
Exploring Data Warehouse Appliances for
Mesh Analysis Applications

Craig Ulmer, Greg Bayer, Yung Ryn Choe, and Diana Roe

Sandia National Laboratories
Livermore, California

Abstract

As scientific computing users migrate to petaflop platforms that promise to generate multi-terabyte datasets, it
is becoming increasingly apparent that simulation datasets are too cumbersome to process using traditional, offline
techniques. Instead, there is a strong need within the community to be able to embed sophisticated analysis
algorithms in the storage systems that house the data for the computing platform. Data Warehouse Appliances
(DWAs) are an attractive option for this work because they enable researchers to take advantage of existing data-
parallel compute architectures that can process massive, out-of-core datasets efficiently

While DWAs have proven to be effective in data mining and informatics applications, there are relatively few
examples of how DWAs can be integrated into the scientific computing environment and utilized to process
simulation data effectively. In this paper we present our experiences in adapting two mesh analysis algorithms to
function on two different DWA platforms: a SQL-based Netezza database appliance and a Map/Reduce-based
Hadoop cluster. While the main contribution of this work is insight into the differences between the two platforms’
programming environments, we present performance measurements for entry-level systems to help provide a first-
order comparison of the hardware.

1. Introduction
In nearly all scientific domains, researchers employ modeling and simulation tools to help answer complex

research questions. In general, scientific users typically model a situation that is of interest and then utilize
simulation tools to evaluate the model. Once a simulation completes, visualization and analysis tools are used to
help users interrogate the results generated by the simulation in order to gain insight into the details of what took
place during the simulation. Depending on model fidelity and computational complexity, simulations running at full
scale on high-end computing platforms may take days or weeks to complete and can produce terabytes to petabytes
of output data. The shear volume of this data makes it unwieldy to manage and analyze through traditional, offline
approaches.

1.1. Mesh-Based Simulations
Sandia National Laboratories has a long history of using simulation tools on high-performance computing

(HPC) platforms to solve complex problems relating to national security. In the Advanced Simulation & Computing
(ASC) effort [1-2], Sandia has developed many parallel simulation codes for evaluating mechanical, thermal, and
electrical properties of complex systems that are subjected to harsh environmental factors. These simulations help
determine how well a system will be able to complete its intended function under different operating conditions.
Simulation ultimately provides analysts with an opportunity to gain insight without necessarily requiring the
expensive testing of actual components.

Many mechanical and thermal simulation tools at Sandia are based on meshed representations of physical
objects. For example, finite element method (FEM) [3] codes discretize each physical object in a simulation into a
mesh of elements and then apply numerical analysis on each element to determine how the object interacts with
other objects as the simulation progresses. Mesh-based simulation datasets are generally comprised of two types of
data: structural data and variable data. Structural data provides geometric information about the objects and is
organized in a hierarchical form: a simulation contains multiple objects, an object is defined by its mesh, a mesh is
defined by its elements, and an element is defined by its vertices. While all elements in a mesh share the same
geometric shape (e.g., hexahedron or tetrahedron), Sandia’s applications typically employ unstructured meshes with
non-uniform elements. The variable data portion of a dataset contains data values that were calculated during the
simulation. A variable (e.g., pressure, temperature, or displacement) is associated with either elements or vertices in
the mesh. A variable’s data is generated at each timestep of the simulation for all elements or vertices. As such,
variable data is often much larger than structural data in a dataset.

SAND2009-3874C

Table 1: A 100M element simulation can generate many terabytes of data.

Tables Rows/Bytes

Element
100M
3.2GB Structural

Data
Vertex

100M – 800M
2.4GB – 19.2GB

Element
20G

2.5TB Variable
Data

Vertex
20G – 160G

2.5TB – 20TB

High-fidelity simulations can produce datasets that are very large. While typical production runs may be on the
order of just a few million elements, leading edge computing platforms have been used to process simulations with
more than 100 million elements. As a means of illustrating how quickly datasets grow, Table 1 lists the amount of
data that would be hosted in a hypothetical dataset for a 100M element simulation where 16 element and 16 vertex
variables are traced for 200 timesteps. While variable data is much larger than structural data, it is important to note
that the structural data can be larger than main memory in a single host computer. Many existing data analysis tools
cannot process datasets that are this large because the analysis algorithms were written in an in-core fashion that
assumes structural data can be housed in host memory. As such, there is a strong need in the scientific community
for post-processing analysis tools that can handle massive datasets. At Sandia, ParaView [4] has become the
distributed analysis framework of choice. However, other solutions are of interest.

