SAND2009- 1808C

Model-free Learning and Control in a M obile Robot

Brandon Rohrer
Intelligent Systems, Robotics, and Cybernetics Group
Sandia National Laboratories
Albuquerque, NM, USA

Abstract system being modeled. It is violated by any sufficiently non-
smooth system, such as one containing hard-nonlinearities
A model-free, biologically-motivated learning and coitro or producing categorical state information.
algorithm called S-learning is described as implemented in There are still a number of algorithms that are similar to S-
an Surveyor SRV-1 mobile robot. S-learning demonstratedéearning in that they make no assumptions about the system
learning of robotic and environmental structure sufficiemt being learned and controlled. These include Q-learninyy [14
allow it to achieve its goals (finding high- or low-contrast the Dyna architecture [11], Associative Memory [5], and
views in its environment). No modeling information aboet th neural-network-based techniques including Brain-Based D
task or calibration information about the robot's actuagor vices [6] and CMAC [1]. These approaches, together with S-
and sensors were used in S-learning’s planning. The abilityearning, can be categorized as reinforcement learning (RL
of S-learning to make movement plans was completel@lgorithms, or solutions to RL problems. However, these alll
dependent on experience it gained as it explored. Initilly assume a static reward function, where S-learning does not.
had no experience and was forced to wander randomly. With
increasing exposure to the task, S-learning achieved #dsgo 1.2. Dynamic Reinforcement Learning Problem
with more nearly optimal paths. The fact that this approachStatement
is model-free implies that it may be applied to many other
systems, perhaps even to systems of much greater complexityTo be more precise, S-learning addresses a general class of
reinforcement learning (RL) problem, referred to hereafte
1. Introduction as the dynamic RL problem: how to maximize reward in
an unmodeled environment with time-varying goals. More
S-learning is a general learning and control a|gorithmspecifically, given discrete-valued action (input) qndtesta
modeled on the human neuro-motor system [2], [9], [10]. It(0utput) vectorsa € A ands € S, and an unknown discrete-
is model-free in the sense that it makes no assumptions aboftie function f, such that
the structure or nature of the system being controlled or its
environment. S-learning accomplishes this using previous st = flai<e, si<t, 1), @)
experience to help it select actions. This paper describes (where the notation;, denotes the set of all; such that

the implementation of S-Learning in computer code and the < ;) and a scalar reward;, and known reward function,
application of S-learning to a mobile robot. g, such that

1.1. Relation to Previous Work re = g(si<t, t), @)
: maximize the total reward over time:

Most approaches to robot control assume the existence of
an explicit system model, such as the changes that a motion °
command will have on Cartesian or joint positions. The V= ZH 3)
majority of machine learning algorithms take the form of =0
a search in parameter space, with the underlying structure Equation 3 shows an infinite-horizon formulation, but
of the space reflecting detailed knowledge of the systemfinite- and receding-horizon variations of the dynamic RL
Other methods make a less constraining assumption: th@roblem are similarly structured.
the vectors of state information occupy a metric space. The dynamic RL formulation is relevant to a large class
These include finite state machines [12], variants of dif-of problems. It is applicable in instances where 1) the
ferential dynamic programming [8], [13], the Parti-game model is unavailable and 2) the reward function varies with
algorithm [7], and probabilistic roadmaps [4]. But eversthi time. Models may be unavailable for a number of reasons.
seemingly benign assumption implies a good deal about th8ystems may be too complex to model accurately with the



resources available. Also, systems may have charaatsristicommands from the Agent and reports its state to the
that vary with age, such as joint friction or tire pressune, o Sequence Library and back to the Agent. In practice the
may even have non-catastrohpic sensor and actuator filureEnvironment may be a continuous-time system, as long as
Time varying reward functions are introduced wheneverit includes a means to execute discrete-time commadds,
the system’s goals are modified, as in response to aand to report discrete-time sensor informatien,

operator command. Despite the importance of the dynamic The formulation of the dynamic RL problem places no
RL problem, no other published solutions exist. The natureconstraints on the Environment. It may contain its own
of the dynamic RL problem—that the only information internal control system, stochastic elements, and legrnin
available is the robot’s action-state history—suits it viell  capabilities. The Environment may do a large amount of pre-

an experience-based approach. processing on its sensor data and return highly-intergrete
information. Alternatively, it may return nearly raw senso
2. Method data, binned and discretized in time. It may be physical or

simulated, and there are no explicit limits to the compiexit

S-learning operates by recording sequences of stateactidt ¢a@n have.

