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Abstract 

Partially premixed combustion strategies for compression-ignition engines reduce soot formation in part by 

extending the ignition delay to provide more time for mixing before combustion. However, vapor-fuel concentration 

measurements have shown that near-injector mixtures become too lean to achieve complete combustion, leading to 

an increase in unburned hydrocarbon emissions compared to conventional diesel combustion. One potential cause of 

the over-leaning is an “entrainment wave,” which is a transient increase in local entrainment after the end of 

injection that has been predicted by a one-dimensional (1D) free-jet model. No previous measurements at diesel 

injection conditions have demonstrated conclusively that this entrainment wave exists, nor has its magnitude been 

verified. Using particle image velocimetry (PIV) in the ambient gases, we measure entrained gas flows through a 

diesel jet boundary before and after the end of injection. The entrainment calculation depends on the definition of 

the jet boundary, and we propose a definition for this boundary based on the local minimum in the product of the 

radial coordinate and the radial velocity (   ). We demonstrate that the method is robust for calculating entrainment 

in the presence of axial flow gradients in the ambient gases outside the jet. Prior to the end of injection, the 

measured portions of the quasi-steady jet exhibit steady entrainment rates that agree well with typical non-reacting 

gas-jet behavior, as well as with the 1D free-jet model. After end of injection, the local entrainment rate temporarily 

increases by as much as a factor of two, which is similar to the factor of 2.5 peak increase predicted by the 1D 

model. However, the entrainment wave is more broadly distributed in the experimental data, likely due to jet 

confinement or other real-jet processes absent in the 1D model. 
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Introduction 

Turbulent jets of fluid are useful for many practical 

applications where mass and/or momentum need to be 

transferred rapidly from one fluid to another. We can 

estimate the local momentum transfer by directly 

measuring an increase in mass flow in the vicinity of a 

jet. For the case of incompressible, non-reacting jets, an 

increase measured mass flow in the jet must arise from 

induction, or ‘entrainment,’ of the surrounding fluid 

into the jet. Since entrainment must occur dynamically, 

we are interested in what variables control the transient 

local ‘entrainment rate.’ A brute-force numerical 

solution to the fully coupled Navier-stokes equations 

could provide a prediction of the locally-driven time-

dependent process of entrainment, but at significant 

computational cost. On the other hand, however, the 

widespread use of turbulent jets and the similarity of 

different jets across a wide range of flow scales 

demonstrates both a need and plausibility of a 

simplified treatment. From a fundamental perspective, 

we would like to predict entrainment along the jet 

boundary, directly at the interface between the jet and 

the ambient fluid, and so predict the mixing state 

throughout the jet (Nickels & Perry, 1996). However, 

we are impeded by two major issues. One is a diversity 

of possible definitions for the jet boundary, particularly 

in the case of a transient injection. The second is a lack 

of relevant entrainment measurements for developing 

jets, or in the case of a steady jet, accurate 

measurements of local entrainment in the near field. 

On dimensional grounds, for an axisymmetric jet, 

the local entrainment mass flow   ̇ ( ) [     ⁄ ] 
depends on only four global variables, the velocity, jet 

diameter, density and viscosity ( ( )      )  
Individual variation in these parameters can be assessed 

through the jet Reynolds number,         ⁄ . For 

large values of Re, a free-jet develops ‘self-similar’ 

behavior some distance downstream of an initial 

‘transition’ region, and the mixing rate also becomes 

independent of viscosity (Curtet and Ricou, 1964). In 

this region, the entrainment rate, and therefore the jet 

expansion angle hence mixing, or vice-versa) under 

‘self-similar’ development can be found in textbooks on 

the subject of turbulent jets (for example, Abramovich, 

1963) that survey hundreds monographs on the theory 

of submerged (no-coflow), co-flow, and counter-

flowing jets. Each contribution furthers our 

understanding by attempting to predict or explain 

mixing via the entrainment of mass during the diffusion 

of momentum in various special engineering and 

environmental flows of interest. 

The example of interest in this paper is the mixing 

of fuel and air in direct-injection diesel engines. 

Knowledge of the injection rate schedule and the local 

entrainment is critical to properly design an injection 

strategy that achieves a desired mixing state. 

Insufficient mixing leads to locally rich regions that 

contribute to smoke (carbonaceous soot) and other 

smog (nitrogen oxides) emissions. Non-conventional 

diesel combustion strategies like partially premixed 

combustion aim to increase mixing before combustion 

to reduce overall in-cylinder stoichiometry, yielding 

lower emissions of soot and nitrogen oxides; however, 

improvements in performance and/or reduction in 

emissions remain limited by the mixing rate (O’Connor 

& Musculus, 2013). 

Another complication in determining the mixing 

rate is the transient end of injection. Deceleration of 

flow at the jet orifice has been shown to significantly 

change jet mixing and entrainment (Boree, Atassi, & 

Charnay, 1996). Following an orifice flow reduction, 

experiments indicate a transient increase in entrainment 

at the jet boundary relative to a steady jet. An increase 

in local mixing can yield locally fuel-lean mixtures, for 

which combustion may not proceed to completion, 

leading to increases in the emission of unburned 

hydrocarbons and carbon monoxide (Musculus, Miles, 

& Pickett, 2013). 

For our engineering application of interest, lessons 

learned for gaseous jets can be extended to liquid-fuel 

sprays by accounting for differing densities of ambient 

and injected fluids. Successful predictions for transient 

spray penetration and mixing behavior are possible 

under the condition that entrainment is well predicted 

(Desantes, Arrègle, López, & Cronhjort, 2006; Iyer & 

Abraham, 2005; Siebers, 1999). As a result of applying 

a fixed spreading angle, these models enforce a local 

entrainment rate (to be defined later) to close the mass 

and momentum balance at the jet boundary. Hence, 

agreement of model predictions with experiments that 

measure penetration or entrainment requires the spray 

spreading angle be known a priori, or tuned empirically. 

Furthermore, these simple models assume a quiescent 

and unbounded ambient. This assumption is violated in 

the case of confined engine combustion chambers. 