1.2. Capability Computing Platforms
A universal constant in HPC is that scientific users will always need more computing power than available

systems offer. When new HPC platforms are brought online, they are strategically designed to improve either the
computing capacity of a site or its computing capability. Capacity computing utilizes a new HPC platform’s
resources to process existing simulations in a shorter amount of time than was previously possible. In contrast,
capability computing systems are designed to allow users to increase the fidelity of their simulation models.
Capability systems typically push the boundaries of what can be accomplished through modeling and simulation,
and are therefore the focus of a considerable amount of research in HPC.

Leading-edge capability systems are custom-built, massively-parallel processing (MPP) systems. In order to
increase the amount of computing that can take place in a given footprint, capability system architectures typically
separate computing resources from storage resources. For example, Sandia’s Red Storm [5] platform employs close
to 13,000 diskless compute nodes to perform an application’s parallel processing, a separate 1.7PB disk farm for
managing persistent storage, and 320 I/O nodes for handling an application’s disk requests. Storage systems in HPC
systems typically employ a cluster file system such as Lustre [6] to allow data to be striped across many disk nodes
and cached in order to hide the high cost of disk access. As such, today’s storage systems are often dedicated
clusters running a parallel storage application that services load/store requests in a high-performance manner.

1.3. Data Warehouse Appliances
The availability of massive customer databases in industry has resulted in a strong demand by businesses for

data mining tools and systems that can allow a company to discover consumer trends in real time. In response to
these data mining needs, a number of companies have developed stand-alone products known as data warehouse
appliances (DWAs) that enable users to accomplish data analysis operations on parallel platforms without requiring
a detailed knowledge of parallel processing techniques. DWAs typically provide (1) a large amount of parallel
storage devices that enable high-performance disk use, (2) near-storage processing in order to execute computations
where the data resides, and (3) a programming interface that allows users to pose data processing commands. DWAs
are very appealing to industry because they can be treated as appliances. In many cases, a company can simply
purchase one or more racks of a SQL-based DWA and get genuine speedups over a sequential database without
having to make significant modifications to the SQL program.

There are many DWA systems available today. We divide these systems into two categories, based on their
programming interfaces. First, SQL-based DWAs are designed to be plug-in replacements for existing database
systems. SQL is well known and provides users with a robust data-processing language that fosters data-parallel
operations that can in turn be parallelized by a database. Netezza, XtremeData, Oracle, Teradata, and Greenplum all

offer SQL-based DWA products. Second, dataflow-based DWAs are designed to provide a flexible platform for
manipulating large-scale datasets when users are more willing to express their data-process commands in other data-
parallel languages. Examples of these systems include Hadoop and LexisNexis.

2. DWAs for Scientific Analysis
A number of institutions in the scientific community are currently designing and deploying a new generation of

petaflop-class computing platforms that will be capable of processing larger, higher-fidelity models than ever
before. While these capability systems will enable researchers to conduct higher-quality science, we make three
observations about trends in the HPC landscape that directly impact how scientific users will make use of capability
systems in the next decade:

Increased Dataset Sizes: Increases in simulation size and fidelity correspond to increases in the amount of data
generated by a simulation. With current capability systems already generating multi-terabyte datasets, we expect that
simulations in the near future will generate tens to hundreds of terabytes of data.

Constant Disk and LAN Rates: While fast solid-state storage devices (SSDs) are slowly making their way to
market, traditional hard drives are still the dominant storage option for massive datasets. Given that hard drives
transfer rates have not improved significantly in a number of years, future storage systems will employ larger disk
arrays in order to meeting simulation I/O rates. In a similar manner, link rates for transferring data out of a capability
system are not likely to improve substantially in the upcoming years.

Capability Computing Consolidation: While the per-core cost for computing systems has dropped dramatically
over the years, the total cost to build, power, and maintain a capability system has not. Under pressure to construct
new resources as cost effectively as possible, multiple institutions and laboratories are pooling their efforts to create
shared capability platforms. These consolidations emphasize the need for better distance computing practices, where
processing and analysis is conducted on equipment that is housed at a location that is far away from the user.

Based on these observations, we assert that the age old model of moving data to the user’s analysis code is
infeasible and must instead be reversed. In order to accommodate data analysis on massive datasets, the storage
systems for capability systems must be enhanced to provide processing within the storage system. Similarly, these
new systems must take advantage of data-parallel programming interfaces that shift the burden of parallel
programming from the user to the storage system when possible. DWAs represent an attractive option for this work,
because they are already widely deployed to solve similar problems in other fields.

