
IO-Cop: Managing Concurrent Accesses to Shared Parallel
File System

Sagar Thapaliya
University of Alabama at

Birmingham
Birmingham, AL

sagar@uab.edu

Purushotham Bangalore
University of Alabama at

Birmingham
Birmingham, AL
puri@uab.edu

Jay Lofstead
Sandia National Laboratories

Albuquerque, NM
gflofst@sandia.gov

Kathryn Mohror
Lawrence Livermore National

Laboratory
Livermore, CA

kathryn@llnl.gov

Adam Moody
Lawrence Livermore National

Laboratory
Livermore, CA

moody20@llnl.gov

ABSTRACT
A Parallel File System (PFS) is often used as a shared stor-
age in an HPC system. Multiple applications running on
an HPC system often access PFSs concurrently resulting in
degraded and variabile I/O performance. By managing PFS
access from applications, these sharing induced inefficiencies
can be controlled and reduced. To this end, we are explor-
ing access control mechanisms to manage the shared PFS.
Through an access control mechanism, the PFS can change
its runtime behavior when it serves I/O requests from appli-
cations, e.g., provide exclusive access to a single application
at a time and for a time window. In this paper, we discuss
our design space exploration and also present some initial
experimental results collected during the exploration. This
work enables deeper exploration of our ongoing research in
managing inter-application interference in a PFS.

1. INTRODUCTION
Parallel File System (PFS) is a common and very important
component of High Performance Computing (HPC) systems.
It serves as a high performance storage system and supports
HPC applications for operations such as checkpointing, a
fault tolerance technique [?], for writing simulation output
and reading input data for scientific analysis, which are re-
quired for developing scientific insights. PFS was designed
to provide high I/O bandwidth and support highly concur-
rent access from HPC applications. But with the massive
growth in compute capability in current petascale systems
and future exascale systems, it is facing challenges to pro-
vide the I/O performance level required by scientific applica-
tions [?,?]. With increase in processor core count and system
memory, larger number of application processes are gener-
ating more concurrent I/O requests and they move larger

amount of data in and out of PFS. Capability of PFS is
not growing at the same rate, which means applications of-
ten need to spend large amount of resource budget (access
time) on I/O.

To worsen the problem, PFS is often shared across all the
applications running on an HPC system, or even multiple
systems in some cases. During such shared access, they can
share same components of PFS, such as storage servers (and
thus disks). This scenario is very common in HPC systems
where numerous applications run simultaneously. This re-
sults in variation and reduction in I/O performance of appli-
cations [?]. Reasons can be: concurrent applications share
disk bandwidth of PFS storage servers and they can also cre-
ate conflicting I/O requests, e.g., during disk access, which
leads to additional contention.

Today, PFS lacks the ability to have a greater control over
managing access requests from applications. As a result, ap-
plications can access PFS whenever and in whatever order
they want, and thus, can easily generate I/O interference.
So, performance variability is highly unpredictable in cur-
rent day PFS in HPC centers. To avoid such cases, there
should be a greater control over how applications access
PFS. As a simple example, if two applications are allowed
to access PFS in a sequential order, instead of concurrent,
we can avoid the interference and thus provide higher and
more predictable I/O bandwidth to the applications.

Techniques such as scheduling and coordination of storage
servers [?, ?], can improve fairness in bandwidth sharing
across applications. This means applications will get fair
or equal share of bandwidth. However, they still see re-
duction on bandwidth due to this sharing. Similarly adap-
tive technique such as diverting I/O requests to less busy
servers [?], or data migration across storage servers [?] can
improve load balancing and help avoid hotspots creation.
Yet, such techniques face challenge to keep track of server
load level, which makes the load balancing hard to achieve.
In addition, these techniques provide same treatment to dif-
ferent applications. However, load level of PFS is dependent
on high level I/O behavior of applications, e.g., total access
time to write complete checkpoint data to PFS. Such be-

SAND2014-2407C



havior should be considered while managing accesses to the
shared PFS.

