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Current State of Shock Physics Analysis 
Codes

• Shock physics analysis packages are mature
– under development since ~1945

– widely used for the simulation of complex high strain rate, 
large deformation, strong shock continuum mechanics

– widely used in the defense industries, NASA, DoD, and DOE 
laboratories.

• Numerical techniques are relatively stable

• Codes compare favorably to many experimental 
datasets
– When we understand how material behaves, we can 

accurately predict the material deformation.

– An understanding of material behavior is critical to being 
able to predict any material characteristic.
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Numerical Techniques

• Most hydrocodes solve the conservation equations of mass, 
momentum, and energy using explicit time stepping.

• Solution methods fall into two groups.

– Lagrangian - mesh moves with material (Presto)

– Eulerian - mesh fixed in space (CTH)

• ALE (Arbitrary Lagrangian-Eulerian) methods combine 
characteristics of both Lagrangian and Eulerian, generally more 
similar to Lagrangian (ALEGRA)

• SPH (Smooth Particle Hydrodynamics) methods are Lagrangian 
based without mesh restrictions

• Both Eulerian and Lagrangian methods have pluses and 
minuses and have significant quirks depending on the specific 
code.
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The constant debate: Eulerian vs. Lagrangian

Eulerian Methods – “An approximate solution to an 
exact problem”

Lagrangian Methods – “An exact solution to an 
approximate problem”

…as paraphrased from Gordon Johnson, Alliant 
Tech Systems, the developer of the EPIC series of 
codes.
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Verification and Validation (V & V)

• Code comparisons with analytical or experimental 
data critical to developing confidence in solution 
accuracy

• Shock physics codes are solving nonlinear 
phenomenology
– discontinuous behavior (shocks, phase transitions, 

fracture)

• Wide ranging parameter space
– many orders of magnitude in strain rate

– solid, liquid, vapor, plasma, reaction chemistry

• Incumbent on the analyst to perform V&V in their 
regime of interest.
– Don’t rely on assertions by others!
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Sandia’s Shock Physics Simulation Codes

• CTH

– Eulerian shock physics code

• ALEGRA

– Arbitrary Lagrangian Eulerian shock physics code

• Presto (part of Sierra)

– Lagrangian transient solid dynamics with some shock 
capabilities

– ongoing effort to expand shock capabilities

• Fortissimo (part of Sierra)

– Presto coupled with CTH
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CTH Overview
CTH is a massively-parallel Eulerian shock-physics code.

• Eulerian shock wave physics computer code solving 
conservation equations of mass, momentum, & energy for up 
to 20 materials including gases, fluids, solids, & reactive 
materials

– Analytic & Tabular Equation-of-State representations

– Advanced Strength & Fracture models

– Adaptive Mesh Refinement

• Applications (partial list):

– National Missile Defense (NMD), Nuclear Emergency 
Response (NEST), Weapon effects & vulnerability

– Armor, Anti-Armor, Munitions Design, Blast Effects

• CTH licensed to hundreds of external DOE & DoD agencies 
and their subcontractors

– 300-1000 users
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• Cylinder test to evaluate explosive model accuracy (Kipp)

• Research into non-ideal explosive behavior (Baer)

• Mesoscale studies of hotspot mechanisms in explosives 
(Brundage)

• Cylinder fragmentation (Kipp)

• Modern composite material models (Schumacher)

Examples to Illustrate CTH Capabilities 
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• Copper tube filled with explosive, initiated at one end

• Compare calculation with velocity and displacement data for 
expanding copper surface

C-4 Explosive / Copper Cylinder Test
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Research on Non-Ideal Explosives

• Partition of energy release to support 
shock vs. reaction in the expansion region

• Multistep chemistry behavior can be 
represented using a simplified global model 



Research on Non-Ideal Explosives (cont.) 

• Detonation failure behavior is replicated 

• Model framework in place – improved EOS and chemistry inputs

• Application to other non-ideal materials 
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Mesoscale Studies of Hotspot Mechanisms in 
Explosives (e.g. HNS)

2.66 ns 2.76 ns 2.82 ns 2.88 ns 3.04 ns 3.1 ns

Pore Collapse and Breakup

Adiabatic Compression~ Initial Pore Dimensions: 

0.5 m x 0.6 m x 1 m

X-Plane 
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FIB/SEM nanotomography: 
3D microstructures

Stack up of 2D SEM 
Images

Individual Pores

3D Microstructures

HNS

PETN

HNS
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Mesoscale Studies of Hotspot Mechanisms in 
Explosives (cont.)
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Explosive Cylinder Tests
(NSWC - Dahlgren)

Aermet 100 Steel
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CTH / Data Fragment Distribution
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Modern Composite Material Models 
in an Eulerian Hydrocode
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ALEGRA Overview 

Current MHD Applications:
• Z-pinch
• ICE/Magnetic Flyers
• Electromagnetic Launch

Electromagnetic Launch

Z-Pinch

ALEGRA models shock and high 
energy environments for solids, 
fluids and plasmas using a multi-
material arbitrary Lagrangian-
Eulerian (ALE) multi-physics 
methodology designed for use on 
massively-parallel platforms.
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Predictive Capability
for Magnetically-Launched Flyers