An important advancement in our understanding of 

jet entrainment and mixing is the predominant role of 

instantaneous large-scale structures on local mixing and 

entrainment (Dahm & Dimotakis, 1987; Philip & 

Marusic, 2012). Unlike an increase in laminar-like 

diffusion implied by a ‘turbulent diffusivity’ in the 

Reynolds analogy, large-scale structure in the flow 

implies that the local entrainment rate must instead be 

understood as a convolution of the contact surface and 

diffusive mixing. Therefore, two processes that control 

entrainment rate are the large-scale local-stretching 

between fluids (contact surface production) and the 

rapid mixing occurring at the smallest scales of the flow 

(contact surface consumption). To understand the 

entrainment process, we have to understand the 

dynamics of the jet boundary. 



Progress may be made on dimensional grounds, if 

we simply assume that the stretching of the local jet 

surface obeys the same time-average axisymmetry as 

the jet. Invoking the assumption that axial momentum 

is only lost due to ambient fluid entrainment (no 

significant axial pressure gradients), growth of the local 

entrainment surface is the sole source of momentum 

transfer. The local surface area can be estimated as 

    , where    is the radius from the jet axis to the ‘jet 

boundary,’ through which the entrainment is occurring. 

We know, for example, in the case of turbulent self-

similar flow, the stretching rate of the boundary (jet 

spreading angle) becomes constant (entrainment rate as 

well), implying equilibrium exists with production 

slightly outpacing consumption at large Reynolds 

numbers. Meanwhile, laminar jet fountains produce 

streams of liquid with nearly constant radius. Intuition 

suggests that therefore that local entrainment rate can 

be functionalized on the basis of the gradient in the 

local jet boundary radius,       . That is, for any given 

entrainment, the radius    should necessarily increase 

with downstream distance. Likewise, in the case of zero 

entrainment,    should remain constant. Therefore, a 

method is desired to accurately determine the jet 

boundary as an indication of, and a consequence of, 

entrainment. Unfortunately, as previously mentioned, 

theoretical determination of the form for the jet 

boundary in the near field remains an open question.  

To address definitions of the jet boundary, we 

revisit the literature on entrainment and examine how 

defining the jet boundary affects the quantification of 

entrainment (Bisset, Hunt, & Rogers, 2002; Han & 

Mungal, 2001; Moon, Matsumoto, & Nishida, 2009; 

Ricou & Spalding, 1960). We focus on the case of an 

axisymmetric jet in cylindrical coordinates (r,θ,z) and 

examine the consequences of integrating over 

differential volume flux field (rvr) [( 
  ⁄ )  ⁄ ] to see 

how different definitions of the jet boundary affect the 

quantification of local jet entrainment. Heat release and 

compressibility are potential sources/sinks of volume 

flux in the general case, as is momentum loss due to 

pressure gradients, including drag forces; however 

quantifying these effects remains outside the scope of 

the current work. 

For the engineering flow of interest, particle-image 

velocimetry (PIV) and laser-Doppler velocimetry 

(LDV) data have provided insight into entrainment in 

diesel-like jets including non-vaporizing (Rhim & 

Farrell, 2000), vaporizing (Kozma & Farrell, 1997; 

Milano, Brunello, & Coghe, 1991) and confined sprays 

(Post, Iyer, & Abraham, 2000; Singh, Sundararajan, & 

Bhaskaran, 2003). Recently, PIV data using 2µs pulse 

separation in a transient vaporizing diesel jet were 

analyzed to quantify entrainment using the axial 

gradient in the interior of the jet to compute the mass 

flux (Malbec & Bruneaux, 2010). Here, we extend this 

PIV image dataset to the relatively slow ambient gases 

outside the jet by using the larger pulse separation 

(100µs) that is available from the same experiment. We 

aim to directly quantify entrainment through the jet 

boundary using velocity measurements in the ambient 

gases thereby avoiding the large (correlated) 

fluctuations in velocity and density that exist inside the 

jet. 

Our second aim is to provide the first experimental 

evidence for a transient increase in entrainment after the 

end of injection that has been predicted by simple one-

dimensional (1D) jet models (Musculus & Kattke, 

2009, Musculus 2009). Higher-fidelity large-eddy 

simulation (LES) of a transient air jet has provided 

confirmation of this as well, and additionally provides 

some clues to the dynamic process (larger vortex 

pairing motion) that leads to this end-of-injection 

entrainment increase (Hu, Musculus, & Oefelein, 

2010). However, no other experimental measurements 

of entrainment increase after the end of injection are yet 

available. Therefore, we compare the entrainment 

measurements during and after end of injection to 

predictions of 1D transient jet entrainment model for 

diesel jets (Musculus & Kattke, 2009). 

 

Experimental methods 

The vaporizing spray experiments are performed at 

IFP Énergies nouvelles (IFPEN) in a constant-volume 

vessel simulating the conditions near top-dead-center in 

a compression-ignition engine (Malbec et. al., 2013). 

The interior of the optical chamber is a cube, 12cm
3
, 

with windows in the cube faces for laser and imaging 

access (Fig. 1). Within the vessel, high ambient 

temperatures are achieved through the combustion of a 

flammable gas mixture. The injection is triggered when 

the desired chamber temperature is reached during the 

cool-down of the combustion products. Initial pressure 

and composition (before the combustion event) are 

selected to obtain the desired temperature, density, and 

oxygen concentration at the moment of injection. For 

this experiment, non-combusting but vaporizing 

conditions are desired, for which the temperature, 

density, and oxygen concentration are 900K, 

22.8kg/m
3
, and 0%.  

The horizontally mounted fuel injector on this 

vessel is the single-hole Bosch injector (#210678) from 

the Engine Combustion Network (ECN). Fuel pressure 

is controlled with a pneumatic pump, and the fuel is 

provided through a common rail, following ECN 

recommendations (Malbec & Bruneaux, 2010). The 

fuel is n-dodecane, which has a density of 703kg/m
3
 at 

the experimental conditions. The fuel pressure is set at 

1500bar, and the energizing duration of the injector is 

2.795ms (actual injection duration is 4.3ms). The 

steady-state average mass flux through the injector is 

2.25g/s, and the nozzle has a 0.0886mm orifice 



diameter. Uncertainties for these operating conditions 

and set points are available online, via the ECN 

(“Engine Combustion Network”). 