While DWAs have been successfully utilized to solve many informatics problems, there have been relatively
few efforts that have examined whether they are applicable in scientific problems with massive datasets. The intent
of this work is to gain insight into the tradeoffs involved in utilizing a DWA to analyze scientific datasets. For this
paper we have adapted two mesh-based analysis operations to function on two different DWAs. In addition to
describing each algorithm’s implementation, we provide basic performance measurements for both platforms that
give insight into system bottlenecks. Finally, we present a number of observations based on our experiences with the
DWAs in hopes of motivating future work in this field.

3. Data Warehouse Appliances
For the purposes of this paper we chose to focus on two of the more common DWAs that are in use today: a

SQL-based Netezza system and a dataflow-based Hadoop cluster. We acquired an entry-level platform for each, and
then adapted our algorithms to run in the two environments.

3.1. Netezza
In 2002 Netezza became one of the first companies to push data warehouse systems as true appliances. The

Netezza Performance Server [7] can be described as a custom-everything system. In terms of hardware, Netezza
employs a large array of disk blades called snippet-processing units (SPUs). As illustrated in Figure 1, each SPU is
comprised of an embedded PowerPC processor, 1 GB of DRAM, an FPGA-based I/O controller, and a SATA hard
drive. Overall, the system connects a large number of SPUs through a Gigabit Ethernet (GigE) network. While the
custom hardware adds to the overall expense of the system, Netezza can do many unique operations that commodity
systems cannot. For example, the I/O controller can be configured to perform data decompression and column

filtering as the data is read off the disk. This capability enables the controller to supply data at rates that are higher
than what the disk or SATA link can physically support. Observing that the hard drives are often the bottleneck in
I/O intensive applications, this optimization can result in a significant performance gain for the overall system.

PowerPC FPGAGigE

1GB DRAM SPU

PowerPC FPGAGigE

1GB DRAM SPU

PowerPC FPGAGigE

1GB DRAM SPU

Login Node
GigE

Figure 1: The Netezza system utilizes multiple snippet processing units (SPUs) to process data in
parallel.

In terms of software, Netezza employs a parallel database engine that allows the system to stripe data across

disk blades and execute a query in parallel. Rather than rely on indexing to help the database locate relevant records,
Netezza performs scans on entire tables. While this brute-force approach at first may appear to ignore the
fundamentals of modern database design, it results in a scalable system with predictable performance. If a user
increases the dataset size or needs better performance, the user simply purchases and uses more nodes.

Similar to other databases, Netezza allows users to supplement the SQL syntax with user-defined operators.
These operators are written in C++ and are either user-defined functions (UDFs) or user-defined aggregates (UDAs).
UDFs operate on a single row at a time, producing one output value for a given list of column inputs (e.g., compute
the squared sum of C column values). UDAs perform the same work as a UDF, but also provide means of collapsing
the results for all rows into a single value (e.g., find the second-largest squared sum of C columns in the entire
table). In our experience, UDFs and UDAs are a convenient way of expressing data-processing computations that
would otherwise be difficult to construct using only the built-in operators provided in SQL. Our strategy has been to
construct complex computations in UDFs and UDAs, and then utilize SQL as a means of sequencing the flow of
execution required in an algorithm.

3.2. Hadoop Clusters
Hadoop [8] is an open source framework for performing data-parallel operations on commodity cluster

hardware. Hadoop was initially constructed by researchers at Yahoo! as an open source Java clone of the Google
File System (GFS) [9] and Google’s Map/Reduce [10] framework, but has since grown into the basis for a number
of different out-of-core data processing projects. At its core, Hadoop is comprised of two components. First, the
Hadoop distributed file system (HDFS) [11] provides a scalable, general-purpose file system for distributing data
across the local disks in a cluster in an efficient and reliable manner. HDFS operates on large blocks of data (64 MB
by default) and is responsible for transferring and synchronizing data between nodes in the cluster as needed by
applications. Second, Hadoop provides a Map/Reduce framework for performing computations, where a collection
of map tasks perform computations on independent regions of data and reduce tasks combine the results of the map
tasks. In between these operations, users may also apply a local reduction through a combiner task in order to
decrease the amount of data that is transmitted over the network. The Hadoop Map/Reduce framework requires
users to organize their data into a key-value data format. This format enables the framework to provide users with
built-in support for common data processing operations (e.g., sorting data values and removing duplicates), and
enforces data parallelism thinking that enables the framework to manage cluster resources (e.g., assigning map tasks
to processors).

