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A Design Engineer

Data + Specifications +Data + Specifications + 
Experience + Simple Model 

Estimate for 
S

Estimate for 
Structural 
RStructural 

Inputs (Loads)
Response 

D iDesign
+

Qualitative Level of 
Confidence

How does he do it?  
What is the source of confidence? Slide  2 (of  

33)



Question:  How does the design engineer 
d l i h h f i ?deal with the many sources of uncertainty?

• Much data must be guessed at.
• Requirements are almost always provided in 

i t f (Thi k f Sh k Rapproximate form.  (Think of Shock Response 
Spectra)

• All models are incomplete. The analyst strives toAll models are incomplete.  The analyst strives to 
account for the most dominant elements of a 
problem. 
N thi i tl ifi d• Nothing is ever exactly as specified.
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Design Engineer’s Answer: 
F t f S f tFactors of Safety

Calculated  
D i L dDesign LoadEstimated Loads

FailureLAnticipatedL

0

Failure AnticipatedL L

Failure Anticipated/FS L L0

Margin 1FS 
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Reliability

X: loads expected p
on structure from 
past measurement

Z: loads structure is 
anticipated to survive.

•    
0

F Z X
z

P f z f x dz dx
 

  

Slide  5 (of  33)

• There is almost no information about the tails of 
the distributions.

0 z



Quantification of Margins and Uncertainty

U UM
LU FU

/ ( )L FR M U U 
 2

• Captures some of the uncertainty. 
• Captures the margin features of factor of safety.
• May require more information on the tails than is available
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• May require more information on the tails than is available
• Little guidance to validation.



Another Approach to QMU

X Z

• Can make statements like
• Employs what distribution data there is 
• Makes very little use of the tails of the distributions

( )P Z X M   
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• Makes very little use of the tails of the distributions
• Includes some of the sense of factor of safety  



Another Approach to QMU: 
Connection to Validation

X Y

N t All d l h t ti• Note: All models have systematic error
• One may talk about the distance from model to 

experiment ( )P X Y M   
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2 2( )P X Y M  



Another Approach to QMU: 
Interpreting Model Predictions 

1M
ZY

( ) 
• Including Margin and Probability

1 1( )P Z Y M   
g g y

• Without reference to tails
9



Another Approach to QMU: 
Combination of Inequalities

1 1( )P Z Y M   Margin Predicted by Model

2 2( )P X Y M   Statement of Model Accuracy

  ( )P Z X M M      
Deduce   1 2 1 2( )P Z X M M      

ZY

1M 2M

Y
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When is a Model Valid for 
D i /C tifi ti f S t ?Design/Certification of a System?

  1 2 1 2( )P Z X M M      

Z
1M

 

ZYX

• The model is valid if (M1+M2) is large enough and
2M

The model is valid if (M1+M2) is large enough and 
1+2 is small enough to satisfy the designer. 

• This definition can be implemented without much 
knowledge of tails of distribution.
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An Artificial Example Problem:
Blast Loads on a Jointed Str ct reBlast Loads on a Jointed Structure

Crucial Componentp

Slide  11 (of  33)



Note Intrinsic Nonlinearity and Variability in 
Joints (Bolted Compression Threaded )Joints (Bolted, Compression, Threaded, …)

1. Bolted Joint Nonlinearities and Models
2. Bolted Joint Variability
3. Limitations of Testing and Parameterization
4. Limitations of Fine-Mesh Finite Element 

Modeling and ParameterizationModeling and Parameterization
5. Integration of Experimental and FMFE 

Properties
6. Integration into Structural Modeling
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Empirical  Nonlinearity of Joints

Base Excitation or Free Vibration Monotonic Pull

Nonlinearities even at 
Small Displacement Large Displacement
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The Whole-Joint Approximation and
Iwan Models for Shear JointsIwan Models for Shear Joints

Whole-Joint approximation for pp
interface

( ) ( )[ ( ) ( )]f t u t x t d   


 0( ) ( )[ ( ) ( )]f t u t x t d     
if ( ) and ( ( )) 0

( )
0 h i
u u x t u u x t

x t
  


      

  


 
( )

0 otherwise
 


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The joint properties are characterized by ( ) 



A Four-Parameter Iwan Distribution

          SHHR

• Nearly linear behavior at low 

        maxmax    SHHR

y
amplitude.

