SAND2009- 4242C

s
- Reliability, QMU, Systematic Error &
Model Acceptance Criteria

With a Little Discussion on
Parameterization of Joint Models

Presented at USNCCM
July 2009

Daniel J. Segalman and Thomas L. Paez,
Sandia National Laboratories™

Slide 1 (of 33)

7 VAL aJ% 1K&Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, San_dia

IV A A i o Naf . e National

il ey ey e e for the United States Department of Energy’s National Nuclear Security Administration .
under contract DE-AC04-94AL85000. Laboratories



2,'

A Design Engineer

Data + Specifications +

Experience + Simple Model \

Estimate for
Structural
Response

Estimate for
Structural \ _ﬂ,ﬁ/

Inputs (Loads) p

b L

How does he do it?

What is the source of confidence?

Design
+

Qualitative Level of
Confidence
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? Question: How does the design engineer

deal with the many sources of uncertainty?

* Much data must be guessed at.

* Requirements are almost always provided in
approximate form. (Think of Shock Response
Spectra)

« All models are incomplete. The analyst strives to
account for the most dominant elements of a
problem.

* Nothing is ever exactly as specified.

Sandia
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*‘ Design Engineer’s Answer:

Factors of Safety

Calculated
Estimated Loads Design Load

LAnticipated LFaiIure
L L

Failure  =Anticipated
<« —_—

S, =L, /L,

Failure nticipated

Margin =S_ -1
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Reliability

X: loads expected
Empirical Load and Failure Load on structure from

past measurement

X Z
Z: loads structure is
anticipated to survive.

Empirical

4 B 10 I_Falilurta

y PF=Tf jf x ) dz dx
0

* There is almost no information about the tails of
. . . Sandia
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Quantification of Margins and Uncertainty

1.5

Empirical Load and Failure Load

u, IVII ‘>‘UF

« Captures some of the uncertainty.

Empirical

Failure

U N .
0 10! 4 6 o 10

R=M/U,+U.)

« Captures the margin features of factor of safety.
« May require more information on the tails than is available

« Little guidance to validation.

slide 6 (of 33)

Sandia
National
Laboratories



Another Approach to QMU

Empirical Load and Failure Load

1.5
«— M
Tt x Z I I'Empirif:all
..... +
\ Empirical 1
]
: Failure
i
0 . .
0 2 4 6 8 10

- Can make statements like P(Z<X+M)<p

* Employs what distribution data there is

« Makes very little use of the tails of the distributions
* Includes some of the sense of factor of safety

Sandia
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Another Approach to QMU:

Connection to Validation

Empirical Load and Model Load

1.5

U h : . ’ —yy a3,
0 2 4 6 8 10
* Note: All models have systematic error

* One may talk about the distance from model to

experiment P(X >Y — MZ) < ﬂz
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*‘ Another Approach to QMU:

Interpreting Model Predictions

1.5

-

P(Z <Y +M,)<p,

* Including Margin and Probability
 Without reference to tails
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* Another Approach to QMU:

Combination of Inequalities

Margin Predicted by Model P(Z<Y+M)<p
Statement of Model Accuracy P(X >Y —M,) < 5,

N P(Z<(X (M +M,))) < B+,

15 S . . . 15

=

P e —

6 8 10
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When is a Model Valid for
Design/Certification of a System?

P(Z (X +(My+M,)))< B+ 5,

.

0 ’ M ' & 6 8 10
* The model is valid if (M,+M,) is large enough and
B4*B, is small enough to satisfy the designer.

* This definition can be implemented without much
knowledge of tails of distribution.

Sandia
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&‘ An Artificial Example Problem:

Blast Loads on a Jointed Structure

Crucial Component

ﬁan_dia I
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' iNote Intrinsic Nonlinearity and Variability in
Joints (Bolted, Compression, Threaded, ...)

