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Abstract

As scientific computing users migrate to petafltgtfprms that promise to generate multi-terabytéadats, it
is becoming increasingly apparent that simulati@tagets are too cumbersome to process using toaditj offline
techniques. Instead, there is a strong need within community to be able to embed sophisticatedysisa
algorithms in the storage systems that house tha tta the computing platform. Data Warehouse Aqpies
(DWAs) are an attractive option for this work besauhey enable researchers to take advantage sfirexidata-
parallel compute architectures that can processsivas out-of-core datasets efficiently

While DWAs have proven to be effective in datangimind informatics applications, there are relatjvéew
examples of how DWAs can be integrated into thensiic computing environment and utilized to prexe
simulation data effectively. In this paper we présaur experiences in adapting two mesh analygiorithms to
function on two different DWA platforms: a SQL-lthdéetezza database appliance and a Map/Reduce-based
Hadoop cluster. While the main contribution of thisrk is insight into the differences between the platforms’
programming environments, we present performancasarements for entry-level systems to help proaidiest-
order comparison of the hardware.

1. Introduction

In nearly all scientific domains, researchers empimdeling and simulation tools to help answer clexp
research questions. In general, scientific usgrig&ly model a situation that is of interest ahdrt utilize
simulation tools to evaluate the model. Once a kitian completes, visualization and analysis t@oisused to
help users interrogate the results generated bgithglation in order to gain insight into the ditaif what took
place during the simulation. Depending on modedlfig and computational complexity, simulationsmirg at full
scale on high-end computing platforms may take dayseeks to complete and can produce terabytpstabytes
of output data. The shear volume of this data makaswieldy to manage and analyze through tradélpoffline
approaches.

1.1. Mesh-Based Smulations

Sandia National Laboratories has a long histonysirfig simulation tools on high-performance commtin
(HPC) platforms to solve complex problems relatimgational security. In the Advanced SimulatiofC&mputing
(ASC) effort [1-2], Sandia has developed many palralmulation codes for evaluating mechanicalried, and
electrical properties of complex systems that atgexted to harsh environmental factors. Theselaiious help
determine how well a system will be able to conmgles intended function under different operatiogditions.
Simulation ultimately provides analysts with an ogpnity to gain insight without necessarily redpuiy the
expensive testing of actual components.

Many mechanical and thermal simulation tools atd&aare based on meshed representations of physical
objects. For example, finite element method (FEB])cdes discretize each physical object in a st into a
mesh of elements and then apply numerical anadyseach element to determine how the object intenaith
other objects as the simulation progresses. Mesbkebsimulation datasets are generally comprisédmtypes of
data: structural data and variable data. Structlatd provides geometric information about the cisjand is
organized in a hierarchical form: a simulation @ms multiple objects, an object is defined byniissh, a mesh is
defined by its elements, and an element is defineits vertices. While all elements in a mesh shiagesame
geometric shape (e.g., hexahedron or tetrahedsamylia’s applications typically employ unstructuregishes with
non-uniform elements. The variable data portioa dataset contains data values that were calculiaiag the
simulation. A variable (e.g., pressure, temperator@isplacement) is associated with either elémenvertices in
the mesh. A variable’s data is generated at eawdstep of the simulation for all elements or vedicAs such,
variable data is often much larger than structdeah in a dataset.



Table 1: A 100M element simulation can gener ate many ter abytes of data.

Tables Rows/Bytes

Element 100M

Structural 3.2GB
Data Vertex 100M — 800M

2.4GB - 19.2GB
. Element 20G

Variable 2.5TB
Data Vertex 20G - 160G
2.5TB - 20TB

High-fidelity simulations can produce datasets #ratvery large. While typical production runs nieyon the
order of just a few million elements, leading edgenputing platforms have been used to process ationg with
more than 100 million elements. As a means oftilaigig how quickly datasets grow, Table 1 lises #mount of
data that would be hosted in a hypothetical dafaset 100M element simulation where 16 element Bhaertex
variables are traced for 200 timesteps. While Weiaata is much larger than structural data, iinigortant to note
that the structural data can be larger than maimang in a single host computer. Many existing datalysis tools
cannot process datasets that are this large bettaigs@alysis algorithms were written in an in-claghion that
assumes structural data can be housed in host meA®such, there is a strong need in the sciertdimmunity
for post-processing analysis tools that can hamdlssive datasets. At Sandia, ParaView [4] has bed¢ben
distributed analysis framework of choice. Howewher solutions are of interest.