• Power-law energy dissipation 
• Physically reasonable
• Tractable

, , ,S TF K  Parameters map into  
•Macro-slip force
•Low-load stiffness
•Dissipation slope at small load
•Tangent stiffness at inception of macro-slip
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Calibration of Individual Joints to Predict 
Dynamics of 3-Legged Structure

StructuralStructural-
Level FE 
Analysis with 
4-Param 
Joint Model

Structural-
Level FE

Simple

Level FE 
Analysis with 
4-Param Simple 

Jointed 
Structure Calibration Slide  16 (of  33)

Joint Model



Variability of Joint Response 
and Scarcity of Dataand Scarcity of Data

Three “tops” and three “bottoms” yield nine uniqueThree tops  and three bottoms  yield nine unique 
conformal joint assemblies
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Testing and Limitations

• Scarcity: Capturing variability requires many 
more specimens than are practically available.
S ifi it T ti biliti t il bl• Specificity: Testing capabilities are not available 
for all loading combinations.

I di id l J i E iIndividual Joint Experiments were 
Designed to Achieve Flush 
Connection.

• Practicality: Developing a test program for every 
joint configuration is also not practical.
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Fine Mesh Finite Element Modeling (FMFE)

“missing” physicsmissing  physics
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FMFE modeling of joints using Coulomb friction yields 
similar, but different results than are seen in the laboratory.
• Not all data can be fit by the same coefficient of friction
• FMFE predicts macro-slip where it is not observed.



How to Use FMFE to Leverage Laboratory Data

1. Extract basic parameter information from 
sparse laboratory data of a base experiment

2 C id i FMFE lt th2. Considering FMFE results on the same 
experiments, create filter to make simulation 
results consistent with laboratory values.y

3. ……
4. ……
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Reconciling  Joint Parameters from FMFE with 
Scarce Experimental Data in Base ExperimentScarce Experimental Data in Base Experiment

Tests on 9 
Experimental 
Specimens

9 sets of joint 
parameters

,0
, 1..9e

J kP J 
Mean experimental 
joint parameters
k=1 4

,0e
kP

,0
1

,0
0 2

e

e e

P
D P

 
   
  , k=1..4  

25 V i d
25 sets of joint Mean joint

,0
1
sP 

 

4x4

25 Varied 
Simulations

j
parameters

,0
, 1..25s

J kP J 

Mean joint 
parameters
k=1..4  

,0s
kP ,0

0 2
s sD P   

  
4x4

25 sets of joint 
parameters

,0
, 1..25s

J kP J 
X =  1

0 0
e sD D

 25 sets of hybrid joint 
parameters
consistent with experimental 

,0
, 1..25H

J kP J 
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means in base measurement. 



Generating  Joint Parameters for Structural 
D i Si l ti

Recall from Base Experiment

Dynamics Simulations 

25 sets of joint 
parameters

,0 1 25s
J kP J 

X =  1

0 0
e sD D


25 sets of hybrid joint 
parameters
consistent with experimental 

,0
, 1..25H

J kP J 

p

, 1..25J kP J
means in base measurement. 

Pool of 2000 joint

Principal Component 
Analysis (log normal)

Pool of 2000   joint 
parameters         having 
experimental means of 
base experiment and 

d i l ti

,J kP

Slide  22 (of  33)

reproducing correlations 
from simulations



Notionally
(Note, Actual Distribution is of 4-Vectors)( , )

Scaling adjusts the results of theScaling adjusts the results of the 
many FMFE analysis to  be 
statistically consistent with the 
sparse experimental data.

Sparse FMFE
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p
Experimental 
Data of Base 
Experiment

FMFE 
Simulations 
of Base 
Experiment



How to Use FMFE to Leverage Laboratory Data

1. Extract basic parameter information form 
sparse laboratory data of a base experiment

2 C id i FMFE lt th2. Considering FMFE results on the same 
experiments, create filter to make simulation 
results consistent with laboratory values.y

3. Use FMFE simulation to provide results for 
other boundary conditions and correct with 
filter of Step 2filter of Step 2.