Hadoop has received considerable interest in the data processing community recently because it is very
accessible. In addition to being open source and free to use, Hadoop can be installed and evaluated on a wide variety
of platforms. Hadoop was designed with low-cost, commodity cluster hardware in mind. While Hadoop clusters
typically expect compute nodes to be equipped with local disks, researchers have demonstrated that high-end, disks-

on-the-side clusters can also be utilized effectively [12]. Hadoop is also supported in several commercial cloud-
computing endeavors such as Amazon’s elastic compute cloud (EC2) [13]. Thus it is possible for researchers to pay
a vendor to run a large Hadoop application at scale if needed. The main drawback of utilizing a Hadoop cluster as a
DWA is that users must convert their data processing applications to a form Hadoop can utilize. Additionally, users
often find it is challenging to configure Hadoop in a way that maximizes performance.

3.3. DWA Test Systems
As a first step in evaluating whether DWAs can be utilized effectively in mesh analysis applications, we

established entry-level DWA test systems for both Netezza and Hadoop. It is important to stress that these platforms
are minimal systems for DWA work. While they provide basic parallel-processing platforms for out-of-core
experiments, they offer only a fraction of the performance that production-level systems can achieve. However, the
intent of this paper is to evaluate the challenges involved in adapting scientific analysis algorithms to these systems,
and therefore the platforms are sufficient.

For the Netezza experiments we utilized a Netezza Performance Server 10050. This half-rack system employs
54 active SPUs to present the user with over 5 terabytes of database space. A built-in PC with dual AMD Opteron
processors functions as the head node and access point for the database. While users can connect to the database
remotely through ODBC connections, we performed testing directly on the head node in order to remove network
transfer effects. For debugging purposes, we also utilized a standalone Netezza SPUbox test system which features
four SPUs. This test system allowed us to prototype and debug UDFs before they were executed on the full system.

For Hadoop cluster experiments we utilized a small cluster named Decline that was recently retired from service
as a visualization system. Unlike the majority of Sandia’s clusters, Decline’s nodes are equipped with local hard
drives. A node in this cluster features two 2 GHz AMD Opteron processors, 4 GB of memory, a pair of RAID
SATA hard drives, and both GigE and 4x InfiniBand network connections. Benchmarks of the local hard drives
revealed that a C program could read data at up to 140 MB/s when transferring large blocks of data. The cluster
currently has 19 nodes that operate reliably. We installed the 0.18 release of Hadoop on the cluster and configured it
to utilize the GigE network for communication, given that most Hadoop clusters are designed to use low-cost
hardware. Similar to other installations, HDFS was configured to use the local disks for storing data, with a default
block size of 64 MB.

While we provide performance measurements for these two systems, it is important to note that we have not
normalized the results in any way to provide a fair comparison. In terms of compute power, our Hadoop cluster
employs a small number of powerful nodes while the Netezza system utilizes a large number of embedded nodes.
Both systems employ the same, basic GigE interconnect.

4. Mesh Schemas
The first challenge in adapting mesh analysis algorithms to run on DWAs is to determine a suitable means of

representing the mesh data in the DWA’s native format. An ideal schema strikes a balance between representing the
data in a space-efficient manner and representing it in a way that makes it easy for users to access. For example,
consider the problem of defining the coordinates for all elements in a mesh. Given that elements share vertices with
their neighbors, the space efficient means of representing this information is to use two tables: one for holding the
coordinates of all the unique vertices and another for defining the vertex indices that belong to each element. While
this approach minimizes data replication, it complicates the user’s environment because multiple table lookups are
required whenever an element’s coordinates are required in a calculation. In contrast, a simpler schema would
replicate the coordinate information in the element table. This approach simplifies the programming environment,
but dramatically increases dataset size.

Mesh datasets contain two types of data: structural and variable. The structural portion of the dataset provides
initial geometry information about the meshes, and is comprised of the initial coordinates for each vertex, the set of
vertices that define each element, and the set of elements that belong to each mesh. We decided to represent each of
these data values as its own table in order to reduce redundancy. The variable data portion of the dataset holds both
element and vertex data values (e.g., pressure, temperature, or displacement) for each timestep in the simulation. For
our schema, we use two tables to hold these variable data values: one for elements and the other for vertices. Each
variable name is a column in the table, with a row providing all data variable results for a particular element or
vertex at a particular timestep.