1.2. Capability Computing Platforms

A universal constant in HPC is that scientific sseill always need more computing power than atbégla
systems offer. When new HPC platforms are broughne, they are strategically designed to improitees the
computing capacity of a site or its computing calggbCapacity computing utilizes a new HPC platfds
resources to process existing simulations in atshamount of time than was previously possibleedntrast,
capability computing systems are designed to alleers to increase the fidelity of their simulationdels.
Capability systems typically push the boundariew/loft can be accomplished through modeling andlation,
and are therefore the focus of a considerable atrajursearch in HPC.

Leading-edge capability systems are custom-buaissively-parallel processing (MPP) systems. Inotale
increase the amount of computing that can takeegtaa given footprint, capability system architees typically
separate computing resources from storage resolfeesxample, Sandia’s Red Storm [5] platform eaypiclose
to 13,000 diskless compute nodes to perform ariGgijoin’s parallel processing, a separate 1.7PB fdisn for
managing persistent storage, and 320 I/O noddsafiedling an application’s disk requests. Storaggesys in HPC
systems typically employ a cluster file system sast.ustre [6] to allow data to be striped acroasymdisk nodes
and cached in order to hide the high cost of digless. As such, today’s storage systems are ofiinated
clusters running a parallel storage application sleavices load/store requests in a high-performananner.

1.3. Data Warehouse Appliances

The availability of massive customer databasesdustry has resulted in a strong demand by busiades
data mining tools and systems that can allow a @mmpo discover consumer trends in real time. spoase to
these data mining needs, a number of companiesdesdoped stand-alone products known as data waseh
appliances (DWAs) that enable users to accomphbsga dnalysis operations on parallel platforms withrequiring
a detailed knowledge of parallel processing tealsq DWASs typically provide (1) a large amount afadlel
storage devices that enable high-performance disk(@) near-storage processing in order to exeamgputations
where the data resides, and (3) a programmindgfauerthat allows users to pose data processing emasn DWAS
are very appealing to industry because they carebgéed as appliances. In many cases, a comparsiroaty
purchase one or more racks of a SQL-based DWA ahdaenuine speedups over a sequential databaseutvith
having to make significant modifications to the S@rbgram.

There are many DWA systems available today. Wealditiese systems into two categories, based an thei
programming interfaces. First, SQL-based DWAs @&sighed to be plug-in replacements for existingloiase
systems. SQL is well known and provides users witbbust data-processing language that fosterspadatdlel
operations that can in turn be parallelized bytaltse. Netezza, XtremeData, Oracle, TeradataGesehplum all



offer SQL-based DWA products. Second, dataflow-0d3@&/As are designed to provide a flexible platfdon
manipulating large-scale datasets when users are withing to express their data-process commandstier data-
parallel languages. Examples of these systemsdadiadoop and LexisNexis.

2. DWAsfor Scientific Analysis

A number of institutions in the scientific commuynére currently designing and deploying a new getian of
petaflop-class computing platforms that will be aldle of processing larger, higher-fidelity modélar ever
before. While these capability systems will enabkearchers to conduct higher-quality science, akenthree
observations about trends in the HPC landscapaliteattly impact how scientific users will make wsdfecapability
systems in the next decade:

Increased Dataset Sizes. Increases in simulation size and fidelity corregpto increases in the amount of data
generated by a simulation. With current capabgitgtems already generating multi-terabyte dataset@xpect that
simulations in the near future will generate teambundreds of terabytes of data.

Constant Disk and LAN Rates. While fast solid-state storage devices (SSDsyknely making their way to
market, traditional hard drives are still the doamtstorage option for massive datasets. Giverhidnat drives
transfer rates have not improved significantly imunber of years, future storage systems will emfgoger disk
arrays in order to meeting simulation 1/O ratesa lsimilar manner, link rates for transferring daitih of a capability
system are not likely to improve substantiallytie upcoming years.

Capability Computing Consolidation: While the per-core cost for computing systemsdrapped dramatically
over the years, the total cost to build, power, mnadhtain a capability system has not. Under prestuconstruct
new resources as cost effectively as possible jpreiinstitutions and laboratories are pooling thefforts to create
shared capability platforms. These consolidationpleasize the need for better distance computinctipes, where
processing and analysis is conducted on equiprhahts housed at a location that is far away frobenuser.