1 µm

~ 4 cm

Anode
Cathode

Samples

flyer

Measured / predicted current 
& flyer velocity (850 μm Al)

current

velocity
Δ=6.1%

measured 
predicted

Z-machine 
isentropic 

compression 
experiments 

(magnetic flyers)
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Ceramic Modeling:
Addressing Mesh Dependence

Ceramic mesh resolution studies – refinement to the right

Dynamic Indentation of Silicon Carbide -- Sandia Model without Variability
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Material Heterogeneity was
Found to be Integral to Dynamic Failure

Spatially Variable Strength Profile for Ceramics

pressure
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Reduced Mesh Dependence: Same Model with
Uncertainty, Size, and Rate Effects

Comparison to Experiment

Similar crack 
morphology for 
different mesh 
sizes

Formal validation 
and uncertainty 
quantification will 
help identify 
remaining issues

Initial state: small 
elements are 
stronger on 
average, but also 
more variable

*Brannon, RM, Wells, JM, and Strack, OE ‘Validating Theories for Brittle Damage’, Metallurgical and Materials Transactions A, 38A, p. 2861-8, 2007

Weibull distribution 
of strength*:
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Eulerian Codes Need
Enhancements to Support Heterogeneity

Lagrangian Material 
Tracking (LMT)*:

• Standard Eulerian 
momentum solver (in 
contrast to other particle 
methods)

• Variable material 
properties reside on 
Lagrangian tracers

• Dramatic improvement in 
preservation of properties

Initial State

Eulerian

After Remap

LMT

Heterogeneous Cylinder Dropping Vertically
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Eulerian XFEM
is a Promising New Method
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New Method for Mixed Element (Eulerian) Advection 

SAND-2009-4667C

Anode
Cathode

Samples

>12 times faster! 60 cpu
hours

5 cpu
hours

The better multimaterial
remap allows work on
the “physics” to 
proceed, so the 
improvement is due to
both remap and the 
material dynamics.

SAND-2009-5814C
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The New Method can Improve
Physical Results in Substantial Ways

• We are going to 
discuss the relative 
differences in the 
methods as a 
function of the 
advection for the 
“whipple” or satellite 
shielding problem.

Velocity=2.01km/s

0.635cm

air

iron

Iron, r =0.833cm

Coarse grid =203x675
Medium grid =406x1347
Fine Grid =812x2693

SAND-2009-5814C
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Using a fast iron sphere at ~4 km/s

Time step size

Experimental Image

Moderate
Legacy

Legacy New
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The Legacy Method Fails on the
Fine Grid due to a Time Step Crash

legacy
New

Time step size
Legacy

SAND-2009-5814C
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Material Mixture Models

• Needed for ALE or Eulerian (mixing) simulations

• Legacy constant volume algorithm:

– The relative volumes remain constant

– Can lead to some obviously unphysical results

• Isentropic respects differences in material 
compressibility – compress softer materials first.

Air Steel

Constant Isentropic

SAND-2009-5815C
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The stability of Isentropic Methods

• The isentropic equations when 
integrated using the explicit 
Euler method are unstable under 
the standard CFL condition.

• The stability was analyzed using 
techniques taken from ODE’s

• Problems were found if one of 
the volume fractions approaches 
zero or if the bulk modulii of the 
materials are sufficiently 
different.

SAND-2009-5815C
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Application of the Isentropic Multi-
material Method (IMM)

• Simple problem – a steel 
sphere impacting a shield 
comprised of aluminum 
sheets encasing glass.

• The multimaterial 
treatment changes the 
physical state achieved by 
material adjacent to the 
impact and puncture of 
the plates.

– Temperature will matter 
for softer materials

– 203x402 mesh

Log Density

glass

iron

aluminum

aluminum

air

air

2 km/s

2.54cm

SAND-2009-5815C
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Example results with the shield simulation

Tmax = 3608K
Tmax = 5392K @42µs

Tmax = 5803K
Tmax = 6355K @42µs

Tmax = 3001K
Tmax = 3537K @42µs

CV IMM

IMM + 
thermal 
relaxation

SAND-2009-5815C

Temperatures in region behind sphere
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Current Shock Physics Software R&D

• Coupling

– Presto-CTH (Lagrangian-Eulerian)

– ALEGRA-Presto (Lagrangian-ALE)

• Solution handoff (output from one code as input 
to another)

– Lagrangian → Eulerian

– Eulerian → Lagrangian

• Material model consolidation

– common interface, material libraries, behavior and 
look & feel available to all Sandia shock codes.

• Statistical-based fracture and fragmentation
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Current Shock Physics Software R&D (cont.)

• Improved EOS representations

– better SESAME interpolation

– adaptive tabular representations

• Improved non-ideal explosive descriptions

• Various ongoing projects to understand the 
relationship between mechanical damage and 
reaction kinetics in energetic materials.

• Code usability improvements:

– context sensitive editor

– common look & feel input deck improvements

– common on-the-fly visualization

– coordinated training
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For more information

ALEGRA

- project lead: Allen Robinson (acrobin@sandia.gov)

- Erik Strack (oestrac@sandia.gov)

CTH 

- project lead: David Crawford (dacrawf@sandia.gov)

- help line: cth-help@sandia.gov

Presto

- project lead: Martin Heinstein (mwheins@sandia.gov)

- Picatinny site: Ben Spencer (bwspenc@sandia.gov)

mailto:bwspenc@sandia.gov
mailto:dacrawf@sandia.gov
mailto:acrobin@sandia.gov