We constructed multiple dataset generators to create data for the experiments presented in this paper. These
generators enabled us to create a variety of dataset sizes while avoiding export control issues involved in discussing
Sandia’s applications. Each dataset generator produces a set of tab-separated text files for the various fields in the

dataset. For the Netezza system, the tables are ingested using built-in command line tools that automatically convert
the data the database’s internal, distributed representation. For the Hadoop cluster, we first convert the text files to
binary data files that are easier to access in a random fashion. Then, data files are pushed out to nodes and imported
into each map task using a custom file reader.

5. Threshold Volume Calculation
The first data analysis operation that we adapted to run on our DWAs was a threshold volume calculation.

Analysts often need to determine how large a particular effect is within a mesh at a specific timestep. For example,
one analyst working on safety factors for hydrogen refueling stations for automobiles conducted a simulation where
an open nozzle leaked hydrogen gas into a room with multiple chambers. The analyst computed the total volume a
particular mole fraction of the gas has occupied at each timestep as well the rate of change for the volume between
timesteps. These numbers quantified the amount of leakage that took place during the simulation and were also used
to determine when the simulation had reached a steady-state solution.

5.1. Algorithm
The threshold volume calculation can be implemented in a simple, brute-force manner through a marching-cube

[14] style approach that sums the contribution of each element to the total volume estimate. For each element, the
algorithm compares the element’s variable(s) (e.g., hydrogen mole fraction) to a threshold value to determine if the
element is above or below a cutoff. If the element is above the threshold value, its volume is added to the total
volume. For this implementation, we assume that elements are hexahedra and that an element variable is used for
thresholding. In order to accommodate the numerous forms of hexahedron, we decompose an element into six
tetrahedra and apply vector math to compute the volume of each tetrahedron. We note that if vertex variables were
used instead of element variables, the tetrahedra decomposition could also be used to provide better accuracy.

5.2. Netezza Implementation
We constructed three implementations for the volume calculation to experiment with different development

approaches. The first implementation is a stand-alone C++ program that simply pulls relevant data from the database
to a local computer and performs the computation in host memory. While this implementation was primarily
constructed to verify results, its poor performance highlighted the fact that the network link between the database
and the client can be a substantial bottleneck when working with large datasets. This obstacle motivates alternatives
where the user performs as much work as possible on the actual database system.

The other two implementations perform the calculation in the database using either plain SQL or a combination
of SQL and a UDF. Both of these implementations accomplish their work with a single database query that is
comprised of three parts. First, both implementations must assemble the data values that are necessary for the
computation. This operation requires nine joins: eight to convert the element’s node IDs to coordinates and one to
acquire the element variable that is needed for a particular timestep. Second, a simple threshold operation is
performed to remove elements from the query that are below the desired cutoff. Finally, a running sum for the
threshold volume is computed. In the plain SQL implementation, this operation is explicitly written in the SQL
query with multiplication and subtraction operations that the database can interpret and process. The SQL/UDF
implementation instead performs this computation in a custom C++ UDF. While this particular UDF did not provide
any speed advantages over the plain-SQL implementation, we found that it greatly reduced the SQL and made the
implementation much more readable.

5.3. Hadoop Implementation
The Hadoop adaptation of the threshold volume calculation performs all of its work in a single pass. A number

of map tasks are used to extract information from the binary input data files in parallel and generate all of the data
values that are needed for the computation. Thresholding is performed during this read operation in order to remove
unnecessary data values as early as possible. These map tasks also compute the individual volumes of elements as
they are read. As each volume is calculated, it is assigned a key of 1. A local combiner task is then used to condense
the key-value results from a local mapper to single key-value pair by summing the element volumes and again
assigning the result a key of 1. Finally, a global reduce operation merges the results of each combiner into a single
sum for the entire cluster.

5.4. Performance Comparison
A synthetic mesh dataset generator was constructed for the threshold volume calculation that created datasets

comprised of many, independent hexahedral elements that are randomly placed and annotated with variable data that
is randomly generated. The data generator was configured to produce a variety of meshes, ranging from 500K
elements to 20M elements. The data was then ingested into both the Netezza and Hadoop platforms.

0

10

20

30

40

50

60

70

0.5M 5M 10M 20M

Number of Elements

T
im

e
(s

)

Netezza

Hadoop

Figure 2: Performance measurements for the threshold volume on Netezza and Hadoop.

The timings for various dataset sizes are presented in Figure 2 for both DWAs. As expected, both platforms
were able to process data in a reasonable amount of time, due to the data-parallel nature of this algorithm. For small
datasets, the Netezza outperforms the Hadoop cluster. This characteristic can be attributed to the fact that Netezza
requires less overhead to launch any particular job than Netezza. However, as dataset size increases, the Hadoop
cluster performs better. An examination of the performance for both implementations revealed that nearly all of the
overhead of the operation is associated with performing joins to generate data values. This trait suggests that while
separating structural data into separate tables saves space, doing so can greatly degrade performance.