pairs. The resulting libraries contain a reduced versiaihef 21.2. Agent. The Agent contains the reward functiog,

system’s history, a sysfte.m memory. 'The memary can thera‘tnd uses it to evaluate the plan candidates it receives from
be used to make predictions and guide the selection of th

system’s actions. When the system encounters a previousl| he Sequence Library. It executes the plans it selects by
yster o . y 'S aprev )f)assing the corresponding actions to the Environment. The
experienced state, it retrieves sequences beginning hath t

) r ure the Agent follow ring it ration is outlin
state. The system can then re-execute the actions of récalltg ocedure the Agent follows during its operation is outine

sequences that are likely to result in an increased reward elow:
d y " 1) Define a targetr, consisting of the most recent

2) Query the Sequence Library for sequences that begin

2.1, Slearning algorithm with 7, ¢(7). The set of these form(r), a collection
. , ) of candidate plans.
S-learning handles state-actiofntd) pairs,o. An ordered 3) Select a plan to execute fror(r):

sequence of state-action pairs is calledeguence¢, and
an unordered collection op is a library, . Both ¢ and
x may have any length of one or more, given by
(number of state-action pairs) ang (number of sequences),
respectively.

An S-learning implementation can be broken into three
main function blocks: the Agent, the Environment, and the
Sequence Library. (Figure 1.)

a) Select the candidate plans that maximize the
expected rewardr, from the states that follow
7 in eacho(T).

b) If there are more than one of these, select the
shortest among them, that is, minimizg.

c) If there is still more than one candidate, ran-
domly select from among the remaining candi-
date plans such that a single plér;,is selected.

4) Execute the actions;, associated with each element

of ¢.
. 5) Return to step 1.

Agent Environment The Agent also passes copies of the actions it executes,
a, to the Sequence Library, so that it can assemble each
pair into ao.

H 2.1.3. Sequence Library. The Sequence Library is at the
Sequence lera ry heart of S-learning. It allows S-learning to learn from its

experience, use new learning as it is gained, generalize
that learning to unfamiliar situations, make predictioascl
attain goals. It has two primary functions: to pass candidat
Figure 1. Block diagram of S-learning. The Environment  plans to the Agent and to record state space trajectories as
represents the system dynamics, f, and the Agent  they are observed. Candidate plafé;) are selected on the
contains the reward function, g. The Sequence Library  basis of whether they begin with the target subsequence,
is created from the time history of s-a pairs. passed in by the Agent. The setdffr), x(7), is returned to
the Agent. The process for recording newly observed states
in the library is described below.
2.1.1. Environment. The Environment is the embodiment Due to the fact that S-learning is an experience-based
of the system dynamics; (Equation 1). It receives action learning algorithm, there is no distinction between memory



and learning. Both are accomplished by the storage of
sequences. As the Agent passes in actiansand the
Environment passes in output statesghe Sequence Library
assembles them inta-s pairs, o. A working memory of

the most recently observed states is maintained. Sequences
¢, of length n, are stored in the librarys. For ¢; that
begins witho;, ¢;11 will begin with 0,14, that is, the
subsequent sequences overlapy- 1 states. Through this
accrual processs becomes the repository of the system’s
experience.

2.2. Robot implementation

The S-learning algorithm was coded in Java and demon-
strated with a Surveyor SRV-1 mobile robot (Surveyor
Corporation, San Luis Obispo, California, USA). The SRV-
1 is a tracked robot with a frontward-mounted color CCD
and a Bluetooth radio. (Figure 2) It is relatively small,
at 12 cmx 10 cm x 8 cm and weighs approximately
350 g. The onboard software that drives the robot is entirely
open source. Wireless communications with the robot were
accomplished via a software socket, with the robot acting
as server in a client-server architecture. The S-learning
algorithm was implemented in Java on a remote laptop

that received images from the robot's camera and issued. _
movement commands. Figure 3. The room that served as the robot’s environ-

ment. a) Viewed from above. b) Viewed from the robot’s
camera.