Based on these observations, we assert that theldigeodel of moving data to the user’s analysidecis
infeasible and must instead be reversed. In omdactcommodate data analysis on massive datasetstoage
systems for capability systems must be enhancptbidde processing within the storage system. @iryil these
new systems must take advantage of data-paratigk@mming interfaces that shift the burden of pakal
programming from the user to the storage systermvplossible. DWAs represent an attractive optiorthic work,
because they are already widely deployed to safa#as problems in other fields.

While DWAs have been successfully utilized to satveny informatics problems, there have been ralbtiv
few efforts that have examined whether they ardiegdgle in scientific problems with massive datas&he intent
of this work is to gain insight into the tradeoiffisolved in utilizing a DWA to analyze scientifiathsets. For this
paper we have adapted two mesh-based analysigtiopsrto function on two different DWAs. In additido
describing each algorithm’s implementation, we jme\basic performance measurements for both prafdhat
give insight into system bottlenecks. Finally, wegent a number of observations based on our expes with the
DWAs in hopes of motivating future work in thislfie

3. Data Warehouse Appliances

For the purposes of this paper we chose to focusvorof the more common DWAs that are in use today:
SQL-based Netezza system and a dataflow-based iHaliegier. We acquired an entry-level platformdach, and
then adapted our algorithms to run in the two emrnents.

3.1. Netezza

In 2002 Netezza became one of the first companiesish data warehouse systems as true appliarfoes. T
Netezza Performance Server [7] can be describaccastom-everything system. In terms of hardwaeteira
employs a large array of disk blades called snippetessing units (SPUs). As illustrated in Figuyeach SPU is
comprised of an embedded PowerPC processor, 1 GRAM, an FPGA-based 1/O controller, and a SATAcdar
drive. Overall, the system connects a large nurab&PUs through a Gigabit Ethernet (GigE) netwavkile the
custom hardware adds to the overall expense afytstem, Netezza can do many unique operationsdnanodity
systems cannot. For example, the 1/0 controllertmnonfigured to perform data decompression ahdwo



filtering as the data is read off the disk. Thipalaility enables the controller to supply dataadts that are higher
than what the disk or SATA link can physically sogp Observing that the hard drives are often thitldneck in
I/O intensive applications, this optimization casult in a significant performance gain for therallesystem.
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Figure 1: The Netezza system utilizes multiple snippet processing units (SPUs) to process data in
parallel.

In terms of software, Netezza employs a parall&loise engine that allows the system to stripeatatss
disk blades and execute a query in parallel. Rattzar rely on indexing to help the database lomsant records,
Netezza performs scans on entire tables. Whilebthite-force approach at first may appear to igiloee
fundamentals of modern database design, it reisudtscalable system with predictable performatfceuser
increases the dataset size or needs better perfoeméne user simply purchases and uses more nodes.

Similar to other databases, Netezza allows usessgplement the SQL syntax with user-defined opesat
These operators are written in C++ and are eitber-defined functions (UDFs) or user-defined agateg (UDAS).
UDFs operate on a single row at a time, producimg autput value for a given list of column inpusy(, compute
the squared sum of C column values). UDAs perfdrensame work as a UDF, but also provide meansliafpsing
the results for all rows into a single value (efigg the second-largest squared sum of C columise entire
table). In our experience, UDFs and UDAs are a eaiant way of expressing data-processing compuistioat
would otherwise be difficult to construct using ptthe built-in operators provided in SQL. Our sttt has been to
construct complex computations in UDFs and UDAG€] tien utilize SQL as a means of sequencing thve dio
execution required in an algorithm.