 

  

Figure 1. Experimental schematic, showing high-

speed pulsed laser (right) directing a beam through 

sheet forming optics to the optical combustion chamber 

fitted with a diesel fuel injector (middle), and high-

speed camera for PIV image acquisition (bottom-left). 

 

Illumination is provided by a double-pulsed two-

cavity 527nm YLF laser. Each laser cavity is operated 

at 10kHz. The optical setup is shown in Fig. 1. A 1mm 

thick, 64mm wide horizontal laser sheet is formed by 

the combination of spherical and cylindrical lenses, and 

intercepts the spray axis horizontally, in the focal plane 

of the camera. The time delay between consecutive 

pulses from the two laser cavities is 2µs, whereas 100µs 

elapses between 2 pulses from the same laser cavity. 

Resolving the low-velocity region in the ambient gases 

using the long pulse separation allows us to better 

estimate entrainment at the jet boundary than with short 

pulse separation. 

A Photron SA1 high-speed camera equipped with a 

Nikkor 50mm f/1.2 lens and an 8mm extension ring 

collects the Mie-scattered laser light off the particles. 

(A discussion of particle Stokes-number appears in the 

Limitations and uncertainty section.) The camera 

acquires images at 20kHz with an exposure time of 

50µs. Since subsequent pulses from the same cavity are 

used here, the effective acquisition rate of the new 

dataset is 10kHz. The size of the images is 448x592 

pixels, with a resolution of 8 pixels per mm [56 x 

74mm]. For the image in Fig. 2, the injector tip is 7mm 

outside the field of view, and the jet propagates 

downward along the centerline in this perspective. The 

top 13mm of the field of view is not illuminated by the 

laser sheet; therefore, the reported PIV data exist 

between 20mm and 80mm downstream of nozzle 

orifice.  

The commanded start of injection is used a 

reference time and first image exposure is triggered off 

this signal. The injector experiences a physical delay of 

approximately 350µs before starting to inject fuel, such 

that the first image of the liquid spray in the field of 

view occurs at 400µs. An example image is shown in 

Fig. 2, 1700µs after the commanded start of injection. 

We use the LaVision suite (DaVis 8) for 

processing the raw images. A multi-pass windowing 

procedure computes correlations at 64x64 pixels 

followed by 16x16 pixels and good vectors are selected 

using median filtering. Outside the spray, the procedure 

yields in excess of 95% good vectors. To obtain 

statistically meaningful ensemble velocity fields, 40 

injections are averaged in the data presented here. 

 

Figure 2. Representative raw PIV image, acquired 

1700µs after the commanded start of injection. The 

injector is 7mm above top-center of the image, and the 

spray propagates downward in the perspective of this 

image. The top 13mm of the field of view is not directly 

illuminated by the laser sheet, but scattering of stray 

light off the liquid fuel spray is visible near the top. 

Entrainment quantification  

The desire to quantify entrainment has inspired 

previous authors to propose integral formulations based 

on control-volume analyses of mass and momentum 

fluxes (Han & Mungal, 2001; Musculus & Kattke, 

2009; Ricou & Spalding, 1960). The common approach 

of these analyses is that the increase in axial mass flux 

within the jet with increasing downstream distance is 

attributed to entrainment of ambient gases outside the 

jet entering at the roughly conical jet-boundary. 

Assuming non-reacting, incompressible flow, the 

entrainment rate may be determined either by inferring 

it from measurements of the change in the axial mass 

flux within the jet, or by direct measurement of the 

induced ambient flow through the boundary between 

the jet and the ambient. 

For the case of a liquid-fuel jet injected into the 

compressed gases of a reciprocating engine, the axial-

mass-flux method is hampered by uncertainties 

including significant correlated turbulent density and 

velocity fluctuations, amplified by the fact that injected 

and ambient fluids have much different densities (700-
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850 vs 15-50 kg/m
3
). Direct entrainment measurements 

in the ambient fluid avoid this complication, because 

the density and velocity fluctuations are comparatively 

much smaller. 

For the ambient entrainment measurements, 

however, the principle concern and source of 

uncertainty is the choice of a suitable control volume. A 

series of frustum (truncated cone) control volumes are 

shown in Fig. 3. By analyzing the flow through the 

boundaries of each of the control volumes, the variation 

in entrainment along the jet axis can be quantified. 

Determining an appropriate position for the upper and 

lower boundaries for each control volume is 

straightforward, but an a priori determination of the jet 

boundary on the side of each control volume remains an 

unresolved theoretical challenge. 

 

Figure 3. A series of frustrum-shaped control volumes 

surrounding the jet flowing from top to bottom. 

Example ensemble-averaged ambient flow vectors are 

included, acquired 1700µs after the commanded start of 

injection. 

Typically, previous analyses have assumed that the 

ambient fluid flow outside the jet boundary is axially 

invariant (e.g. uniform co-flow or axially stagnant). In 

that case, a control surface of any shape that 

encompasses the same portion of the jet (dz) admits the 

same radial entrainment mass. That is, differences in 

the measured entrained flow at the boundary come 

exclusively from axial variation in radial entrainment, 

and therefore the entrainment mass flux unchanged as 

the control surface’s radius from the jet axis is 

increased (Han & Mungal, 2001; Ricou & Spalding, 

1960). However, for a large fraction of practical jet 

applications, the assumption of axial invariance cannot 

hold.  

In the present experiment, the jet is confined by the 

chamber, and chamber-scale recirculation flows 

induced by the jet unavoidably generate axial flow 

variations in the ambient, even if the chamber is 

initially quiescent before a transient jet is initiated. 