direction to the right. The height of the image was,, = h
and the width wag,, .. = w. The width-wise center strip of
the image fromh/4 < x < 3h/4 was partitioned into five
overlapping vertical strips, each with a width ef/3 and
an overlap ofw/6 with its neighboring strip(s). The average
pixel value in each strip was calculated by summing the
value for each of the red, green, and blue channels over all
the pixels in the strip and dividing by three times the number
of pixels, resulting and a value between 0 and 255.
Differences between adjacent strips were calculated by
subtracting their average pixel values and taking the abesol
value. This difference had a theoretical range of 0 to 255,
Figure 2. The Surveyor SRV-1 robot. but because adjacent strips shared half their pixels, these
differences fell between 0 and 127. The four difference
The robot occupied a 102 cm 72 cm room with black  values (\; —A,) provided a very rough representation of the
walls 40 cm high and a black floor. In the center of eachamount of contrast between different portions of the image.
wall was a white stripe 13 cm wide extending the height of
the wall. (Figure 3a) At each time step the robot returned2.2.1. Action-state pair vector, o. The o vector at each
an image from its camera to the controlling computer.timestep was composed of binary elements representing the
(Figure 3b) command issued and the sensory state after executing the
In order to interface with the S-learning algorithm, the command. Each of the four difference values were binned
image was preprocessed and binned with a great reductidnto 11 bins of width 23.2, covering the range from 0 to
in the information content. Arx-y coordinate system was 255. The portion of the state vector corresponding to each
defined with the origin at the upper left corner of the difference value consisted of 11 binary elements, with each
image, with the positive: direction down and the positive  element corresponding to a bin. If an element'’s bin conthine




the sensed difference value at a particular time step, that bthe library. This provided a mechanism for rarely observed
would be set to one, as would all bins corresponding tesequences to be forgotten. Due to its relatively short run
lesser values. In this way, the visual information ava#abl time, the robot did not make use of this feature in this
to S-learning was greatly reduced with only the minimumexperiment, but it is a feature of S-learning that suits it
necessary retained. for use with more complex systems as well. It can also be
The action vector had four binary elements, correspondingeen that after several repeated observations a sequence’s
to forward, reverse spin right and spin left commands. existence in the library would be assured for the life of
Non-zero elements indicated which commands were issuetthe system. This is analogous to recording an experience
at that time stepForward and reversecommands typically in long-term memory.
produced a linear motion of approximately 7 c8pin right
and spin left commands typically produced a rotation of 2.2.4. Action selection. The Agent referred to the Sequence
approximately 5 degrees. Simultanedasvard andreverse  Library to help determine which action command to send at
commands produced no action, as did simultanespia  each time step. All sequences that began with the most recent
right and spin left commands. When both a rotational state were used as a set of predictions. (The most receat stat
and linear command were issued simultaneously, only thenight be contained in multipler’s, since several actions
rotational command was executed. may have resulted in that state in the system’s history.
Sequences beginning with alls matching the most recent
2.2.2. Reward. The goal of the system emerged from the state were returned.) Each sequence represented a possible
nature of the reward. A reward vectgr, was created with future. The Agent compared the reward at the final state
the same length as, such that the total reward,, was of each sequence to the reward at the initial state, and the
maximized by high-contrast visual fields. At each time stepsequences with the greatest increase in reward were sklecte
r. was calculated by multiplying by p element-wise and as the most promising.
summing the resulting values. Sensory states were rewarded The actions pertaining to each sequence defined a plan.
or penalized by assigning higher or lower valuespoffThe By executing the actions in the same order, it was possible
p vector used in the simulation was constructed to rewardo create the same sequence of states. However it was
high-contrast near the center of the image moreso than neaot guaranteed to do so. Some state information, such
the edges. The values corresponding td, and A3 bins  as distance to the walls, was not directly sensed and so
were all set to 2, those correspondingAq and A, bins  introduced some variability into the effects produced by a
were set to 1. In practice, thismaximized the reward when given series of actions. The most promising sequences found
a white strip was centered in the visual field and occupiedn the Sequence Library represented the best case scenarios
about 1/4 the image’s width. Also, a reward for low-contrastfor each plan. In order to make a more informed decision,
images,rq, was derived by subtracting. from a constant, the expected value of the final reward for each plan (up to
20. 50 of them) was calculated in the following way.
The library was queried for all the sequences starting
2.2.3. Sequence library creation. At each timestep, the from the most recent state and executing each plan. The
action that was executed and the state that resulted froffinal rewards for the sequences executing a given plan
that action were combined into a state-action pair,The  were averaged, weighted by the log of the strength of each
sequence of'** most recently observed sequences wassequence:
maintained, where'** was the maximum sequence length,
a parameter manually set in software. As described above, 7 2rilog(wi+1) (4)
the longest sequence not in the library already (up to the > ilog (wi +1)
maximum sequence length) was added to the Sequence Li- where 7 is the weighted average reward andis the
brary. Due to the simplicity of the system, all the informoati  reward andy; is the strength associated with each sequence.
necessary to make reasonably accurate predictions aboOhe was added ta; to ensure that the log remained non-
the system was available at each timestep. In this case regative.
maximum sequence length of*** = 3 was sufficient. More 7 represented the expected value of the reward a given
complex systems would benefit from a great§t**, as it  plan would produce. The plan with the highest valuerof
would be able to compensate somewhat for partial or noisyvas selected for execution, given ti¥atvas greater than the
state information. reward at the most recent state.
As sequences were added to the library, they were as-
signed an initial strength value,0. At each timestep, 2.2.5. Neighboring states. When S-learning’s prior expe-
the strength was decreased by 1. The strength of eadiience did not provide a plan by which it could expect to
sequence was multiplied by 10 after each repeat observatiormprove its reward, it broadened its search to states that
If strength ever decayed to 0, the sequence was dropped fromere only similar to the most recent state, rather than an




