small number of likelihood
functions are used here, they represent four different types
of likelihood functions expected to give different
measures of comparison between simulated and observed
results, and have been commonly used in the GLUE
framework or related applications.

I1.C. Determination of probability values for
infiltration maps

For a given likelihood function Z; , the probability of
the ith infiltration map is
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where Pio is the prior probability for the ith infiltration
map. Eq. (2) is used to determine the final probability

value considering all the likelihood functions. In this
study, we consider P(L=Ly) to be the same for all the
likelihood functions. When using both of temperature and
chloride data sets, the final likelihood function is a
product of likelihood functions for each individual data
set.

III. RESULTS

We plot a box-and-whisker diagram (Fig. 3) for
the probability values of the four infiltration maps,
calculated using each of the likelihood functions and the
combined two data sets. The diagram contains five
summary statistics (the smallest value, lower quartile (25"
percentile), median (50" percentile), upper quartile (75"
percentile), and largest value). The final probability
values for the four net infiltration maps considering all the
likelihood functions from the boxplot are listed in Table
1. Results using each of the two data sets are very close
to those from a combination of the two data sets. This
supports the robustness of the modified GLUE and
reasonableness of the estimated probability values (Table

).
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Fig.3. The box-and-whisker diagram for the probability
values of the four net infiltration maps, calculated using
each of the four likelihood functions (Ref. 8).

TABLE 1. Probability Values for the Four
Infiltration Maps Considering All the Likelihood
Functions

0™ 30T 50T 907"
Percentile | Percentile | Percentile | Percentile
Map (%) | Map (%) | Map (%) | Map (%)

Probability 61.9 15.7 16.5 6.0

Fig. 3 shows that the probability values are found to
be considerably sensitive to the selected likelihood
function. For example, the probability value for the 10"
percentile map varies from 25.7% to 100% for individual




likelihood functions. Among the four likelihood
functions, the two extreme likelihood functions are the
first one L; and the last one L,. L, puts all the weight on
the infiltration map that gives the best matches to the
observed data - with 100%, 0, 0, 0 for the 10", 30", 50",
and 90™ percentile maps, respectively. L, tends to even
out the weights on different infiltration maps - with
25.7%, 23.9%, 32.2%, 18.2% for the 10", 30", 50", and
90™ percentile maps, respectively. These results support
the importance to account for the epistemic uncertainty
caused by the subjective likelihood functions, because of
the difficulty in defining a single best likelihood function
and the large degree of variability in probability values
calculated from different likelihood functions (Fig. 3).
Also note that the probability value for the 30™ percentile
map (Table 1) is a little lower than the probability value
for the 50™ percentile map as a result of difference
between the prior probabilities of the two maps.

The determined probability values (Table 1) are
compared with results from an expert elicitation. A group
of seven experts was assembled to participate in an expert
elicitation panel to provide their judgments concerning
key uncertainties associated with unsaturated flow at
Yucca Mountain. The resulting assessments and
probability distributions provide a reasonable aggregate
representation of the knowledge and uncertainties
concerning unsaturated zone flow at Yucca Mountain. A
comparison is made between the cumulative probability
distribution of the average infiltration rate over the
repository footprint obtained using the modified GLUE
methodology, and the expert elicitation probability
distribution (Ref. 12) for percolation flux through the
repository footprint. The expert elicitation concluded that
net infiltration over the repository footprint and
percolation through the repository footprint are
quantitatively similar, because flow through the
unsaturated zone above the repository was expected to be
predominantly vertical. This behavior is consistent with
the results of the unsaturated zone flow model.

As shown in Fig. 4, the probability distribution
obtained using the modified GLUE methodology is
consistent with the aggregate flux probability distribution
obtained by expert elicitation. The aggregate probability
distribution is the equally weighted combination of the
individual probability distributions developed for
percolation flux through the repository by each of the
seven experts. The figure also shows the distribution for
average net infiltration rate over the repository footprint
as developed by the infiltration model, which provides the
prior probabilities used in the modified GLUE
methodology. The substantial difference between the
distribution from the infiltration model and the integrated
result using the GLUE methodology shows the
importance of incorporating the temperature and chloride
data into the evaluation of infiltration flux. The
consistency between the probability distributions obtained

from the two independent studies (expert elicitation and
the modified GLUE) suggests that the probability values
for net infiltration maps estimated with the modified
GLUE methodology are reasonable, and that the use of
multiple likelihood functions provides a more robust
estimate than using a single likelihood function.