4. Do the above in a manner that yields useful 
estimates of parameter uncertainty.p y
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Joints in Statically Indeterminate Structures

PP

FF



200 lb Force areIn general, statically Experiment of interface with 
0.1 0.1o o  

200 lb Force are 
required to align 
the bolt holes

In general, statically 
indeterminate structures will 
have non-flush interfaces. • Laboratory experiments 

unavailable so far.
FMFE i t

p
angular off-set.
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• FMFE experiments are 
performed in straight-
forward manner.



Use of Joint Parameters from FMFE 
Conditions other than Base ExperimentConditions other than Base Experiment

Recall from Base Experiment
25 sets of joint 
parameters

,0 1 25s
J kP J 

X =  1

0 0
e sD D

 25 sets of hybrid joint 
parameters
consistent with experimental

,0
, 1..25H

J kP J 

p

, 1..25J kP J consistent with experimental 
means in base measurement. 

For Simulations of other Boundary Conditions
M sets of joint 
parameters 
over variety of

,
H

J kP Pool of MANY  joint 
parameters P

o S u a o s o o e ou da y Co d o s

X   1

0 0
e sD D



over variety of 
conditions (preload, 
surface topography, 
misalignment,…) Principal Component

parameters
reflecting anticipated 
variability in preload, 
surface topography, 

,J kP 
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Principal Component 
Analysis (log normal) misalignment, …



Notionally
(Note, Actual Distribution is of 4-Vectors)( , )

Scaling adjusts the results of theScaling adjusts the results of the Scaling adjusts the results of the 
many FMFE analysis of the Base 
Experiment to  be statistically 
consistent with the sparse 

i t l d t

Scaling adjusts the results of the 
many more FMFE analysis, 
though the statistics are different 
from those of the base 

experimental data.experiments.  

Sparse FMFE Simulations FMFE Simulations 
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Sparse 
Experimental 
Data of Base
Experiment

of Base
Experiment

over Distribution 
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Where are We Now?

• Sparse amount of laboratory joint data for a baseSparse amount of laboratory joint data for a base 
experiment (flush interface)

• Constitutive model that reproduces joint behavior 
f f ffor the configurations of calibration

• MP Fine-Mesh Finite Element simulations provide 
many sets of joint parameters though themany sets of joint parameters, though the 
simulations do not quite jibe with base laboratory 
experiments.

• Scaling process to adjust mean properties of 
FMFE results for base experiments

• Extension of scaling process for otherExtension of scaling process for other 
experiments
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Structural Modeling and Margins

• Many finite element dynamics simulationsMany finite element dynamics simulations
– Employing joint parameters selected from 

distribution devised as discussed above (capturing 
distributions of preload surface propertiesdistributions of preload, surface properties, 
misalignment)

– Predicting accelerations of key components
• Some failure criterion, perhaps also expressed as 

a probability distribution.
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Simulations and Confidence

Statements of Confidence
1. Under the environment anticipated, the components would have to be 

accelerated 28g more than expected for  even 28% to fail. 
2. Under the environment anticipated, there is a 2.4 factor of safety that no 

more than 28% of components will fail

Peak 
acceleration

Translated so 
that 25% 

Acceleration 
below which 

more than  28% of components will fail. 

acceleration 
from 212 
simulations

extends beyond 
failure criterion

supplier 
guarantees 
95% of 
componentscomponents 
will survive28 g
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Summary

• Have presented an mathematical approach to p pp
quantification of uncertainty retaining valuable features 
of traditional design engineering:

Makes almost no use of knowledge of tails of distributions– Makes almost no use of knowledge of tails of distributions
– Retains the “Factor of Safety” notion of design 

engineering
– Makes practical definition of model adequacy

• Typically, the designer/analyst must scrounge for data, 
attempting to reconcile and leverage data fromattempting to reconcile and leverage data from 
disparate

• Demonstration of how even when there is a lot of 
uncertainty in model parameters, useful statements can 
be made.
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