exact match. The measure of similarity between stafes, plans were of random length, up to 4 actions long. Each
was carefully defined so as not to require any knowledgection was randomly generated with each of the 4 elements
of the robot hardware, sensor modalities, or the nature obf the action vector having an independent, 50% chance of
its environment. The introduction g# did not violate the being active. Exploration provided some random variat®mn t
algorithm’s model independence. S-learning’s operation, allowing it to explore its envinoent
Shared members between state vectors represent exastd avoid getting caught in highly non-optimal behavior
matches ofparts of the states. The Jaccard Similarity patterns, such as infinitely-repeating cycles.
Index [3] is a useful measure of the extent to which the
sets of active elements in two states intersect. Alterativ  2.2.7. Task structure. The robot alternated between two
it represents the number of dimensions of the binary subgoals: seeking high- and low-contrast visual fields. It was
space in which the active elements of the two states matchble to increase the contrast of the image by orientingfitsel
identically. Given two binary vectors;, and oy, ng. is the  toward the white strip from a distance of about 20 cm. It was
number of active elements in, that are not active inr,,  able to decrease the contrast of the image by orienting itsel
andnge is the number of active elements df that are not toward the black wall and zooming in close. A threshold
active ino,. Ty is the number of elements that are active for the reward was manually set for both the high-contrast
in both. The Jaccard similarity betweefy and o, is given  (r = 24) and low-contrast tasks (= 12), based on observed
by the following: values during exploration. Whenever the reward exceeded
_ the relevant threshold, the goal was considered reached,
= # (5) and the other goal was adopted. In this manner, the robot
Nge + Ngv + Ngas alternated between contrast-seeking and contrast-avmeda
Jaccard similarity is roughly similar to the? norm. In  tasks. The measure of the performance in each trial was the
the case that the two states are completely identigal§ ~ number of time steps required to complete the task.
o), both are equal to one. In the case whetgand o, The robot performance was compared under two con-
share no common active elements, both are equal to zero. @itions: 1) active learning and 2) random exploration. In
threshold,3,, can be set sharply delimiting what representsthe learning condition, the robot operated according to the
a match and what does not. For the experiment shown hereJgorithm and parameters described above. The robot was
B. =0.9. allowed to operate for the life of its battery, approximgtel
The use of a similarity measure also implies the existencd hours, and the performance for each run was recorded.
of a distance metric, B The introduction of a distance In the exploration condition the robot did not make use of
metric would seem to subject S-learning to some of thepast experience when selecting actions, but rather ex@écute
limitations of other approaches cited in the introduction.random exploratory actions at each time time step.
However, there is are two important distinctions in how S-
learning creates and handles the distance metric. Fimst, ti3. Results
state vector to which the distance metric is applied betrays
no information about the state itself, and thus the distance The block-averaged results of the experiment are shown in
metric is completely model-independent. Second, S-legrni Figure 4 and individual trial results are shown in Figure 5.
uses the distance metric only as a source of guesses famitially in the learning robot, the Sequence Library was
which states are similar. The similarity of any two statesempty and all movements were random and exploratory.
is not taken as an axiom within the algorithm. As theLlearning gained during the first movements was used as
robot gains experience, two states that may be identifiedoon as it was applicable. The earliest runs consisted ynostl
as similar by 3 may be revealed as being very different. of exploration and were relatively lengthy. As the Sequence
(For example, while two locations may seem very close inLibrary became more complete and the state space was better
Cartesian space, they may mean the difference between axplored the number of time steps required to complete
inmate being inside or outside a prison wall.) S-learningeaach trial decreased rapidly.
would then base its future actions on its experience, rather Comparison of random exploratory behavior with learning
than on the nominal similarity of states. behavior in Figure 4 shows that robot behavior based on its
prior experience is clearly superior. The experience-tbase
2.2.6. Exploration. If no plans were expected to increase controller completed the first 25 trials in just over an agera
the reward, then the robot generated a random exploratory0 moves per trial, whereas the randomly exploring robot
plan. Exploratory plans were also initiated at random inter required approximately five times as long. This indicates th
vals (on average one out of sixty time steps). In addition, aven the earliest portions of the robot’s experience werg ve
boredomcondition was met if the same state was observedjuickly applied to forming plans. While the performance
more than five times within the last fifty time steps. This alsoof the randomly behaving robot stayed consistently poor
resulted in the creation of an exploratory plan. Explonator (typically 250 or more movements per trial), the performeanc