Expert Elicitation, UZ Flow Model, and
Infiltration Model Results
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Fig. 4. Comparison among the water flux probability
distributions over the repository footprint obtained from
the modified GLUE, the expert elicitation (Ref. 11), and
infiltration model (Ref. 5)

II. CONCLUSIONS

The GLUE methodology has been shown to be a
powerful approach for conducting model calibrations and
predictions for highly uncertain and complex hydrological
systems. However, the choice of likelihood functions
within the framework of GLUE is subjective, and
different likelihood functions may give very different
analysis results. To account for this uncertainty, we have
proposed the modified GLUE methodology. Instead of
seeking a single, best likelihood function for a given
problem, we explicitly acknowledge that several
acceptable likelihood functions may co-exist for a
complex problem. Using the modified GLUE
methodology, we performed an uncertainty analysis with
each individual selected likelihood function, and then
obtained the final result (based on a probabilistic
framework) by weighting the results from individual
likelihood functions wusing the probability for the
corresponding individual likelihood function to be true. A
similar methodology has been used in aggregating expert
elicitation results in the literature.

To demonstrate the implementation procedure of the
modified GLUE methodology, we presented a case study
for determining probability values for four selected net
infiltration maps at Yucca Mountain, Nevada. This
determination is based on prior information of the
probabilities and comparisons between simulated and
observed chloride concentration and temperature
distributions in the unsaturated zone. Four selected
likelihood functions are used in the case study. As



expected, significant variability in analysis results exists
among different likelihood functions. The final analysis
results obtained from the modified GLUE methodology
are found to be very close to the independently obtained
aggregation results of an expert elicitation of percolation
flux distribution, supporting the practicality and
robustness of the modified GLUE methodology. From
this application of modified GLUE methodology, we have
demonstrated that (1) it is important to consider the
uncertainty caused by the subjectivity of the likelihood-
function selection in the GLUE application, and that (2)
the proposed method can effectively address this
epistemic uncertainty.

ACKNOWLEDGMENTS

This work was supported by the Director, Office of
Civilian Radioactive Waste Management, of the U.S.
Department of Energy (DOE), under DOE Contract No.
DE-AC02-05CH11231.

REFERENCES

1. Y.LIU and H.V. GUPTA, “Uncertainty in hydrologic
modeling: Toward an integrated data assimilation
framework,” Water Resour. Res., 43, W07401(2007).

2. K.BEVENB and A. BINLEY, “The future of
distributed models: model calibration and uncertainty
prediction,” Hydrological Processes, 6,279(1992).

3. J. FREER, K. BEVENB and B. AMBROISE,
“Bayesian estimation of uncertainty in runoff
prediction and the value of data: An application of
the GLUE approach,” Water Resources Research, 32,
2161(1996)

4. E. ZIOZ and G.E. APOSTOLAKIS, “Accounting for
expert-to-expert variability: A potential source of
bias in performance assessment of high-level
radioactive waste repositories,” Ann. Nucl. Energy,
24, 751(1997)

5. J. S. STEIN, Simulation of Net Infiltration for
Present-Day and Potential Future Climates, MDL-
NBS-HS-000023 REV 01, Sandia National
Laboratories (2007).

6. Y. Wu, UZ Flow Models and Submodels MDL-NBS-
HS-000006 REV 03, Sandia National Laboratories
(2007).

7. J. CARRERA and S.P. NEUMAN, “Estimation of
Aquifer Parameters under Transient and Steady-State
Conditions .1. Maximum-Likelihood Method
Incorporating Prior Information,” Water Resources
Research, 22, 199(1986).

8. Y.Q.ZHANG, H. H. LIU and J. HOUSEWORTH,
“A modified generalized likelihood uncertainty
estimation (GLUE) methodology: Considering the

10.

11.

12.

Subjectivity of Likelihood Function Selection,” In
review (2008).

K. BEVEN, “A manifesto for the equifinality thesis,”
Journal of Hydrology, 320, 18(2006).

S. W. FRANKS and K.J. BEVEN, “Estimation of
evapotranspiration at the landscape scale: A fuzzy
disaggregation  approach,”  Water  Resources
Research, 33,2929(1997).

S. K. ZAK, K. BEVEN and B. REYNOLDS,
“Uncertainty in the estimation of critical loads: A
practical methodology,” Water Air and Soil
Pollution, 98, 297(1997).

CRWMS M&O, Unsaturated Zone Flow Model
Expert Elicitation Project, Las Vegas, Nevada
(1997).