Even for unconfined jets, the ambient flows may not be 

axially invariant, and back-flowing streamlines are 

visible near the jet boundary, especially as the jet is 

developing (Van Dyke, 1982). In either case, when 

axial variations are present in the ambient, the 

distribution of entrainment computed at each axial 

location necessarily depends on the radial position of 

the control surface at the jet boundary.  

It is reasonable to expect that locating the control 

volume surface as close as possible to the true jet 

boundary (rb) should provide the most physically 

meaningful quantification of local entrainment. 

Alternatively, entrainment could be measured 

significantly outside the jet boundary if it could be 

accurately mapped to the correct location on the jet 

boundary. Han and Mungal proposed one method for 

doing so by defining a frustum-shaped control volume 

with a judiciously selected cone angle (Han & Mungal, 

2001). Appealing to continuity arguments for axial 

invariance, they argued that the appropriate frustum 

cone angle is that which yields a constant entrainment 

flow as the radius of the frustum was increased. In this 

way, they could measure entrainment well outside the 

turbulent jet boundary where they could be certain that 

velocity and density fluctuations were insignificant. 

However, this approach ignored the possibility of axial 

gradients existing outside the jet. 

The derivations of both Ricou and Spalding (1960) 

and Han and Mungal (2001) define entrainment as the 

axial change in axial mass flux in the jet. From equation 

11 of Han and Mungal (2001), the change in jet axial 

mass-flux  ̇  from one axial location    to another 

location    farther downstream (i.e., through the top 

and bottom surfaces of the control volumes in Fig. 3) 

can be expressed as 

 

 ̇  ∫      (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   
 

 

 

  ∫      (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    
 

 
 (1), 

 

where    (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the time-mean product of density   

and axial velocity   , and r is the radial coordinate. 

Recall that in our definition, jet entrainment occurs 

through the jet boundary surface (Fig. 3), and therefore 

although integral in Eqn. 1 extends to infinity, it is only 

necessary to compute to the jet boundary, rb (The value 

of entrainment varies in the integration only so long as 

gradients of axial velocity persist). If the ambient is 

assumed to have zero axial velocity gradient, Eqn. 1 

effectively defines the jet boundary as the radial 

position where the axial velocity first obtains a positive 

axial gradient (      ⁄  ). However, the calculation 



of gradient quantities, particularly in turbulent, 

unsteady flows is challenging. Therefore, we seek a 

theoretical link between this velocity gradient (second-

order) and the primitive variables measured directly by 

PIV. 

From continuity in an axisymmetric incompressible 

flow we know:  

 

   (   )   ⁄     (   )   ⁄     (2) 

 

where    is the radial velocity and    is the ambient 

density. Thus in the absence of axial gradients in    
outside the jet (i.e., where       ⁄  ), the 

“differential mass flux”         is constant (and 

negative) outside the jet (this is a reiteration that outside 

the jet, entrainment remains constant). Any deviation 

from this value (toward the positive) indicates a 

positive axial    gradient and thus marks the jet 

boundary according to the jet boundary definition 

implied by Eqn. 1. In the case of self-similarity, theory 

confirms that rvr reaches a minimum at the jet 

boundary. From the jet boundary, moving downstream 

axially along a constant radial position, the axial 

velocity must first increase to a peak and then decrease 

‘self-similarly’ (Abramovich, 1963). Accordingly, just 

inside the jet boundary,       ⁄  , so continuity 

demands that  (   )     ⁄ . Hence, moving outward 

radially toward the jet boundary,     must continue to 

decrease while       ⁄  , until we reach the jet 

boundary where      ⁄   (   )   ⁄    and     

reaches its minimum. 

Under conditions where the axial velocity outside 

the jet varies, such as for confined flow with chamber-

scale recirculation, a similar criterion can still define 

the edge of the jet. In the ambient gas, viscous effects 

are minimal, and the recirculating flow in the ambient is 

driven primarily by pressure gradients. For a chamber 

of finite radius,     in the ambient flow is necessarily 

zero at the chamber wall. Moving from the wall toward 

the jet, chamber-scale recirculation causes negative 

axial gradients of axial velocity (      ⁄  , e.g., see 

axial components of vectors in Fig. 3), so continuity 

demands that  (   )    ⁄  , such that     decreases 

with decreasing radius. Inside the jet boundary, 

turbulence/viscous forces entrain flow into the axial 

direction, causing a large positive axial velocity 

gradient (      ⁄  ) and turning     back toward 

zero. That is, when       ⁄  , continuity demands 

that that  (   )    ⁄  , such that     reaches a radial 

minimum moving along the radial coordinate from the 

wall toward the jet boundary. Hence, similar to the case 

of an ambient gas with zero axial velocity gradients, the 

edge of the jet can still be defined as the position where 

    achieves its minimum value and then starts to 

increase as the jet boundary is approached radially from 

outside the jet. 

The above definition of the jet boundary is useful 

for several reasons. First, it does not assume any strict 

conical shape (or any other shape) for the jet. The jet 

boundary may have any arbitrary contour as enforced 

by the physical geometry constraints and fluid 

mechanics. Second, it applies equally well for confined 

and unconfined jets, as well as for jets with co-flow. 

Third, it should be applicable for jet transients, such as 

the transient deceleration at the end of injection, which 

is the focus of the current study. Fourth, rather than 

computing the gradients in velocity, which have 

relatively high uncertainty, we can rely directly on the 

velocity map scaled by the local radius. Lastly, any 

change in the jet boundary caused by deceleration of 

the flow issuing from the nozzle should be reflected in 

shifts in the local     radial minima. 

An alternative definition of the jet boundary that 

merits discussion is the radial location where the axial 

velocity is zero. For confined jets such as in the current 

study, which generally have a negative axial velocity at 

the     minima, the position of zero axial velocity is at 

a smaller radius from the jet axis than the     

minimum. The position of zero axial velocity also 

represents the most upstream position along an 

entrainment streamline before the jet carries the 

entrained fluid farther downstream. Hence, the zero-

axial-velocity definition of the jet boundary is 

effectively a relocation of the entrainment flow to the 

most upstream position along the entrainment 

streamlines. That is, for different choices of the jet 

boundary, the distribution of the local entrainment rate 

along the jet axis altered. Although the integrated 

entrainment across the entire boundary must be 

identical for any boundary definition (as long as the 

boundary is not so far inside the jet that the entrained 

flow never crosses it), recall that we desire the local 

boundary definition to relate meaningfully to the 

physical surface through which the entrainment is 

actually occurring. Therefore some comparison of these 

definitions with other well known jet visualization data 

(e.g. schleiren) is desirable. 