1. Bolted Joint Nonlinearities and Models

2. Bolted Joint Variability

3. Limitations of Testing and Parameterization
4

. Limitations of Fine-Mesh Finite Element
Modeling and Parameterization

5. Integration of Experimental and FMFE
Properties

6. Integration into Structural Modeling

Santia
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Empirical Nonlinearity of Joints

Base Excitation or Free Vibration Monotonic Pull

Energy Dissipation vs Force Force vs Displacement in Monotonic Pull
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i The Whole-Joint Approximation and
Iwan Models for Shear Joints

H e Whole-Joint approximation for
ESSSSSSSEEEEn S interface

f() =] p@u®)-x(t.¢)]dg

K(t.6) = u |f\u X(t,#)| = ¢ and u (u - x(t,4)) >0
otherwise

@ o

The joint properties are characterized by ,0(¢)
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A Four-Parameter lwan Distribution

D) =R (H(g)—H(p ~ ) + SN P~ )

* Nearly linear behavior at low
amplitude.

* Power-law energy dissipation
* Physically reasonable
* Tractable

| Parameters map into ., K., 7,
*Macro-slip force
qé Low-load stiffness
Dissipation slope at small load
*Tangent stiffness at inception of macro-sili
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alibration of Individual Joints to Predict
Dynamics of 3-Legged Structure

Structural-
Level FE
Analysis with
4-Param
Joint Model

!

Structural-
Level FE
Analysis with
4-Param
Joint Model

Simple

Jointed i
[] [ ] - I
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Variability of Joint Response
and Scarcity of Data

Three “tops” and three “bottoms” yield nine unique
conformal joint assemblies

(inch-pounds)

Energy Dissipation per Cycle

o Force (Ibs)

Sandia
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« Scarcity: Capturing variability requires many
more specimens than are practically available.
» Specificity: Testing capabilities are not available

for all loading combinations.
([ [1]

Individual Joint Experiments were
Designed to Achieve Flush
Connection.

i

Testing and Limitations

 Practicality: Developing a test program for every

joint configuration is also not practical. @ Sandia
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Fine Mesh Finite Element Modeling (FMFE)

“missing” physics

= Expaariman wperiTHn|
. |

|| =i =030
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Lateral Force, |b Lateral Force, b
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FMFE modeling of joints using Coulomb friction yields
similar, but different results than are seen in the laboratory.

« Not all data can be fit by the same coefficient of friction
 FMFE predicts macro-slip where it is not observed. Sandia
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How to Use FMFE to Leverage Laboratory Data

1.

2.

Extract basic parameter information from
sparse laboratory data of a base experiment

Considering FMFE results on the same
experiments, create filter to make simulation
results consistent with laboratory values.

Sandia
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conciling Joint Parameters from FMFE with
Scarce Experimental Data in Base Experiment

25 sets of joint
parameters

PO J =1.25

Testson 9 9 sets of joint
Experimental > paraeroneters
Specimens Pr. J=1.9

, 25 sets of joint
25 Varied —>| parameters
Simulations

Ps0 J =1.25

X DS(DS)_l —

ISe,O
Mean experimental N ' peo
joint parameters P,°° 0 2
k=1..4 i
4x4
D S.0
Mean joint R _
parametersP>° —D; = P,
k=1..4 ’
__4x4 i

25 sets of hybrid joint
parameters Pf"k’o J=1.25

consistent with experimental
means in base measurement.
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enerating Joint Parameters for Structural

Dynamics Simulations

Recall from Base Experiment

25 sets of joint

parameters
P’Y J=1.25

x (Di(Ds)

Principal Component
Analysis (log normal)

25 sets of hybrid joint
parameters P;'k’o J=1.25

consistent with experimental
means in base measurement.

Pool of 2000 _ joint
parameters P; , having
experimental means of

A4

base experiment and
reproducing correlations
from simulations
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Notionally
(Note, Actual Distribution is of 4-Vectors)

Scaling adjusts the results of the
many FMFE analysis to be
statistically consistent with the
sparse experimental data.