3.2. Hadoop Clusters

Hadoop [8] is an open source framework for perfoigriata-parallel operations on commodity cluster
hardware. Hadoop was initially constructed by reseers at Yahoo! as an open source Java clonedtlogle
File System (GFS) [9] and Google’'s Map/Reduce [i&hework, but has since grown into the basis foumber
of different out-of-core data processing projegtsits core, Hadoop is comprised of two componehist, the
Hadoop distributed file system (HDFS) [11] providescalable, general-purpose file system for dhistimg data
across the local disks in a cluster in an efficeemd reliable manner. HDFS operates on large blotksta (64 MB
by default) and is responsible for transferring apdchronizing data between nodes in the clusteeaded by
applications. Second, Hadoop provides a Map/Rettaogework for performing computations, where aection
of map tasks perform computations on independegitme of data and reduce tasks combine the resiulte map
tasks. In between these operations, users maypjdy a local reduction through a combiner tasérifer to
decrease the amount of data that is transmittedtbeenetwork. The Hadoop Map/Reduce frameworkiregu
users to organize their data into a key-value ftataat. This format enables the framework to previgers with
built-in support for common data processing opereti(e.g., sorting data values and removing dugl&aand
enforces data parallelism thinking that enabledrdmmework to manage cluster resources (e.g., @sgignap tasks
to processors).

Hadoop has received considerable interest in tteetacessing community recently because it is very
accessible. In addition to being open source sl tiv use, Hadoop can be installed and evaluatedwde variety
of platforms. Hadoop was designed with low-costnomwdity cluster hardware in mind. While Hadoop tdus
typically expect compute nodes to be equipped leithl disks, researchers have demonstrated thiatdmnd, disks-



on-the-side clusters can also be utilized effetti{2]. Hadoop is also supported in several conuia¢icloud-
computing endeavors such as Amazon’s elastic cargoud (EC2) [13]. Thus it is possible for resbars to pay
a vendor to run a large Hadoop application at s€aleeded. The main drawback of utilizing a Hadcayster as a
DWA is that users must convert their data procesapplications to a form Hadoop can utilize. Aduiglly, users
often find it is challenging to configure Hadoopainway that maximizes performance.

3.3. DWA Test Systems

As a first step in evaluating whether DWAs can blkized effectively in mesh analysis applications
established entry-level DWA test systems for bo#tedza and Hadoop. It is important to stress tiesa platforms
areminimal systemfor DWA work. While they provide basic parallelgmessing platforms for out-of-core
experiments, they offer only a fraction of the pemfiance that production-level systems can achidgeever, the
intent of this paper is to evaluate the challerigeslved in adapting scientific analysis algorithtnghese systems,
and therefore the platforms are sufficient.

For the Netezza experiments we utilized a NeteezfoRnance Server 10050. This half-rack system eyl
54 active SPUs to present the user with over hyeea of database space. A built-in PC with dualDARIpteron
processors functions as the head node and acces$qudhe database. While users can connectaalttabase
remotely through ODBC connections, we performetinggdirectly on the head node in order to remosevork
transfer effects. For debugging purposes, we dlfipadl a standalone Netezza SPUbox test systerohifbatures
four SPUs. This test system allowed us to protogyme debug UDFs before they were executed on thsytem.

For Hadoop cluster experiments we utilized a selater named Decline that was recently retirethfeervice
as a visualization system. Unlike the majority ah8ia’s clusters, Decline’s nodes are equipped Mital hard
drives. A node in this cluster features two 2 GHA[AOpteron processors, 4 GB of memory, a pair of[RA
SATA hard drives, and both GigE and 4x InfiniBaretwork connections. Benchmarks of the local hardegr
revealed that a C program could read data at @d@dvB/s when transferring large blocks of datae Tluster
currently has 19 nodes that operate reliably. Vgtalted the 0.18 release of Hadoop on the clustgrcanfigured it
to utilize the GigE network for communication, givéhat most Hadoop clusters are designed to usedsiv
hardware. Similar to other installations, HDFS wasfigured to use the local disks for storing dati#h a default
block size of 64 MB.

While we provide performance measurements for thesesystems, it is important to note that we hawe
normalized the results in any way to provide adaimparison. In terms of compute power, our Haddogter
employs a small number of powerful nodes whileNle¢ezza system utilizes a large number of embedddds.
Both systems employ the same, basic GigE interadnne

4. Mesh Schemas

The first challenge in adapting mesh analysis élgms to run on DWASs is to determine a suitable nseaf
representing the mesh data in the DWA's native &irrAn ideal schema strikes a balance betweenseptiag the
data in a space-efficient manner and represerttingai way that makes it easy for users to acdemsexample,
consider the problem of defining the coordinatesafbelements in a mesh. Given that elements sheteces with
their neighbors, the space efficient means of mgrEng this information is to use two tables: @reholding the
coordinates of all the unique vertices and andihredefining the vertex indices that belong to eatdment. While
this approach minimizes data replication, it cocgiés the user’s environment because multiple tablaips are
required whenever an element’s coordinates ardrestjin a calculation. In contrast, a simpler schemould
replicate the coordinate information in the elentabte. This approach simplifies the programmingimmment,
but dramatically increases dataset size.