For either definition of the jet boundary, the 

differential entrainment rate into a frustum-shaped 

control volume extending to the jet boundary can be 

defined as (Han & Mungal, 2001): 

 
  ̇

  
 
       

    ( )
 (3) 

 

where    is the density in the unmixed ambient,  is the 

frustum half-angle, and        ( )      ( )   is 

the normal velocity into the angled frustum surface.  

The normalized differential entrainment rate, or 

“entrainment coefficient” (Han & Mungal, 2001; Ricou 

& Spalding, 1960) can be defined as  

 



   
  ̇

  

  

 ̇ 
  (4) 

 

where   ̇  is the mass flux at the orifice during the 

relatively steady portion of the injection, and    

  √    ⁄  is the jet orifice diameter    adjusted 

according to the square root of the ratio of the injected 

fluid (fuel) density    to the ambient fluid density   . 

Equation 4 can be applied anywhere in the field, 

but as described above, it is only a spatially accurate 

measure of entrainment at the jet boundary. Even so, to 

better understand the radial and axial flows in the 

ambient gases that contribute to entrainment, we 

propose a field visualization of the local mass fluxes. 

We define a normalized differential mass flux field Fe, 
expressed as two components Fe,r and Fe,z: 

 

          
  

 ̇ 
    (5) 

 

          
  

 ̇ 
   (6) 

 

The entrainment at the local jet boundary    can be 

computed from the flux field components Fe,r and Fe,z, 

consistent with Eqns. 3 and 4: 

 

  (    )       (    )     ( )    (    ) (7) 

 

Entrainment field visualizations 
 

This work contributes a new, yet straightforward 

approach for visualizing the jet boundary and 

computing the axial entrainment distribution along the 

jet using the full-field entrainment data to determine the 

jet boundary in a way that is robust to axial gradients. 

An example PIV-measured velocity field in a plane 

passing through the nominal jet axis is presented in 

Fig. 4. The velocity data are ensemble averaged over 40 

separate injection events, all acquired at the same 

1700s delay from the commanded start of injection. At 

this instant in the transient jet development, the head of 

the jet is still within the measurement plane. As 

described earlier, although the PIV technique is able to 

resolve both high velocities within the jet and low 

velocities outside the jet by using either short- or long-

pulse-separation image-pairs, for clarity of presentation, 

only the low-velocity vectors are included here. In this 

and in following figures, the high-velocity region where 

the long-pulse-separation measurements are not reliable 

is masked off by a white triangle that approximately 

encompasses the jet interior. The colored contours 

underlying the velocity vectors represent the radial 

velocity component, as indicated by the colormap to the 

right of the image. 

To visualize entrainment throughout the ambient 

domain outside the jet, we apply a transformation to the 

velocity field to yield the components of   . The 

transformation is accomplished by scalar multiplication 

of each velocity component, at every measurement 

point, by the value [      
  

 ̇ 
]. The result is a vector 

field of the normalized differential mass flux 

components, [     ̂,     ̂]. (Notice from Eqn. 7 that the 

value of    is the dot product of the flux field at the jet 

boundary with the velocity vector normal to the surface 

of the frustum.) 

Figure 5 presents a contour plot of the result for 

the radial component,     . In the axisymmetric 

coordinate system, negative values of      in the 

ambient indicate radial flux directed toward the jet. The 

contours in Fig. 5 are similar to those in Fig. 4, but the 

scaling by the radius shifts them outward somewhat, 

and reduces the radial gradients outside the jet. Also, 

the contours in Fig. 5 display some asymmetry, with 

slightly larger      magnitudes on the right side of the 

jet. Note, however, that the raw velocity contours in 

Fig. 4 display much less asymmetry, especially near the 

jet. Hence, this increased asymmetry in Fig. 5 is likely 

because of misalignment between the coordinate system 

centerline and the actual jet centerline, so that the 

matrix multiplication of Fig. 4 with Fig. 5 perhaps uses 

values for the radius from the jet centerline that are too 

large on the right side and too small on the left. 

Quantification of this and other sources of uncertainty 

will be addressed following the results section. 

 

 

Figure 4. PIV-measured velocity field 1700µs after the 

commanded start of injection. Each vector in the map is 
[   ̂    ̂], and the contours show the magnitude of the 

radial velocity component (  ). 



          

 

Figure 5. Example field of the radial component of the 

normalized differential mass flux (    ). Contours are 

plotted every 0.04 units. 

 

Quantification of the jet boundary 

In the appendix section we describe the qualitative 

evolution of the flux field during the injection and after 

the end of injection, but quantifying the evolution of 

entrainment along the jet requires the position of the jet 

boundary where    can be computed from      and     . 
As described in the Entrainment quantification 

section,     (or     ) reaches a local radial minimum in 

regions where the axial gradient of    (or     ) is zero, 

which defines the jet boundary. In Fig. 6 we show the 

results of computing      at the axial position z = 20mm 

for different instants spanning from the start of injection 

to the final transient after the end of injection (gray 

lines). Selected profiles of      corresponding to 

measurement timings during the quasi-steady period of 

transient jet (black lines, see Appendix B for definition 

of quasi-steady conditions) are averaged to yield the 

time-averaged profile of     (red line). The radial 

minimum (blue circle) of the      time-average 

corresponds to the location where    is computed from 

the    components according to Eqn. 7. 

A computation of those average local minima at 

different axial distances yields a profile of the quasi-

steady jet boundary, shown as black dots in Fig. 7, as 

well as instantaneous jet boundaries when considering 

the minima of individual profiles of      (not shown).  