6. Element Pairing
The second analysis algorithm that we adapted to our DWAs is an element-pairing algorithm that is part of a

larger application that quantifies how much damage is caused when two objects collide. In the example simulation
containing this algorithm, an indestructible object is rammed into a deformable object. In order to simulate realistic
fractures, the deformable object is modeled as two separate meshes that are bonded together at the surface where the
collision takes place. Analysts are interested in observing how far apart element pairs in the seam move apart as the
simulation progresses. The distances between these element pairs help quantify cracks, tears, and holes created in
the collision.

The central challenge in implementing this analysis is automatically generating the list of element pairs that are
pressed against each other at the start of the simulation. Due to the way the meshes are constructed, we cannot
assume that a pair of touching elements will share the same vertices or vertex coordinates. Additionally, numerical
precision issues dictate that the distance between the faces of two touching elements will be small, but not
necessarily zero. Equipped with no additional information about where the meshes are actually touching, the
hardship of this pairing problem is that it may require on order of N2 element face comparisons.

6.1. Algorithm
Our approach to implementing the element pairing algorithm involves computing the distances between the

exterior faces of the two meshes, and then selecting the pairs with minimum distance between their faces. This work
is divided into three phases. First, all faces are generate for each element in each mesh (e.g., six faces per
hexahedron). Second, the face list for a mesh is reduced to the set of exterior faces for the mesh by removing all
faces that appear more than once in the list. It is important to note that this reduction must take into account that a
single face can be represented by different combinations of its vertices (e.g., ABCD is the same CDAB). Finally,
each exterior face for the first mesh is paired to the face in the second mesh that is closest, geographically. For
simplicity, we use the distance between face centers as the distance metric.

For the purposes of evaluating the computing performance of the DWAs in the worst case, we chose to
deliberately ignore obvious optimizations that reduce the dataset early in the analysis process. For example, we
developed a simple bounding-box filter for the first stage of execution that removed all faces in the first mesh that
were too far away from the bounding box of the second mesh to be considered. This filter greatly reduced the face
list sizes and thus dramatically improved performance. We exclude this filter from the experiments reported in this
paper because (1) there are always canonical examples where these types of filters fail and (2) we wanted to present
the pairing portion of the algorithm with a sizable amount of work to evaluate how well the systems perform at
scale.

6.2. Netezza Implementation
The Netezza implementation of the element pairing algorithm was written as a sequence of SQL queries that

store intermediate data values in temporary tables in the database. The first task of generating all possible faces for
a mesh is performed through six insert statements (one for each face in each hexahedron). Each insert requires five
joins to assemble the necessary data: one to locate all of the elements belonging to a mesh and four to generate the
coordinates of the face’s four vertices. During the insertions, the vertices for a face are averaged together in order to
generate a center that can be used for the final distance estimation task.

The second task of reducing the face lists to just the external faces proved to be more challenging because of the
vertex ordering problem. Our solution was to generate a unique key for each face that could be represented as a
single data value in the database. We constructed a UDF that took the IDs of the four vertices as input, sorted them
in numerical order, and then created a single binary blob value that the database could associate with the face. This
blob functioned as a key that allowed us to use Netezza SQL’s “Group By” and “Having (Count=1)” syntax to
reduce the face list to face entries that appear once in the dataset and are therefore part of the mesh’s exterior.

The final task of locating pairs of touching faces is the most time consuming portion of the algorithm. Similar to
the previous step, we utilized the “Group By” SQL to compute the distance between every exterior face in one mesh
and every exterior face in the other mesh, followed by a MIN() aggregate function to reduce the data to the minimal
pairings. An additional threshold operation was applied to remove face pairs from the result that were separated by
more than a specified amount of distance. Through experimentation, we were able to verify that the MIN aggregate
properly discarded non-minimal values as it stepped through the dataset, as opposed to computing all values and
then selecting the minimum results.

6.3. Hadoop Implementation
The Hadoop implementation of the element pairing algorithm is written as a series of four map/reduce phases:

1. The first phase uses multiple map tasks to read data from binary input files in parallel and generate Hadoop
sequence files that contain all of the information necessary for the work. The output of the map tasks is written
back to HDFS, resulting data blocks being distributed throughout the cluster.

2. The second phase utilizes multiple map tasks to generate all of the faces in the mesh, and then a reduce task to
remove all but the exterior faces in each mesh. In order to identify faces regardless of vertex order, a key is
generated for each face that is comprised of the ordered list of vertex IDs.