Mesh datasets contain two types of data: structurdlvariable. The structural portion of the datasevides
initial geometry information about the meshes, sntbmprised of the initial coordinates for eachiexe the set of
vertices that define each element, and the sdeofents that belong to each mesh. We decided tesept each of
these data values as its own table in order toceededundancy. The variable data portion of thas#tholds both
element and vertex data values (e.g., pressur@eteture, or displacement) for each timestep irsttmailation. For
our schema, we use two tables to hold these variddth values: one for elements and the otherefidices. Each
variable name is a column in the table, with a praviding all data variable results for a particidéement or
vertex at a particular timestep.

We constructed multiple dataset generators to ematia for the experiments presented in this papese
generators enabled us to create a variety of dagess while avoiding export control issues inealin discussing
Sandia’s applications. Each dataset generator pesda set of tab-separated text files for the varf@lds in the



dataset. For the Netezza system, the tables agstamyusing built-in command line tools that autiica#ly convert
the data the database’s internal, distributed sgmtation. For the Hadoop cluster, we first contrettext files to
binary data files that are easier to access imdaom fashion. Then, data files are pushed out ties@and imported
into each map task using a custom file reader.

5. Threshold Volume Calculation

The first data analysis operation that we adapiedn on our DWAs was a threshold volume calcuiatio
Analysts often need to determine how large a paeiceffect is within a mesh at a specific timestepr example,
one analyst working on safety factors for hydrogefneling stations for automobiles conducted a &tien where
an open nozzle leaked hydrogen gas into a roommiititiple chambers. The analyst computed the tatkime a
particular mole fraction of the gas has occupiegaah timestep as well the rate of change for tiheme between
timesteps. These numbers quantified the amoumtablge that took place during the simulation aneaéso used
to determine when the simulation had reached agtst@te solution.

5.1. Algorithm

The threshold volume calculation can be implememetsimple, brute-force manner through a marcicuge
[14] style approach that sums the contributionaafteelement to the total volume estimate. For esminent, the
algorithm compares the element’s variable(s) (bydrogen mole fraction) to a threshold value ttedaine if the
element is above or below a cutoff. If the elenis@bove the threshold value, its volume is addetie total
volume. For this implementation, we assume thahelds are hexahedra and that an element variabsedfor
thresholding. In order to accommodate the numefauss of hexahedron, we decompose an elementixto s
tetrahedra and apply vector math to compute themelof each tetrahedron. We note that if vertelabdes were
used instead of element variables, the tetraheslrardposition could also be used to provide betteuracy.

5.2. Netezza Implementation

We constructed three implementations for the volealeulation to experiment with different developrne
approaches. The first implementation is a standeald++ program that simply pulls relevant data ftbendatabase
to a local computer and performs the computatiomoist memory. While this implementation was prityari
constructed to verify results, its poor performahigghlighted the fact that the network link betwekea database
and the client can be a substantial bottleneck wieking with large datasets. This obstacle mo#ésatlternatives
where the user performs as much work as possibteeoactual database system.

The other two implementations perform the calcalain the database using either plain SQL or a ¢oation
of SQL and a UDF. Both of these implementation®agaish their work with a single database query tha
comprised of three parts. First, both implementegtimust assemble the data values that are necéss#ng
computation. This operation requires nine joingheto convert the element’s node IDs to coordimaied one to
acquire the element variable that is needed farcolar timestep. Second, a simple threshold atj®er is
performed to remove elements from the query thebatow the desired cutoff. Finally, a running siamthe
threshold volume is computed. In the plain SQL empéntation, this operation is explicitly writtentire SQL
query with multiplication and subtraction operasdhat the database can interpret and processSQhdJDF
implementation instead performs this computatioa gustom C++ UDF. While this particular UDF did poovide
any speed advantages over the plain-SQL implementate found that it greatly reduced the SQL aradienthe
implementation much more readable.