Although more complex  shapes are possible, in 

this case, we have assumed a cone-shaped jet boundary 

anchored at the injector (red dashed lines in Fig. 7) to 

compute a single average jet-boundary spreading half-

angle,   (see Fig. 3). With such a computation, the 

angle is 10.2°. This value is very close to the value of 

10.25° measured for this injector, in the same 

conditions, using schlieren imaging (Malbec et.al., 

2013). Using the alternative jet boundary, where the 

axial velocity is 0 gives an   of 10.9°. This is slightly 

higher but still very close to the value obtained with 

schlieren images. Based on the discussion in the 

Entrainment quantification section, a larger jet angle is 

expected when computed with the minimum     . This 

is indeed the case in the far field (e.g. z > 50mm in 

Figure 8), but the method used to computed the jet 

angle seems to minimize this effect. 

It is interesting that 3 different diagnostics provide 

values for   that are so close. However, in both in the 

PIV and schlieren techniques, the jet angle is defined 

under the assumption that the best fit for the jet 

boundary is a cone whose origin is coincident with the 

nozzle tip, therefore strong variation would have been 

more unusual. More significant is that a single cone 

angle presumes that the jet boundaries should be 

straight. Perhaps an alternate, continuum surface would 

produce better correlation between the local 

entrainment and a local jet spreading-angle. The 

implications of this observation are not explored here.  

 

Figure 6. Instantaneous and averaged      showing the 

radial location of the quasi-steady jet boundary at an 

axial distance of 20mm. Grey lines present the 

evolution of the profile during different instants 

throughout the whole measurement period. Black lines 

correspond to the profiles during the quasi-steady (as 

defined in Appendix B), and the red line is the average 

of the black lines. The blue circle defines the position 

of the local minimum of the red line, indicating the jet 

boundary where we compute     
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Figure 7. Black dots: Positions of the quasi-steady jet 

boundary. Dashed red lines: approximation of the 

quasi-steady boundary by a cone-shaped control surface 

with its vertex anchored at the injector orifice. 

 

Both definitions thus seem to provide reasonable 

jet boundary estimations. However, continuity of the jet 

boundary is also desirable to avoid missing integral 

contributions to the entrainment rate. Therefore, the 

cone-shaped control surfaces will be used to compute 

the air entrainment in the next section. Note, however, 

that the conical boundary with the vertex anchored at 

the injector orifice does not match the angle of the line 

of quasi-steady      minima (black dots in Fig. 7) very 

well. It appears that a smaller cone angle, with a vertex 

farther upstream of the orifice, would produce a better 

fit. Further implications of this observation are not 

explored here. Also, closer to the injector, string of 

quasi-steady      minima are essentially parallel to the 

radius, and finding a unique location where the axial 

velocity is zero for the alternative jet-boundary 

definition is also difficult. 

After the end of injection, the two jet boundary 

definitions yield much different evolutions of the 

instantaneous jet boundaries during and after passage of 

the entrainment wave. Figure 8 shows that before the 

end of injection, the boundaries are similar for the two 

definitions. After the end of injection, upstream of the 

entrainment wave, the jet width increases, and it is 

much wider using the jet boundary based on zero axial 

velocity. In this respect only the minimum     

definition is representative of behavior seen in schlieren 

images after the end of injection. 

 
 

Figure 8. Comparison of instantaneous jet boundaries 

before (left) and after (right) the end of injection, 

computed with the 2 proposed definitions. Black line: 

axial velocity definition; white dots: minimum     

definition. Note 5100µs is after the end of injection.  

Results: Entrainment profile comparisons 

With the jet boundaries and corresponding control 

surfaces defined, the variation of the entrainment 

coefficient along the jet axis   ( ) can be computed as 

defined in Eqn. 7. For this computation, the conical 

control-surface fit (red line in Fig. 7) to the individual 

     values that define the jet boundary. The results are 

presented in Fig. 9, which shows the axial evolution of 

  ( ) at different instants before the end of injection. 

The negative values are due to the head of the spray, 

which has strong flow radially outward. After the 

passage of the head of the jet,   ( ) is virtually 

constant, both along the jet axis and in time as long as 

the injection is sustained. The transient region typically 

observed near the nozzle, where   ( ) has a lower 

value (Han & Mungal, 2001; Hill, 1973), does not 

appear in Fig. 9, probably because the measurements 

are downstream this region (in our case,       ).  
A comparison between the value of   ( ) given by 

the 1-D spray model and the quasi-steady portion of the 

injection is provided in Fig. 9. The model uses the 

experimental conditions and measured injection rate as 

inputs, and uses an assumed jet boundary half-angle of 

=10.5°. The experimental and modeled values are 

remarkably similar. The mean of the experimental 

  ( ) in the quasi-steady portion of the jet is 

approximately 0.28 for both the model and the 

experiment, which is slightly lower than the typical 

0.32 value for gas jets (Han & Mungal, 2001; Ricou & 

Spalding, 1960). However, for diesel sprays,   ( ) is, 

to some degree, a characteristic of the internal flow 

through the nozzle orifice. Different nozzles, which are 



known to yield different spray angles, and thus different 

air entrainment, must have different values of   .  

 

 

Figure 9.   ( ) at different times during injection 

(solid lines). Comparison with the quasi-steady 

behavior computed with the 1D spray model (red 

dashed line). 

As described earlier, the 1D spray model predicts 

an entrainment wave of temporarily increased 

entrainment that travels downstream through the jet 

after the end of injection. Until now, no experimental 

evidence has been produced to validate this prediction 

in diesel jets. Details of this entrainment wave is 

explored in qualitative detail in the appendix discussion 

of the full-field      and      visualizations. In Fig. 10 

we show a quantitative comparison between 

experimental and modeled evolutions of   ( ), or    
along the jet boundary, after the end of injection.  