of the learning robot continued to improve to fewer than ten Figure 5 shows an extended learning interval including
movements per trial. more than 1700 trials. Toward the last half of the session,
performance regularly reached as low as 3 movements
per trial. Although these were interspersed with longer

450

2 wof randomly wandeting : exploratory trials, they show that the robot learned how to
g LU achieve its goals in an efficient manner. The logarithmic
S * scaling of the plot de-emphasizes the variation between the
g 300 - Lt L. . very short trials and the very long trials (many longer than
% ol . 100 movements). It also de-emphasizes the dramatic im-
2 * * . provement in performance that occurred from the beginning
8§ wor . . of the session to the end.
5
E' 150 * . i
0 4. Discussion
S 100
=
Q . . .
S sotfo . actively learning This work has demonstrated the implementation and
. 0°2°0°%°0000,060000,, . operation of S-learning, a model-free learning and control
0 100 200 300 400 500 approach. S-learning was able to learn to control a mobile
number of goals achieved robot in a simple environment. S-learning is capable of

addressing some dynamic reinforcement learning problems,
including the alternating high- and low-contrast tasks de-
scribed above. For other examples of S-learning solving
dynamic RL problems, see [2], [9].

The two degree-of-freedom, non-holonomic mobile robot
used here could be modeled with a small amount of effort.

Figure 4. Robot performance in both exploration and
learning conditions, averaged in blocks of 25.

boosd However, S-learning didn’'t make use of such a model, but
1000 treated the robot and its environment as a black box. The
500 : key aspect of S-learning’s operation is that it relied only
0 on the system’s prior experience, rather than aopriori

X : o knowledge.

4.1. Limitations of S-learning

The robustness and model-independence of S-learning
: I I I comes at a price. The largest cost is in long learning times.
2 Significant training time, approximately 19,000 time steps
was required to learn to control a relatively simple system.
This raises the question of when it would be appropriate
to use S-learning. In any implementation where a model
Figure 5. Robot learning performance, logarithmically IS available, the trade-off between which portions to learn
scaled. and control with S-learning and which to control with
a more conventional model-based controller is a trade-
A significant amount of variation can be seen overlyingoff between learning time (short-term performance) and
the trends in both the random and learning robots in Figure 4obustness (long-term performance). This question cay onl
One major source for the variation in both cases was the fadie answered based on the specific goals and constraints of
that in some portions of the robot’s environment, goals wereeach implementation.
easier to reach than in others. The robots’ sensory suites Some of the details of S-learning’s implementation are
were not sufficiently sophisticated to infer their position specific to the system. One of these details is the maximum
with the enclosure, and so they were not able to identifysequence lengt***. As described previously;** = 3
and maintain those most advantageous positions. When tiveas known to be appropriate to the simulation due to its
randomly behaving robots stumbled into them, howeverrelative simplicity. However, other systems may benefitrfro
their success rates increased temporarily, until theyedtif larger values ofn®*. Humans’ capability to remember
into less fruitful positions. When learning robots found 7 + 2 chunks of information suggest thaf'®* = 7 is an
themselves in the prime locations within the environmentgestimate with reasonable biological motivation. SimitaHe
their performance increased as well, until they also moveddynamics of sequence strength, underlying consolidation a

|906 4dea 9A3Iyde 0] SJUSWSA0W JO JIaquinu

L L L L L L L L )
0 200 400 600 800 1000 1200 1400 1600 1800

number of goals achieved



forgetting of sequences, may need to be varied to achievg4] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Over-

good performance on different systems. Initial tests show
that the most critical design decisions in an S-learning
implementation are the discretization of sensor data and

mars. Probabalistic roadmaps for path planning in high-
dimensional configuration spaceslEEE Transactions on
Robotics and Automatiori2(4):566-580, 1996.