We argue that there should be change in the way applica-
tions get access to PFS. In other words, there should be a
mechanism for access control over PFS. With such control
mechanism, PFS will be able to change its runtime behav-
ior on how and when it serves access requests from different
applications. Such dynamic behavior can help PFS obtain
global optimization, rather than local optimization. The lo-
cal optimization is achievable by managing low level I/O
requests that PFS is able to see; those requests originate
from PFS clients on compute nodes. In addition, applica-
tions should be able to communicate their access needs to
PFS, e.g., time when it needs to access it and desired dura-
tion of access. That way applications can control the behav-
ior of PFS, as PFS will be able to adapt to the individual
application’s needs.

In this paper, we present design space exploration of an ac-
cess control mechanism for PFS, which we call IO-Cop. In
that context, we first motivate our work with demonstration
of how easily we can create interference in PFS, and also
show an instance of potential performance benefit for HPC
applications, which we can get with access control mecha-
nism (Section ??). Then we explore topics including how we
can allow IO-Cop to get control over PFS access requests, at
high level such as application or I/O middleware; and how
to enable communication between applications and IO-Cop
(Section ??). Next, we evaluate our design through experi-
ments, where we study performance benefits of IO-Cop for
one specific instance of access control mechanism. We eval-
uate a case where a single application gets exclusive access
to PFS at a given time (Section ??). We also discuss is-
sues such as implication of IO-Cop to applications, from the
perspective of performance and system adaptation, possi-
ble overhead and scalability of the current design of IO-Cop
(Section ??).

2. MOTIVATION: EXISTENCE OF INTER-
FERENCE

Inter-application interference is a common phenomenon in
PFS of HPC centers [?]. Moreover, such interference can
easily originate when multiple applications concurrently ac-
cess shared PFS and also share same storage servers. This
is a common usage scenario. With limited number of the
shared storage servers under PFS, applications often share
the storage servers (Figure ??). In addition, application
data is often striped across multiple storage servers to get
higher aggregate bandwidth. In this case, chance of sharing
servers is even higher, as often multiple applications use this
strategy to get better performance from PFS, or in other
works this is one technique PFS uses to provide high I/O
bandwidth to performance hungry HPC applications. So,
this results in shared components such as disk and network,
and thus interference.

Now we look at an experiment where we observe inter-application
interference between two applications and also to see how
easy it is to create interference with just two applications.

2.1 Experimental Setup

P1	   …..	  
…..	  

App1	  

Network	  

ST1	   ST2	  

……	  
STK	  

PFS	  
Storage	  	  
Targets	  

…..	  

PM	   P1	   …..	  
App2	  

PM	  

Figure 1: Sharing of PFS: Applications App1. and
App2. concurrently access a shared PFS. They share
storage targets to store data.

2.1.1 Benchmark
During our experiments we used IOR, a popular HPC I/O
benchmark [?]. Throughout the paper paper, we set its con-
figuration as: number of processes 2048, with each process
writing 64 MB data; use of MPI-IO API to write data to
a single shared file (N-1 mode); write buffer size as 4 MB ;
data striped across 8 storage targets of PFS we used. For
interference study, we executed multiple instances of IOR
with same configuration.

2.1.2 Machine Environment
We conducted our experiments on Hyperion cluster at Lawrence
Livermore National Laboratory. Each of its nodes has In-
tel(R) Xeon(R) ES-2660, an 8-core processor. It uses In-
finiBand 4x DDR interconnect. We used 512 nodes for our
experiments. We used Lustre PFS with 8 OTSs (storage
targets) as a shared PFS. Hyperion is an experimental clus-
ter with less jobs running. This gives us an opportunity to
perform more controlled study of PFS interference, as it has
less interference from jobs belonging to other users.