5.3. Hadoop I mplementation

The Hadoop adaptation of the threshold volume ¢aticun performs all of its work in a single passnédmber
of map tasks are used to extract information frbentiinary input data files in parallel and genesdtef the data
values that are needed for the computation. Thtestwpis performed during this read operation idesrto remove
unnecessary data values as early as possible. Taséasks also compute the individual volumedarhents as
they are read. As each volume is calculated,as&@gned a key of 1. A local combiner task is thesd to condense
the key-value results from a local mapper to sitkglg-value pair by summing the element volumesagain
assigning the result a key of 1. Finally, a glategluce operation merges the results of each cominitzea single
sum for the entire cluster.



5.4. Performance Comparison

A synthetic mesh dataset generator was constriotete threshold volume calculation that creatathsets
comprised of many, independent hexahedral elentkeats@re randomly placed and annotated with vagidhta that
is randomly generated. The data generator wasgumefil to produce a variety of meshes, ranging 06K
elements to 20M elements. The data was then imfj@sie both the Netezza and Hadoop platforms.
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Figure 2: Performance measurementsfor the threshold volume on Netezza and Hadoop.

The timings for various dataset sizes are presentBdyure 2 for both DWAs. As expected, both patfis
were able to process data in a reasonable amotimi@fdue to the data-parallel nature of this atgm. For small
datasets, the Netezza outperforms the Hadoop cldstss characteristic can be attributed to the flaat Netezza
requires less overhead to launch any particulathjah Netezza. However, as dataset size increthsesladoop
cluster performs better. An examination of the perfance for both implementations revealed thatipedirof the
overhead of the operation is associated with perifog joins to generate data values. This trait sstggthat while
separating structural data into separate tablesssspace, doing so can greatly degrade performance.

6. Element Pairing

The second analysis algorithm that we adapted t@®WAs is an element-pairing algorithm that is pafra
larger application that quantifies how much damagmused when two objects collide. In the examptailation
containing this algorithm, an indestructible objsctammed into a deformable object. In order touate realistic
fractures, the deformable object is modeled asswparate meshes that are bonded together at faeeswhere the
collision takes place. Analysts are interesteddsenving how far apart element pairs in the seamwvenapart as the
simulation progresses. The distances between dlesent pairs help quantify cracks, tears, andshaleated in
the collision.

The central challenge in implementing this analissutomatically generating the list of elementgpthat are
pressed against each other at the start of thdation Due to the way the meshes are construeted;annot
assume that a pair of touching elements will skia@esame vertices or vertex coordinates. Additignaumerical
precision issues dictate that the distance betwreefaces of two touching elements will be smalt, ot
necessarily zero. Equipped with no additional infation about where the meshes are actually toucttieg
hardship of this pairing problem is that it mayuizq on order of Rlelement face comparisons.

6.1. Algorithm

Our approach to implementing the element pairigghm involves computing the distances between th
exterior faces of the two meshes, and then setgttim pairs with minimum distance between theie$ad his work
is divided into three phases. First, all facesggneerate for each element in each mesh (e.g.asbdsfper
hexahedron). Second, the face list for a meshdisaed to the set of exterior faces for the mestelmoving all
faces that appear more than once in the list.ifbrtant to note that this reduction must take account that a
single face can be represented by different contibims.of its vertices (e.g., ABCD is the same CDABally,
each exterior face for the first mesh is pairethtoface in the second mesh that is closest, gebigadlly. For
simplicity, we use the distance between face cerdsithe distance metric.



For the purposes of evaluating the computing paréorce of the DWAs in the worst case, we chose to
deliberately ignore obvious optimizations that reglthe dataset early in the analysis process.Xamgle, we
developed a simple bounding-box filter for thetfstage of execution that removed all faces irfitlse mesh that
were too far away from the bounding box of the selcmesh to be considered. This filter greatly reduthe face
list sizes and thus dramatically improved perforogatWe exclude this filter from the experimentsomégd in this
paper because (1) there are always canonical egramyblere these types of filters fail and (2) we tedrio present
the pairing portion of the algorithm with a sizabimount of work to evaluate how well the systentéopm at
scale.

