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In the event of an aerosol contamination event, development of accurate 
and precise characterization of the magnitude and extent of the 

For every location, the cumulative distribution function (cdf) is estimated at 
a series of discrete concentration thresholds.  Sample data are precise and 

NonNon--Parametric Indicator CodingParametric Indicator Coding ResultsResultsSampling CDF FieldsSampling CDF Fields Results: Uncertainty MappingResults: Uncertainty Mapping
Construction of non-parametric cdfs characterizes local uncertainty.  
Joint uncertainty is a function of multiple cfs, and  the distributions are 

From the 100 contaminant realizations, it is possible to map the 
average concentration field, the conditional variance of the and precise characterization of the magnitude and extent of the 

contamination is a key goal.  This characterization provides multiple inputs 
to the response and recovery process including: source location 
identification, optimization of additional samples and prioritization of 
systems level recovery resources.  This characterization is, ideally, the 
result of integrating as many different types of data sources as possible 
into a final, coherent characterization of the magnitude and extent of the 
contamination.  

This study examines the ability of spatial statistical mapping tools to 
integrate relatively sparse sample data collected at point locations with an 
existing ensemble of numerical model predictions of the contamination 
event.  The end result of this integration is definition of a non-parametric cdf 
of estimated concentration values at all locations.  Monte Carlo sampling of 
the joint distribution of resultant cdfs provides expected case 
contamination, probability of exceeding prescribed concentration 
thresholds and posterior estimates of uncertainty.  A demonstrative 
example using an ensemble of Gaussian plume simulations and limited 
point sampling is used to develop and evaluate an integration technique.  

a series of discrete concentration thresholds.  Sample data are precise and 
transformed to 0 or 1 using the equation below (e.g., Sample 1).  The 
proportion of the ensemble of simulations ≤ to each threshold provides 
continuous estimates of the cdf value at each threshold (e.g., Sample 2).  
Although not used here, data that only provide presence/absence 
information at discrete threshold values (e.g., Sample 3) can also be coded 
using this approach

Threshold Sample 1 Sample 2 Sample 3

Zk=5 1.0 0.98 1.0

Zk=4 1.0 0.91 1.0

Zk=3 1.0 0.60 ???

Zk=2 0.0 0.35 ???

Zk=1 0.0 0.23 0.0
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Joint uncertainty is a function of multiple cfs, and  the distributions are 
not independent :

cdf’s are sampled simultaneously by applying a correlated field of 
random numbers.  The value corresponding to each sampled point of 
the cdf is the concentration for that location.  Multiple correlated 
random number fields produce multiple concentration realizations.

Correlated Random Number Fields Concentration Realizations

average concentration field, the conditional variance of the 
concentration estimates (uncertainty), and the probability of exceeding 
different threshold concentration values.

Sample Data Only

Simulations Conditioned to Data

Expected 
Value

Conditional 
Variance

P(log10(Conc 
> -2.0)) 

P(log10(Conc 
> 1.0))

point sampling is used to develop and evaluate an integration technique.  
Three different sets of results are compared: 1) Spatial estimation (Kriging) 
using only the limited sample data; 2) Estimates based only on a subset of 
the ensemble of model predictions that fit the sample data; and 3) The 
Colocated CoKriging (CoCoK) approach that integrates both sample data 
and the same subset of ensemble model results.

The kriging formulation provides an approach for unbiased, minimum 
variance linear estimation.  Colocated Cokriging extends the kriging 
equations to incorporate a single covariate value at each estimation 
location, x0.  Here the cumulative probability at each threshold is estimated 
conditional to the ns surrounding sample data and the nm members of the 
simulation ensemble that are within some proximity measure of all sample 
data.  The CoCoK estimate of the conditional probability is a weighted linear 
combination of the ns indicators and the single covariate indicator value at 
the estimation location, im(x0), subject to the single unbiasedness constraint 
shown below 

Data Integration with Colocated CoKriging Data Integration with Colocated CoKriging 

SummarySummary

Example ProblemExample Problem
In this example problem, an aerosol release of a contaminant has occurred.  
An ensemble of 1000 Monte Carlo simulations of a numerical transport 
model exist and the ensemble of models adequately captures major 
uncertainties in the source location, amount of mass released, and 
meteorological conditions affecting transport and deposition.  Each 
numerical model realization provides an estimate of the cumulative 

concentration over each 1x1km square within a 250x250km domain 
(62,400 cells). Here a simple Gaussian plume model (Diggle, 2003) is 
used to represent the aerosol transport model. Additionally, 35 samples 
of the concentration are located within this same domain.
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Results: Example SimulationsResults: Example Simulations

Sample Data Only

Three sets of cdfs are created and then sampled 100 times: 1) Kriging of 
sample data; 2) 125 Gaussian plume simulations conditioned to the 
sample data; 3) Integrated Gaussian plume simulations and sample data

Integrated Data and Simulations

Results: Model CheckingResults: Model Checking
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1.0

Sample DataProbabilistic models are 

The ground truth from which 
the samples were obtained is 
shown to the left and can be 
compared visually with the 
results shown above.

Sample 
Data

Simulations

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000. http://www.sandia.gov/geostats

Three example plume simulations and the average over all 1000 plumes are 
shown below
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Simulations Conditioned to Data

Integrated Data and Simulations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Probability Interval

P
ro

p
o

rt
io

n

Sample Data

Cond. Sims

CoCoK

Probabilistic models are 
checked by determining the 
proportion of true values 
within each symmetric 
probability interval (image 
to right).  Only those with 
proportion >= probability 
interval are accurate and 
this condition only occurs 
for the integrated 
sample/model results.  
None of the approaches 
adequately capture the 
widest probability intervals.

Sim. 1 Sim. 2 Sim. 3
Average 

Simulation

The weights, , are determined from solution of the kriging equations based 
on spatial covariances calculated from the sample data and correlation 
between the sample data and numerical simulations.  If there are no 
numerical simulations, the  weight is zero and the above equation resorts 
to the ordinary kriging system.  The spatial covariances are derived from 
variograms calculated and modeled for each indicator threshold.  

In the example problem, eight thresholds are defined in log10 concentration 
space as shown below.  The first threshold, -2.0, corresponds to the 
detection limit of the sample data.

Color scale shows Log10 concentration values Thresholds: [-2.0, -1.85, -1.75, -1.55, -1.0, 0.5, 1.25, 2.15]

The total amount of mass released 
(log10(C)), is shown for each set of 100 
realizations (histograms) and the 
ground truth value of 6.54 (red line) in 
the images above. 
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