2.2 Easy Interference

0	  

1000	  

2000	  

3000	  

4000	  

5000	  

6000	  

0	   1	   2	   3	   4	   5	  

Ba
nd

w
id
th
	  (M

iB
pS
)	  

Repe11on	  

Alone-‐Instance0	  

Conc-‐Instance1	  

Conc-‐Instance2	  

Figure 2: Interference in PFS: Instance0 gets full ac-
cess to PFS, whereas Instance1 and Instance2 per-
form concurrent access. Instances see bandwidth
reduction during concurrent access.

For our first experiment, we observed interference between
two instances of IOR where they concurrently accessed same
set of 8 OTSs of Lustre PFS. We observed two specific cases:
a) when an IOR instance (Instance0) runs alone without
sharing of PFS; and b) when the two IOR instances (In-
stance1 and Instance2) run together with concurrently ac-



cess the Lustre OSTs. We show results with four readings
in Figure ??.

During concurrent access, Instance1 achieved average of 29.6%
less bandwidth compared to Instance0, which runs alone
without interference from any other IOR instances. Simi-
larly Instance2 saw 30.3% reduction. So, it was very easy
for us to generate and observe interference in the Lustre
PFS.

Time	  

I/
O
	  S
ize

	  

Co
m
pu

te
	  C
yc
le
	  :	  
C1

	  

Co
m
pu

te
	  C
yc
le
	  :	  
C2

	  

Co
m
pu

te
	  C
yc
le
	  :	  
C7

	  

W
rit
e:
	  W

1	  

W
rit
e:
	  W

2	  

W
rit
e:
	  W

6	  

Uncoordinated.:	  Instance1	  
and	  Instance2	  run	  
concurrently,	  uncoordinated	  

Alone:	  Instance0	  runs	  alone	  to	  
get	  exclusive	  access	  to	  PFS	  	  

Coordinated.:	  Instance1	  and	  
Instance2	  have	  coordinated	  
start	  

Microbenchmarks	  
•  4	  I/O	  cycles	  
•  4	  compute	  cycles	  

Figure 3: Inter-Application Coordination: Overlap-
ping compute and I/O phase between two applica-
tions with bursty I/O reduces inter-application in-
terference during PFS access.

0	  

50	  

100	  

150	  

200	  

250	  

300	  

350	  

Instance0	   Instance1	   Instance2	   Instance1	   Instance2	  

Alone	   Uncoordinated	   Coordinated	  

Ex
ec
u&

on
	  T
im

e	  
(s
ec
)	  

Figure 4: Benefits of Inter-Application Coordina-
tion: Coordination between two bursty I/O applica-
tions (Figure ??) improves end-to-end performance
over non-coordinated case. Both Instance1 and In-
stance2 had 4 compute and I/O cycles.

2.3 Advantage of Access Control
Now we show an example of a possible benefit we can get
with PFS access control. We demonstrate adding coordina-
tion between two applications through use of access control,
which we achieved through manual intervention. As shown
in Figure ??, consider two applications with bursty I/O, i.e.,
with repeating compute and I/O cycles. Such bursty nature
is common for HPC simulations. For each I/O cycle, it exe-
cutes IOR instance which we described in Section ??. Com-
pute cycle was simulated by sleeping sleep for 30 seconds.
The framework for executing the bursty I/O was made using
python code, which alternately runs IOR instance and then
goes to sleep. We configures the benchmark to run with four
compute and four I/O iterations.

We ran two instances of such bursty application. We ob-
served three cases a) a single instance, Instance0, runs alone
with no interference during PFS access. b) two instances
start at same time such that corresponding phases of the
two instances overlap; and c) applications have coordinated
start, where Instance2 was delayed to overlap its 1st com-
pute phase with I/O phase of Instance1. Because of this
overlap, the two instances access PFS at different times dur-
ing each of their I/O cycles. That way the instances avoid
interference even though they are concurrently running on
the HPC system. We show performance results in Figure
??. With coordination, Instance1 had reduction in end-to-
end time of 19.47% compared to interfering case, whereas
Instance2 had 10.71%. Instance2 had an extra overhead of
7.9% compared to non-interfering Instance0, which is be-
cause Instance1 got its delayed start for phase shifting.