6.2. Netezza Implementation

The Netezza implementation of the element pairiggrdghm was written as a sequence of SQL quehias t
store intermediate data values in temporary tabl#se database. The first task of generating@dkible faces for
a mesh is performed through six insert statememts for each face in each hexahedron). Each irsguires five
joins to assemble the necessary data: one to ladaiéthe elements belonging to a mesh and fogenerate the
coordinates of the face’s four vertices. Duringitieertions, the vertices for a face are averaggéther in order to
generate a center that can be used for the fistmiie estimation task.

The second task of reducing the face lists tothesexternal faces proved to be more challenginguge of the
vertex ordering problem. Our solution was to geteesaunique key for each face that could be reptedeas a
single data value in the database. We constructéidrathat took the IDs of the four vertices as ipmorted them
in numerical order, and then created a single piblob value that the database could associatethdtliace. This
blob functioned as a key that allowed us to useiiEt SQL'’s “Group By” and “Having (Count=1)" synttax
reduce the face list to face entries that appeee anthe dataset and are therefore part of thé'syegterior.

The final task of locating pairs of touching faégshe most time consuming portion of the algoritl8imilar to
the previous step, we utilized the “Group By” S@Lcompute the distance between every exteriorifaoee mesh
and every exterior face in the other mesh, follolwg& MIN() aggregate function to reduce the datdhé minimal
pairings. An additional threshold operation wasligoipto remove face pairs from the result that weaparated by
more than a specified amount of distance. Throxgle@mentation, we were able to verify that the Mifjgregate
properly discarded non-minimal values as it steghealugh the dataset, as opposed to computingahleg and
then selecting the minimum results.

6.3. Hadoop I mplementation
The Hadoop implementation of the element pairimggathm is written as a series of four map/reducases:

1. The first phase uses multiple map tasks to reaal fdamn binary input files in parallel and generdgdoop
sequence files that contain all of the informati@tessary for the work. The output of the map tasksitten
back to HDFS, resulting data blocks being disteuthroughout the cluster.

2. The second phase utilizes multiple map tasks temgea all of the faces in the mesh, and then acesthsk to
remove all but the exterior faces in each mesbrdier to identify faces regardless of vertex ordetey is
generated for each face that is comprised of thered list of vertex IDs.

3. The third phase performs all distance comparisetsden exterior faces. This operation proved ta be
difficult problem to implement in map/reduce beaaiisnvolves comparing results from two differefata
streams. Similar to other researchers faced witséime problem, we decided to implement this jpiration
somewhat outside the Map/Reduce paradigm: we dedignmap task that loaded one mesh’s face valtees in
memory and then streamed the other mesh’s facev#mough for comparison. In order to handle mgmor
limitations, this phase was designed to suppoitesiative approach that loads only a portion offtret mesh
into memory at a time. If multiple output files aeceptable, there is no need to perform a redutioe. The
performance of the join in this phase was furthgprioved by leveraging Hadoop’s DistributedCachéuifie]
to efficiently distribute data to all maps in tHester.

4. The final phase utilizes multiple map tasks to find minimum distance pairs between all iteratioinhe
previous phase, and uses a reduce operation grtodisults into a single file.

6.4. Performance Comparison

A second synthetic dataset generator was constrflmtehe element pairing application. This genarat
produces datasets that are comprised of two meisheare placed in close proximity to each othée Tubes are



offset by small amounts in each direction to refleenore realistic example. The element pairingtigm was run
on datasets ranging from 0.5M elements to 20M efgsnen both DWAs.
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Figure 3: The performance of Netezza and Hadoop implementationsfor element pairing.

Timing measurements for the face-pairing testpaesented in Figure 3. We measured the amountnef ti
required to process the three general phases aldgbethm. Netezza provided much better performandhe first
two phases of the algorithm than Hadoop. In padicthe Netezza implementation was able to perfirerexterior
face operation at nearly a constant rate. Howekerfinal phase of performing the Mistance computations proved
to be the dominant operation in the calculationyal as the bottleneck in the Netezza implemeotatBy being
able to explicitly pull the second face list intemory, the Hadoop implementation provided bettefopmance.

We are currently investigating whether these opmratcould be performed in Netezza utilizing UDRattemploy
the SPUs memory for scratchpad data.

7. Observations

This work has provided many insights into utilizid§VAs for scientific dataset analysis. The follogiare
observations that originate from adapting theserétyms, and DWAs in general.