The evolution of the measured entrainment clearly 

shows an increase of    compared to the quasi-steady 

value, by a factor of approximately two. Additionally, 

the magnitude of the maximum entrainment increases 

as it moves downstream in both the model and the 

experiments. In the experiments, the region with 

temporarily increased entrainment has a wide axial 

extent, spanning over 40mm at 5000µs and 5500µs 

after the commanded start of injection. For the model, 

the magnitude of the entrainment wave peak is 2.5 

times that of the quasi-steady-steady jet, slightly higher 

than in the experiments, and its axial extent is also 

smaller. Fluid mechanical processes occurring in the 

real jet that are absent from the 1D model may 

distribute the entrainment wave over a greater axial 

extent, thereby also lowering its peak value. Similar 

conclusions were offered in a Reynolds averaged 

Navier-Stokes (RANS) simulation of a different 

transient jet (Singh & Musculus, 2010). Though the 

peak magnitudes and spatial extents of the measured 

and predicted entrainment waves are different, the time-

integrated entrainment during the transient increase 

above the steady jet (not shown) is nearly identical for 

model and experiment. Another difference is the fact 

that the peak in the modeled entrainment wave moves 

downstream faster than the experimental one. The 

confinement of the jet by the chamber, which is not 

included in the 1D model, likely contributes to some of 

this difference, but a further analysis of the data is 

required to be conclusive. 

 

 

Figure 10. Measured (solid lines) and modeled (dashed 

lines) axial evolution of   ( ) for different timings 

after the end of injection. 

Limitations and uncertainty 

One drawback of the PIV technique can be the 

inability to measure velocities close to zero. Here, the 

absolute uncertainty in the PIV has been quantitatively 

determined based on the random fluctuations measured 

in the near-zero velocity field before the beginning of 

injection. The measured root mean squared velocity is 

0.07m/s when it should have recorded zero. Expanding 

Ce at the normalization condition at the jet boundary, 

we obtain a simplified form for the equation: 

 

   
   
  
(
  
  
)

  ⁄

 

 

In Table 1, estimates of the precision and the 

computed sensitivities of the entrainment coefficient are 

tabulated. From these contributions to error in Ce, we 

see that deviation in the jet properties from their 

reference values are more dominant sources of 

uncertainty than the velocity field. 



 

Parameter Precision Error 

Sensitivity 

Relative 

uncertainty 

Ambient 

density 

0.3kg/m3 0.5 0.7% 

 

Fuel density 15kg/m3 0.5 1.1% 

Velocity 0.07m/s 1 3% 

Jet position 1e-4 m 1 10% 

Initial jet 

Velocity 

30m/s 1 6% 

Total 

Uncertainty 

  12.1% 

 

As with previous quantifications of entrainment, 

this method is subject to uncertainty in the jet position 

and angle relative to the PIV data plane. As described 

earlier, one manifestation of a misalignment is apparent 

jet asymmetry. Also, in the far-field of a steady jet, the 

entrainment predicted by the 1D model should be a 

constant. Deviation from a constant value could be due 

to real fluid-mechanical effects, like three-dimensional 

flows (velocities in the theta direction of the cylindrical 

coordinate system, which are not measured as assumed 

zero) or the effects of confinement by the finite 

chamber volume, or diagnostic issues with poorly 

resolved low velocities outside the jet. 

For our PIV measurements, particles of zirconium 

oxide of diameter        and density    

         ⁄  are seeded into the ambient gases. To 

determine how well these particles match the flow 

velocities, the Stokes time constant    is computed for 

these particles,            ⁄ . At an ambient-gas 

temperature of 900K, we assumed an ambient viscosity 

of           
   Pa-s, which yields         

    s. During flow development, inversion of the 

average quasi-steady-ensemble velocity gradients 

outside the spray provides an estimate of the average 

flow acceleration at the jet boundary. Expressed as a 

flow timescale          ⁄  
      

   ⁄
           

This gives a Stokes number near the jet boundary of 

       ⁄       . For St < 0.5, particles have been 

shown to reliably follow the flow, although a better 

target may be St < 0.01 (Clemens and Mungal, 1991). 

Inside the jet boundary, however, and including at the 

region where vz=0 was determined, much larger 

gradients are experienced, and the reliability of the PIV 

decreases due to an increased velocity lag of the 

particles. 

Near the injector orifice, we know that the 

gradients increase very rapidly (over spatial scales < 

1mm). Certainly when the interface is smaller than the 

PIV resolution, a biased velocity lag will result. 

However, as the jet develops downstream, the growing 

interface region smears these gradients, and in the 

regions of the flow presented, we believe the presented 

data at the jet boundary reliable. A more detailed 

analysis is planned for a future publication on how the 

particle lag contributes to error in entrainment rate 

under the decelerating jet (accelerating entrainment) 

conditions of the entrainment wave.  

Summary and conclusions 

Prior work that proposed to calculate jet 

entrainment by measuring either the axial momentum 

gain within the jet or ambient flows toward the jet 

presumed that outside the jet there are no axial 

variations in the ambient. Although this assumption 

does not affect measurements of total entrainment over 

the whole jet, only by determining an accurate estimate 

for the local jet boundary, rb, can the local entrainment 

be properly determined. In the previous cases of free-

jets, this jet boundary can be functionally determined as 

the position where     first reaches its minimum. Even 

for the case of confined jets, in the presence of 

significant axial and radial gradients measured in the 

present experiment, the minimum     compares 

favorably to previous estimates of the jet boundary 

made from Schlieren visualizations.  