3. The third phase performs all distance comparisons between exterior faces. This operation proved to be a
difficult problem to implement in map/reduce because it involves comparing results from two different data
streams. Similar to other researchers faced with the same problem, we decided to implement this join operation
somewhat outside the Map/Reduce paradigm: we designed a map task that loaded one mesh’s face values into
memory and then streamed the other mesh’s face values through for comparison. In order to handle memory
limitations, this phase was designed to support an iterative approach that loads only a portion of the first mesh
into memory at a time. If multiple output files are acceptable, there is no need to perform a reduction here. The
performance of the join in this phase was further improved by leveraging Hadoop’s DistributedCache feature[]
to efficiently distribute data to all maps in the cluster.

4. The final phase utilizes multiple map tasks to find the minimum distance pairs between all iterations of the
previous phase, and uses a reduce operation to collect results into a single file.

6.4. Performance Comparison
A second synthetic dataset generator was constructed for the element pairing application. This generator

produces datasets that are comprised of two meshes that are placed in close proximity to each other. The cubes are

offset by small amounts in each direction to reflect a more realistic example. The element pairing algorithm was run
on datasets ranging from 0.5M elements to 20M elements on both DWAs.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

0.5M 2M 5M 10M 20M 0.5M 2M 5M 10M 20M

Number of Elements

T
im

e
(s

)

Nearest Faces

Exterior Faces

Generate Faces

Netezza Hadoop

Figure 3: The performance of Netezza and Hadoop implementations for element pairing.

Timing measurements for the face-pairing tests are presented in Figure 3. We measured the amount of time
required to process the three general phases of the algorithm. Netezza provided much better performance in the first
two phases of the algorithm than Hadoop. In particular the Netezza implementation was able to perform the exterior
face operation at nearly a constant rate. However, the final phase of performing the N2 distance computations proved
to be the dominant operation in the calculation, as well as the bottleneck in the Netezza implementation. By being
able to explicitly pull the second face list into memory, the Hadoop implementation provided better performance.
We are currently investigating whether these operations could be performed in Netezza utilizing UDFs that employ
the SPUs memory for scratchpad data.

7. Observations
This work has provided many insights into utilizing DWAs for scientific dataset analysis. The following are

observations that originate from adapting these algorithms, and DWAs in general.

Start Costs: Both Netezza and Hadoop have relatively high startup costs for performing operations. Similar to other
databases, a Netezza query requires at least a half second to complete. Startup costs for Hadoop are on the order of
10-20 seconds. These overheads emphasize the importance of performing complex computations on the DWAs
when possible.

Floating-Point Limitations on Netezza: The PowerPC processors in our current Netezza system do not provide
hardware support for floating-point computations and therefore must implement the calculations in software. This
issue is problematic for scientific datasets which are largely based on floating-point data. In order to get an estimate
of how much this limitation impacted performance, we conducted an experiment on the Netezza where the element-
pairing algorithm was changed to use integer data values instead of floating point. The integer implementation
completed in a third of the time that the floating-point version required.

Tunability: In order to improve performance, we went through several development iterations on each platform. On
the Netezza system, the major complaint was that there were relatively few means by which we could refactor the
algorithm. Netezza is designed to do optimization for the user, and therefore does not provide many programming
paths that a user could explore to improve performance. In contrast, Hadoop provides the opposite environment:
users can easily be overwhelmed by the variety of ways they can refactor their algorithms to Map/Reduce
operations.

Programming Interfaces: An ongoing question for our work has been whether SQL and Map/Reduce are sufficient
data-parallel languages for implementing nontrivial scientific analysis functions. The two adaptations presented in
this paper confirm that basic algorithms can be adapted to these languages and executed in a parallel environment.
However, it is important to note that the majority of our effort involved finding ways to get around language
limitations. For SQL, we feel that performance was compromised in the final phase of the element pairings because
there was no obvious way to do an all-to-all computation efficiently. For Hadoop, we continuously struggle with the

problem of merging two data streams when random access is required. Similar to other developers, we solve this
problem by going outside of the Map/Reduce paradigm.

Debugging: Debugging is challenging on any parallel platform. For Netezza, we found SQL debugging to be
relatively straight forward, due to the robustness of the SQL standard. However, UDFs must be developed with
caution, as programming errors can freeze a SPU or crash the database. Netezza’s UDF interface provides basic
support for forcing users to be cautious, with rigid input/output parameter checking and stack overflow guards.
Hadoop developers have constructed a number of facilities for debugging. Hadoop also allows users to debug a job
on a local machine before it is run on a cluster.