D >
B 0
;) 1Y

;) i
I \ ! '
! \ ! ‘\
! \ !
/ \ / '

, \ 7 Mo
Sparse FMFE
Experimental Simulations
Data of Base of Base Sandia
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How to Use FMFE to Leverage Laboratory Data

1. Extract basic parameter information form
sparse laboratory data of a base experiment

2. Considering FMFE results on the same
experiments, create filter to make simulation
results consistent with laboratory values.

3. Use FMFE simulation to provide results for
other boundary conditions and correct with
filter of Step 2.

4. Do the above in a manner that yields useful
estimates of parameter uncertainty.

Sandia
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Joints in Statically Indeterminate Structures

| I |

01" <a<0.1
In general, statically 200 Ib Force are Experiment of interface with
indeterminate structures will  required to align angular off-set.
have non-flush interfaces. the bolt holes « Laboratory experiments

unavailable so far.
« FMFE experiments are
performed in straight- S
ndia

forward manner. i
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se of Joint Parameters from FMFE
Conditions other than Base Experiment

Recall from Base Experiment

25 sets of joint

parameters
P’Y J=1.25

X

D:(D3) | =

25 sets of hybrid joint
parameters PH 9°3=1.25

consistent W|th experimental
means in base measurement.

For Simulations of other Boundary Conditions

M sets of Jomt
parameters F)J y
over variety of

misalignment,..

conditions (preload,
surface topography,

)

Pool of MANY joint
parameters P,
reflecting anticipated
variability in preload,

Principal Component
Analysis (log normal)

surface topography,

\ 4

misalignment, ...

Sandia
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Notionally

‘(Note, Actual Distribution is of 4-Vectors)

Scaling adjusts the results of the
many more FMFE analysis,
though the statistics are different

Scaling adjusts the results of the
many FMFE analysis of the Base
Experiment to be statistically

from those of the base consistent with the sparse
experiments. experimental data.
A A
;) )
' 2 vV, D
\ \ \ \
\ \
! \ I \
/ \ \ / 7\ \
7.7 \ \ 7 L7 \ \
Sparse FMFE Simulations FMFE Simulations
. fB over Distribution
Experimental orbase
Experiment of &

Data of Base
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« Sparse amount of laboratory joint data for a base
experiment (flush interface)

» Constitutive model that reproduces joint behavior
for the configurations of calibration

 MP Fine-Mesh Finite Element simulations provide
many sets of joint parameters, though the
simulations do not quite jibe with base laboratory
experiments.

« Scaling process to adjust mean properties of
FMFE results for base experiments

- Extension of scaling process for other

experiments |
Sandia
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« Many finite element dynamics simulations

— Employing joint parameters selected from
distribution devised as discussed above (capturing
distributions of preload, surface properties,
misalignment)

— Predicting accelerations of key components

« Some failure criterion, perhaps also expressed as
a probability distribution.

Structural Modeling and Margins

Sandia
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Simulations and Confidence

Statements of Confidence

1. Under the environment anticipated, the components would have to be
accelerated 28g more than expected for even 28% to fail.

2. Under the environment anticipated, there is a 2.4 factor of safety that no
more than 28% of components will fail.

Peak Transla:)ted SO Acceleration
acceleration that 25% below which
from 212 e>§tends pey_ond supplier
simulations failure criterion | guarantees
95% of

| components
| will survive

il

10 2049 Acceleration Sandia
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 Have presented an mathematical approach to
quantification of uncertainty retaining valuable features
of traditional design engineering:

— Makes almost no use of knowledge of tails of distributions

— Retains the “Factor of Safety” notion of design
engineering
— Makes practical definition of model adequacy

 Typically, the designer/analyst must scrounge for data,
attempting to reconcile and leverage data from
disparate

 Demonstration of how even when there is a lot of
uncertainty in model parameters, useful statements can
be made. @ i)
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