Through our experiments we saw that it is easy to achieve
interference in present day PFS. In addition, we also saw
an example of a case where two applications can get perfor-
mance through use of coordinated start to provide controlled
access to PFS. Such type of optimization can be achieved by
using PFS access control mechanism.

3. ACCESS CONTROL FOR PFS
In this section, we explore the design space of access con-
trol system for PFS. Goal of such control system is to help
control inter-application interference in a shared PFS. The
control system should be able to manage access to PFS from
multiple applications running on an HPC system and reduce
interfering accesses from the applications. Here we present
features such control system will provide, abilities it should
have, and then analyze possible solutions for achieving some
of the important abilities.

App1	   App2	   App3	  

PFS	  Access	  
Token	  

Network	  

PFS	  Access	  
Controller	  

Figure 5: PFS Access Control: Applications receive
access token from the access controller. For exper-
iments in this paper, access controller provides the
token exclusively to one application at a time.

3.1 Behavior of PFS Access Controller
An important task of PFS access controller is to manage
time when PFS provides service to access request, instead
of providing the service access right after they are regis-
tered. It should first be able to look at access requests from
applications, then decide when such request is served or gets
access to PFS storage servers. With such control, PFS can
try to avoid interference. As an example, if many applica-
tions are trying to access same sets of storage servers at a
time and will potentially interfere, it can limit the number of
applications that concurrently access the servers. A simple



case can be providing access to PFS to the applications one
at a time, in a sequence. So, the rest of the design explo-
ration with revolve around this main concern of: “How PFS
can effectively perform its access control?” We will explore
how we can achieve such control, and then perform initial
performance analysis.

3.2 Technical Requirements for PFS Access Con-
troller

Here we list few important technical features we deem im-
portant for the PFS access controller to have:

1. Decision Making: It should be able to look at access
requests coming from applications, hold them from ex-
ecution and then make decision on who gets access at
a given time.

2. Information Transfer: Application should be able to
submit its access requests to controller and also report
when it is done with the access. Similarly, controller
should be able to report access decisions to the appli-
cations.

3. Application Control: The applications should be able
to perform PFS access based on decisions it receives
from the controller.

Now we look at design issues of these technical features.
For these discussions, we will consider the case when the
PFS access controller provides exclusive access to a single
application at a given time. To keep the discussion simple,
we assume each of such application to be a parallel MPI job.

3.3 Decision Making
PFS access controller makes decision on when an applica-
tion gets access to PFS. This decision making component
should have knowledge of all the pending access requests.
Then it can make decisions such as when a given request is
provided access, and for how long. So, for exclusive access,
the decision in it will be in this order: for all the pending re-
quests, one requests will get access whereas others will wait
for completion of the allowed request. With such decision,
we are basically transferring an access token across applica-
tions, where decision maker decides who will get such token
(Figure ??).

In order to enable such decision making, we considered us-
ing the access controller as a central component, running
as a server that is accessible through the network. Access
request from each application will pass through the central
controller. The control will maintain a token which it as-
signs to an application that is allowed access after decision
making.

Controller should also be able to make distinction of which
application a request is coming from. In order to do so, each
job gets a unique ID, which we call appID, for its lifecycle.

3.4 Information Transfer
There should be channel for bidirectional information ex-
change between application and PFS controller. Applica-
tion should be able to send access request to the controller,

App.	  	  
procs.	  

PFS	  Access	  Token	  

Local	  	  
Coord.	  

lc	   Token?	  

Make	  I/O	  Call	  

Yes	  

No	  

Op:ons:	  
•  Poll	  for	  access	  token	  
•  Perform	  computa:on	  
•  ...	  ?	  