Start Costs: Both Netezza and Hadoop have relatively high geebsts for performing operations. Similar to othe
databases, a Netezza query requires at least adualfid to complete. Startup costs for Hadoop mtbeorder of
10-20 seconds. These overheads emphasize the anperof performing complex computations on the DWAs
when possible.

Floating-Point Limitations on Netezza: The PowerPC processors in our current Netezzarsydb not provide
hardware support for floating-point computationd #imerefore must implement the calculations invgafe. This
issue is problematic for scientific datasets whaoh largely based on floating-point data. In otdeget an estimate
of how much this limitation impacted performance @onducted an experiment on the Netezza whereehsent-
pairing algorithm was changed to use integer dakaes instead of floating point. The integer impdgrtation
completed in a third of the time that the floatipgjnt version required.

Tunability: In order to improve performance, we went througbesal development iterations on each platform. On
the Netezza system, the major complaint was tleaettvere relatively few means by which we coul@cadr the
algorithm. Netezza is designed to do optimizatimntiie user, and therefore does not provide mangramming
paths that a user could explore to improve perfowaaln contrast, Hadoop provides the oppositerenmient:

users can easily be overwhelmed by the varietyayfsswhey can refactor their algorithms to Map/Reduc
operations.

Programming I nterfaces. An ongoing question for our work has been whe8@t and Map/Reduce are sufficient
data-parallel languages for implementing nontrigi@kntific analysis functions. The two adaptatiprssented in
this paper confirm that basic algorithms can betathto these languages and executed in a pagall@bnment.
However, it is important to note that the majoonfyour effort involved finding ways to get arourahfjuage
limitations. For SQL, we feel that performance wampromised in the final phase of the element pgérbecause
there was no obvious way to do an all-to-all corapiah efficiently. For Hadoop, we continuously sfgle with the



problem of merging two data streams when randorasacis required. Similar to other developers, Weesthis
problem by going outside of the Map/Reduce paradigm

Debugging: Debugging is challenging on any parallel platfoFrar Netezza, we found SQL debugging to be
relatively straight forward, due to the robustnefsthe SQL standard. However, UDFs must be develoyth
caution, as programming errors can freeze a SRidash the database. Netezza’'s UDF interface previdsic
support for forcing users to be cautious, withdigiput/output parameter checking and stack overfjoards.
Hadoop developers have constructed a number ditieifor debugging. Hadoop also allows usersdabuty a job
on a local machine before it is run on a cluster.

Portability: Ideally, scientific users need to be able to gamibve analysis programs from one platform to agoth
without drastic changes. Developing for Netezza $&dppealing in that sense because SQL-complatd ¢
should be portable to different databases. Wealhjtprototyped our SQL algorithms on a MySQL daisd and
then changed the program to use the Netezza. \Windléransition went fairly smoothly, there are #aldifferences
between each database that make portability clgaignAdditionally, UDFs written for Netezza aretnsable on
any other platform. Hadoop on the other hand camuben a wide variety of platforms. As discussethie
tunability observations, the issue is refactoringgoams to maximize cluster resources.

8. Summary and Future Work

Scientific applications are generating massivestasathat are difficult to analyze utilizing tradital, offline
approaches. An emerging class of systems knowrates \Warehouse Appliances provides an opportunity to
improve the scale at which automatic data analbysésations can be performed through the use oflpbstorage
hardware and data-parallel programming interfalcethis paper we have explored how two scientifitadanalysis
algorithms can be adapted to the Netezza paratabdse and a Hadoop-equipped cluster. We haveroedfthat
the data-parallel programming interfaces for th@atforms are sufficient for implementing our oditemre
algorithms, and that the parallel hardware of tregstems could be utilized. However, it is impottannote that
the APIs for these platforms required a good bjtlahning and experimentation in order to achiesedgparallel
performance.

The next step in this work is to scale the hardvediteoth platforms to observe how far the systearsscale
before internal hardware bottlenecks surface.dimdlar effort, it will be necessary to investigdiew data can be
transferred in and out of DWAs so that existing M#t&forms can leverage DWAs as high-speed data o
simulations. Finally, we see the value of emerd@mguage efforts as an opportunity to simplify pnegramming
effort for using DWAs. For example, Hadoop’s Pigihgd15] effort represents an easy-to-use scripkamguage for
Hadoop that can serve as a convenient means fdermemting dataflow without having to explicitly mege the
sequence of Map/Reduce operations.
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