the assignment of reward vectors that produce desirablgs) s. E. LevinsonMathematical Models for Speech Technology

behaviors. Some primary considerations when discretizing

sensors are discussed in [9], [10], but additional work is

required to fully identify the trade-offs involved.

4.2,

Due to its model agnosticism, S-learning’s approach to

Implications

robot control is potentially applicable to hard problems,

such as bipedal locomotion and manipulation. In the case
of locomotion, the system model can be extremely, if not

John Wiley and Sons, Chichester, England, 2005. pp. 238-
239.

[6] J. L. McKinstry, G. M. Edelman, and J. L. Krichmar. A

cerebellar model for predicitive motor control tested in a
brain-based device.Proceedings of the National Academy
of Sciences103(9):3387-3392, 2006.

[7] A. W. Moore and C. G. Atkeson. The parti-game algorithm

for variable resolution reinforcement learning in multidimen-
sional state-spacesdachine Learning21:199-233, 1995.

intractably, complex, and environments may be completely [8] J. Morimoto, G. Zeglin, and C. G. Atkeson. Minimax differ-

novel. In addition, extra-laboratory environments can be

harsh, and insensitivity to sensor and actuator calibmatio

may be desirable as well. In the case of manipulation,
mathematical modeling of physical contact is notoriously [9]

difficult and requires a lot of computation to perform well.
It also requires high-fidelity physical modeling of the eati

system, which is not possible when handling unfamiliar
objects. The difficulties involved in modeling both of these [10]
applications suggest that locomotion and manipulation are
two examples of hard problems to which S-learning may
provide solutions. Both problems benefit from S-learning’s

ability to let the world serve as its own model.

Acknowledgements

Sandia is a multiprogram laboratory operated by Sandi?lz]
Corporation, a Lockheed Martin Company, for the United
States Department of Energy under contract DE-AC04-

94AL85000.

References

[1] J. Albus. A new approach to manipulator control: Cerebellar

(2]

(3]

model articulation controller (CMAC)Journal of Dynamic
Systems, Measurement and Cont@1:220-227, 1975.

S. Hulet, B. Rohrer, and S. Warnick. A study in pattern as-
similation for adaptation and control. Bth Joint Conference
on Information System{005.

P. Jaccard Etude comparative de la distribution florale dans
une portion des alpes de des jurBulletin del la Sodte
Vaudoise des Sciences Naturell83:547-579, 1901.

ential dynamic programming: Application to a biped walking
robot. In Proceedings of the IEEE/RSJ Intl. Conference on
Intellignet Robots and Systepmages 1927-1932, 2003.

B. Rohrer. S-learning: A biomimetic algorithm for learning,
memory, and control in robots. IRAroceedings of the 3rd In-
ternational IEEE EMBS Conference on Neural Engineering
2007.

B. Rohrer. Robust performance of autonomous robots in
unstructured environments. Proceedings of the American
Nuclear Society 2nd International Joint Topical Meeting on
Emergency Preparedness and Response and Robotics and
Remote System2008.

R. S. SuttonPlanning by incremental dynamic programming
chapter Proceedings of the Eighth International Workshop on
Machine Learning, pages 353—-357. Morgan Kaufmann, 1991.

D. C. Tarraf, A. Megretski, and M. A. Dahleh. A framework
for robust stability of systems over finite alphabet&EE
Transactions on Automatic Controlune 2008. To appear
as a regular paper in the IEEE Transactions on Automatic
Control (scheduled for June 2008).

Y. Tassa, T. Erez, and B. Smart.Advances in Neural
Information Processing Systemshapter Receding horizon
differential dynamic programming, pages 1465-1472. MIT
Press, Cambridge, MA, 2008.

C. J. C. H. Watkins.Learning from Delayed Reward$hD
thesis, Cambridge University, Cambridge, England, 1989.