PFS	  Access	  
Controller	  

Need	  for	  PFS	  Access	  

Figure 6: Communication between Application and
PFS Access Controller: There is a single communi-
cation path between them. A single process, local
coordinator, talks to the controller on behalf of a
parallel application.

Applica'on	  
Local	  Coordinator	  

PFS	  	  
Access	  Controller	  

Send	  Access	  Request	  
Register	  the	  app.	  if	  it	  is	  	  
first	  request	  from	  it	  

Make	  Access	  Decision	  

Send	  Access	  Token	  

Wait	  for	  Access	  Token	  

Make	  I/O	  Call	  (PFS	  Access)	  

I/O	  Call	  Returns	  

Release	  Access	  Token	  

Figure 7: Communication Protocol: Access request
and control information are exchange between ap-
plication and PFS access controller.

and also notification of completed accesses. In addition, it
should be able to send application identifier, appID. Con-
troller should be able to transfer access decisions to the ap-
plications, which is transfer of PFS access token, in case of
exclusive access that we are discussing here.

For information exchange, we used a single process of MPI
job, with rank 0, as the only point of contact on behalf of ap-
plication. We call this process local coordinator. Local com-
municator communicate with the PFS controller through
with network communication (see Figure ??). We show the
communication protocol between local coordinator and ac-
cess controlled in Figure ??. When an application has to
access the PFS, its local coordinator requests access token,
and waits to get it. When access controlled has decided to
give access token to this application, it sends it to the local
coordination. After receiving the token, application per-
forms PFS access, e.g. complete I/O call. Then it releases
the token to the access controller.

3.5 Application Control
PFS access requests can be controlled at different levels in
the I/O software stack. So, one option is RPC calls from
PFS clients on compute nodes, which is made after pro-



cesses on compute nodes make I/O API calls to access the
PFS. However at such low level, it will be harder to have
enough control over how applications are allowed access to
PFS. Instead, we want to perform access control at higher
level in the I/O stack, e.g., at calls to I/O libraries such as
MPI-IO and POSIX. It will help to learn about higher level
I/O behavior of applications, e.g., start and end point of
when an application accesses a file in PFS, or complete all
the accesses needed for writing checkpoint data from all the
processes.

4. ANALYSIS AND EVALUATION
4.1 Application I/O Performance
We performed experiments to evaluate potential performance
benefits of access control to HPC applications. We used ex-
perimental setup presented in Section ??. For this experi-
ment, we executed the two concurrent instances of IOR with
PFS access control added underneath them.

0	  

50	  

100	  

150	  

200	  

250	  

300	  

350	  

Instance0	   Instance1	   Instance2	   Instance1	   Instance2	  

Alone	   Uncoordinated	   Coordinated	  

Ex
ec
u&

on
	  T
im

e	  
(s
ec
)	  

Figure 8: Write Bandwidth with Access Control:
Two IOR instances write to shared PFS storage
servers. PFS access token was received for each of :
a. MPI File Write At call (Fine Grained A.C.) and
b. IOR instance execution (Coarse Grained A.C.).

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

80	  

Instance0	   Instance1	   Instance2	   Instance1	   Instance2	  

Alone	   Fine	  Grain	  A.C.	   Coarse	  Grain	  A.C.	  

En
d-‐
To

-‐E
nd

	  T
im

e	  
(s
ec
)	  

Figure 9: End-To-End Time: Write completion time
for two IOR instances with fine and coarse grained
access control (Figure ??).

As a first attempt of evaluation, we intercepted calls to MPI-
IO API MPI File Write At, which IOR uses during write
tests using MPI-IO as the I/O library. We found that this
setting resulted in poor performance for both the instances.
It is shown in Figure ?? as Fine Grained Access Control
(A.C.). Among two IOR instances, Instance1 saw perfor-
mance degradation of 36.6% whereas Instance2 saw 48.52%.