Portability: Ideally, scientific users need to be able to easily move analysis programs from one platform to another
without drastic changes. Developing for Netezza SQL is appealing in that sense because SQL-compliant code
should be portable to different databases. We initially prototyped our SQL algorithms on a MySQL database and
then changed the program to use the Netezza. While this transition went fairly smoothly, there are subtle differences
between each database that make portability challenging. Additionally, UDFs written for Netezza are not usable on
any other platform. Hadoop on the other hand can be run on a wide variety of platforms. As discussed in the
tunability observations, the issue is refactoring programs to maximize cluster resources.

8. Summary and Future Work
Scientific applications are generating massive datasets that are difficult to analyze utilizing traditional, offline

approaches. An emerging class of systems known as Data Warehouse Appliances provides an opportunity to
improve the scale at which automatic data analysis operations can be performed through the use of parallel storage
hardware and data-parallel programming interfaces. In this paper we have explored how two scientific data analysis
algorithms can be adapted to the Netezza parallel database and a Hadoop-equipped cluster. We have confirmed that
the data-parallel programming interfaces for these platforms are sufficient for implementing our out-of-core
algorithms, and that the parallel hardware of these systems could be utilized. However, it is important to note that
the APIs for these platforms required a good bit of planning and experimentation in order to achieve good parallel
performance.

The next step in this work is to scale the hardware of both platforms to observe how far the systems can scale
before internal hardware bottlenecks surface. In a similar effort, it will be necessary to investigate how data can be
transferred in and out of DWAs so that existing MPP platforms can leverage DWAs as high-speed data store for
simulations. Finally, we see the value of emerging language efforts as an opportunity to simplify the programming
effort for using DWAs. For example, Hadoop’s Pig Latin [15] effort represents an easy-to-use scripting language for
Hadoop that can serve as a convenient means for implementing dataflow without having to explicitly manage the
sequence of Map/Reduce operations.

References
[1] R. Meisner, “A Platform Strategy for the Advanced Simulation and Computing Program,” NA-ASC-113R-07-Vol.1-

Rev.0, August 2007.
[2] K. Alvin, “ASC National Code Strategy Simulation-Based Complex Transformation,” NA-ASC-108R-09-Vol.1-Rev.0,

January 2009.
[3] O. Zeinkiewicz, R. Taylor, and J. Zhu, The Finite Element Method: Its Basis and Fundamentals, Sixth Edition, published

by Butterworth-Heinemann, 2005.
[4] A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, and J. Favre, “Remote Large Data Visualization in the ParaView

Framework”, in proceedings of Eurographics Parallel Graphics and Visualization, May 2006.
[5] J. Laros, L. Ward, R. Klundt, S. Kelly, J. Tomkins, B. Kellogg, “Red Storm IO Performance Analysis,” in proceedings of

2007 IEEE International Conference on Cluster Computing, September 2007.

[6] P. Braam, “The Lustre Storage Architecture,” available at www.lustre.org, 2002.
[7] G. Davidson, K. Boyack, R. Zacharski, S. Helmreich, and J. Cowie, “Data-Centric Computing with the Netezza

Architecture,” Sandia Technical Report SAND2006-3640, April 2006.
[8] A. Bialecki, M. Cafarella, D. Cutting, O. O’Malley, “Hadoop: A Framework for Running Applications on Large Clusters

Built of Commodity Hardware”, Wiki at http://lucene.apache.org/hadoop
[9] S. Ghemawat, H. Gobioff, and S. Leung, “The Google File System,” in Proceedings of the 19th ACM Symposium on

Operating Systems Principles, October 2003.

[10] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” in Proceedings of the 6th

Symposium on Operating System Design and Implementation, 2004.
[11] D. Borthakur, “The Hadoop Distributed File System: Architecture and Design,”
[12] W. Tantisiriroj, S. Patil, G. Gibson, “Data-intensive File Systems for Internet Services: A Rose By Any Other Name …”,

Carnegie Mellon University Parallel Data Lab Technical Report CMU-PDL-08-114. October 2008.
[13] Amazon Elastic Compute Cloud (EC2), http://www.amazon.com/ec2/ , June 2009
[14] W. Lorensen and H. Cline, “Marching cubes: A High Resolution 3D Surface Construction Algorithm,” in proceedings of

the 14th Annual Conference on Computer Graphics and Interactive Techniques, 1987.
[15] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig Latin: A Not-So-Foreign Language for Data

Processing,” in Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, 2008.