The reason behind such performance degradation despite
access control can be: the method MPI File Write At is

called at each step when IOR writes data buffer to file. Un-
der this setting, such call is made 16 times, because each
process writes 64 MB data, with 4 MB as transfer size. This
means access token was obtained and released for each call,
which is also for 16 times. So, this allowed access token to be
passed back and forth between the two instances, and thus
the obtained interleaved access to PFS, thus creating inter-
ference. In addition, there could also be overhead during
multiple executions of access control protocol.

This led us to perform experiment with a larger access gran-
ularity, in order to obtain the exclusive access token. In this
case, we obtained access token at MPI Init call and re-
leased it at MPI Finalize, by intercepting these methods
in IOR. Results of this setup is shown as Single Schedl. in
Figure ??. Under this setup interference effect was invisible
in the bandwidth achieved by both instances. They showed
only minor variation. Instance1 had -1.14% bandwidth vari-
ation whereas Instance2 had +7.28%.

We also measured end-to-end time for execution of IOR jobs,
which includes time for job submission, wait time to ob-
tain PFS access token, and time to complete the job. Fig-
ure ?? shows the results. Here we can again see that IOR
instances take longer time under Fine Grained A.C. com-
pared to when single instance is executed (Instance0). With
Coarse Grained A.C., we can however, see a slight different
behavior compared to the bandwidth (Figure ??). Instance1
runs nearly in same time as Instance0, which has time sav-
ing of 30.8% compared to the File Grained A.C case. But
for Instance2, there is still time increase of 18.3%. This is
because Instance2 had to wait to acquire PFS access token.
That means Instance2 had to wait to get access to PFS, but
it obtained high bandwidth when it obtained access after
the waiting.

4.2 What it means for Applications
From software engineering point of view, we see two possi-
ble manner on how IO-Cop can support HPC applications.
They are: a) transparent to applications; and b) Partially
visible to applications. Under first model, IO-Cop can be
hidden underneath IO-middlewares and made completely
transparent to applications. It can even be made trans-
parent from the IO-middlewares by intercepting I/O calls
as we did in this paper. Alternatively, the middlewares can
be aware of IO-Cop and the access control. Under such the
transparent model, PFS access token can be obtained be-
fore and after I/O function calls, e.g., MPI File Write At,
but as we as we saw with our results (Figure ??), such file
grained access control does not remove inter-application in-
terference.

We saw that coarse grained access control (Figure ??,??;
Single Schedl. case) provides low overhead and was effective
in reducing interference. In order to enable such coarse ac-
cess control, we can wrap the control around file open and
close. However, a possible problem is, files can be kept open
for longer time, even though it is not being accessed all the
time. So, it could be beneficial to lift some of the access
control role upto the application level. An application can
provide simple information such as start and end time for
its PFS access., e.g., during checkpointing operation. With
such participation of application, we can get coarse grained



access control, and thus reduce inter-application interference
through use of IO-Cop. Secondly, it can be used to learn
higher level I/O behavior of applications, which can be used
to make more effective access control decisions. A simple set
of APIs to tell start and end of I/O phase can help for this
purpose.

In addition, we think it would also be beneficial for applica-
tions to be able to see control decisions so that it can make
intelligent decisions based on that. One such example is,
if there is some time before a simulation application gets
access to PFS for writing checkpoint file and that the appli-
cation is aware of that, it can either block computation and
wait to get PFS access token or alternatively perform more
computation during the wait time (Figure ??).

4.3 On Scalability of IO-Cop
With our current model of IO-Cop, each application com-
municates with the PFS access controller. So, the access
controller has a possibility of creating bottleneck. How-
ever, from each application, only a single process, i.e., local
coordinator, communicates with the the access congtroller.
That means, the communication overhead for the controller
is highly reduced. We think this reduced communication
will make IO-Cop scalable. In addition, the access controlled
could be made distributed, if it still faces scalability issues.

5. RELATED WORK
High Performance of PFS is very important for HCP appli-
cations, as I/O is an important component of them. So, re-
searchers have performed studies to improve its performance
and remove impact of sharing. Techniques range from man-
age storage servers to provide guidance form applications.

PFS sees the I/O requests from applications in the form of
RPC calls from PFS clients on compute nodes. At that level,
it is not able to make discrimination between traffic from
different applications. Researchers have made attempts to
remove that limitation by providing unique identifiers of ap-
plications [?,?] or by providing a proxy PFS for each appli-
cation [?]. With such discrimination, PFS bandwidth can
be managed well across the applications, e.g., improve fair-
ness between them. In work by Song et al. [?], they divided
PFS service time to uniform time slices, and then divided
time slices among different applications equally with goal to
improve fairness in bandwidth sharing. In addition to that
they coordinates all servers such that they all serve a single
application at each time slide. The removes inefficiency that
arises due to different progress rate for each application in
different servers. Zhang et al. [?] also synchronize storage
servers to serve one application at a time.They try to im-
prove spatial locality in order to make decisions on when to
switch between application, for serving their request. These
solutions can help to obtain local optimization and improve
fairness is PFS bandwidth access. However, interference ef-
fect still exist, e.g., two applications can get 50% storage
bandwidth when they concurrently access PFS.

Researchers have also explored other varieties of dynamic
management techniques to reduce interference in PFS. One
such example is diversion of I/O traffic to less busy servers,
presented by Lofstead et. al. [?]. They achieved this by
controlling mapping of application and PFS servers. This

technique can help distribute I/O load across all the storage
servers, and try to avoid creating hotspots in fewer servers.
One challenge with this technique is to keep track of chang-
ing load level and usage pattern of the servers, which is of-
ten hard without any high knowledge application’s behavior.
Some other dynamic techniques include date replication [?]
and dynamic data migration [?]. They also face challenges
similar to I/O traffic diversion.

Despite all these works, proper management of PFS and
to achieve bandwidth level required by HPC applications is
still a challenge. So, researchers are actively investigating
this are. Some other efforts in the area are techniques such
as inter-application coordination [?], PFS bandwidth reser-
vation [?], data-driven scheduling [?, ?] and asynchronous
object storage [?].

A large amount of research effort can be seen in improving
performance PFS access in general, without just focusing on
sharing. Some of such techniques are as adaptive data lay-
out or striping across PFS servers [?], data prefetching [?,?],
extension of storage hierarchy by adding storage tiers such
as burst buffers [?, ?] and data staging [?, ?], reducing I/O
concurrency in applications [?, ?, ?], data compression [?],
active storage [?, ?]. Recently, researchers are also actively
conducting studies to understand inefficiencies in HPC stor-
age system [?, ?, ?], as HPC I/O challenges are further in-
creasing.

In addition to HPC storage, inter-application interference
can create problem in cloud and big-data systems, which of-
ten host multiple applications [?,?,?]. To name a few such
works in that area, Xu et at [?] applied proportional sharing
algorithm to reduce interference and add fairness for disk
access on a MapReduce based bigdata cluster. Pu et al. [?]
used co-placement of compute and network intensive appli-
cations on virtualized cloud nodes to reduce I/O interference
during network access.

6. CONCLUSION
In this paper, we presented design space exploration of IO-
Cop. With IO-Cop, we aim to get better control over how
PFS responds to access requests from applications. IO-Cop
can help PFS to change its runtime behavior based on ac-
cess requirements of applications, or improve access control
of PFS. Applications can interact with IO-Cop and guide
it during access decision making and thus control the run-
time behavior of PFS. We explored design alternatives and
also evaluated our access control technique with an exam-
ple where each application was provided exclusive access to
PFS, at a given time. With this ongoing work, we aim to
better manage PFS, the shared storage system of HPC sys-
tems and reduce negative impacts due to inter-application
interference.

This work was performed under the auspices of the U.S. Department of En-
ergy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344. It was also supported by the National Science Foundation under
Grant No. 12292820.