Using this new definition for the spray boundary, 

we compared the measured local entrainment of a 

transient injection to the predictions of a simplified 1D 

jet model to confirm the existence of an entrainment 

wave after the end of injection. We found quantitative 

agreement in the quasi-steady jet entrainment and 

qualitative agreement in the transient entrainment 

increase due to the entrainment wave after the end of 

injection. The peak local entrainment increase above 

that of a quasi-steady jet in the experiment is only about 

2/3 of that predicted by the 1D model, and the duration 

of the local entrainment increase is longer in the 

experiment. Nevertheless, the measured time-integrated 

entrainment increase after the end of injection matches 

the predictions well, indicating that only the distribution 

of the entrainment wave and not its total effect are 

different than predicted. Fluid mechanical processes 

occurring in the real jet, which are not included in the 

1D model, may be responsible for the wider distribution 

of entrainment than predicted by the model. We 

speculate that the effect of confinement on this jet may 

also play a role, but more work is needed to clarify the 

respective effects. 
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Nomenclature 

 

Ce jet entrainment Coefficient 

d diameter 

Fe differential mass flux field 

m mass 

r radius from jet centerline 

Re Reynolds number 

St Stokes number 

 density 

 viscosity
  jet velocity 

 timescale 

 

Subscripts 

a ambient (chamber gasses) 

f fuel (diesel) 

p particle 

r radial derivative 

z axial derivative 

b jet boundary 

 

Acronyms 

 

ECN Engine Combustion Network 

IFPEN IFP Energies Nouvelles 

LDV Laser Doppler Velocimetry 

PIV  Particle Image Velocimetry 
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Appendix A: Entrainment Field Visualization 

The spatial and temporal development of      and      during injection appear in Figs. 12 and 13, and after the 

end of injection in Figs. 14 and 15. Although data were collected every 100 µs, the data are presented here at wider 

intervals.  We present every 400µs during injection (recall start of injection at 350µs) and every 200s shortly after 

the end of injection(at 4600µs), with an increase to 400µs after 5600µs. From Fig. 12, we conclude that during the 

flow development,      is relatively constant over a small region near the jet boundary and upstream of the head 

vortex. For example, in the 2400 microsecond image of Fig. 12,      is relatively uniform from roughly   = 20 to 

50mm downstream and at radii from the jet boundary to about   = 10-15mm from the jet centerline. As described in 

the Entrainment quantification section, when the axial velocity is axially invariant in the ambient,    , and hence 

    , is constant radially. At those axial locations at large radii however, the      departs from its local minimum (i.e. 

 (   )    ⁄  ) which by continuity implies that in this region  (  )    ⁄  . Indeed, an axial gradient in       is 

apparent in Fig. 13, likely caused by chamber-scale recirculation. 

As described in the Entrainment quantification section, the minimum in    , or equivalently in     , is one 

definition of the jet boundary, and recall that only at the jet boundary is the correct entrainment rate measured. In the 

last image of Fig. 12, the minimum generally occurs at the interior edge of the yellowish or light-green contour, for 

which      is roughly -0.3, corresponding to       . Additionally,     (or     ) reaches a local radial minimum in 

regions where the axial gradient of      is non-zero in Fig. 13. Furthermore, the radial minimum in      generally is 

in the same vicinity as the minimum     .  
The entrainment coefficient    includes contributions from both the radial and axial components of   . 

However, at a typical jet-boundary angle near 10°, the contribution of      to    is only about 17% (Eqn. 7), such 

that    is dominated by     . The value of      (and hence,   ) near 0.3 is typical of momentum-driven, turbulent 

non-reacting jets (Han & Mungal, 2001; Ricou & Spalding, 1960).  

After the end of injection (Fig. 14), the peak magnitude of      increases (     becomes more negative) relative 

to the preceding quasi-steady level. This entrainment increase propagates downstream with time. (     remains small 

near the jet-boundary minimum     , so that    continues to be dominated by     .) As described in the introduction, 

this transient entrainment wave was predicted by previous 1D jet model analyses (Musculus & Kattke, 2009; 

Musculus, 2009). In addition to the transient increase in entrainment after the end of injection, the apparent jet 

boundary in the      and      fields in Figs. 14 and 15increases, especially in the upstream region. Though the      

contours in Fig. 14 often show multiple minima along some radial paths, the      radial minimum generally moves 

outward after the entrainment wave passes. In some instances, such as at 7200 or 8000s, the radial minima at axial 

positions near 20 mm downstream appear to be outside the field of view. The zero axial velocity definition of the jet 

boundary also yields an increase in the jet width after the end of injection. This boundary is indicated by the        

contour in Fig. 15. In particular, the 5000s image in Figure 14 shows a clear increase in the jet boundary radius at 

the        contour to approximately 10mm in the upstream region, and by 8000s the contour has progressed to a 

20mm radius in the near field 

  



 

 

 

Figure 11. Developing field of the differential radial mass flux (    ) at various times during injection (350-4600µs 

after the start of injection). Data from the jet interior are whited out due to lack of correlation in PIV data. 

  



 

 

 

Figure 12. Developing field of the differential axial mass flux (    ) at various times during injection (350-4600 µs). 

  



 

 

 

Figure 13.  Developing field of the differential radial mass flux (    ) after the end of injection (4800-9000 µs after 

the start of injection). 

  



 

Figure 14. Developing field of the differential axial mass flux (    ) after the end of injection (4800-9000 µs after 

the start of injection). 

  



Appendix B: Definition of the quasi-steady behavior of the jet  

In this appendix we describe how we determined the time interval over which the differential radial mass 

flux field, Fe,r, and hence the jet boundary is considered quasi-steady.  The difficulty lies in defining when during 

the injection the local values reach and then depart from a quasi-steady. Between these two events is the quasi-

steady period. These instants are specific to each axial location, e.g. closest to the nozzle tip, the quasi-steady is 

reached sooner and departed from sooner.  

The criteria that has been defined uses the minima found from Fe,r. Here we examine the time dependence 

of the minima Fe,r(t,r,z). To demonstrate the method, we focus on a single axial distance (z = 30mm), although the 

procedure was repeated at each axial location. In Fig. 16 we plot a normalized histogram of the values attained by 

Fe,r at r =10mm. Before the passing of the head of the jet, Fe,r is near zero or positive. During the quasi-steady (see 

Appendix A), the Fe,r has a broad plateau just outside the jet boundary, near the value of 0.3. All profiles for which 

the value of Fe,r(r,z) lies within 10% of this value are averaged. In Fig. 7 in the text, these profiles are plotted in 

solid black. The red curve is the ensemble average of all of the black curves during this quasi-steady period. Finally, 

the open dot at the minimum of the red curve is the computed quasi-steady jet boundary. Notice some values of Fe,r 

indicate larger entrainment (below -0.33). These histogram contributions occur after the end of injection and indicate 

the transient entrainment wave. 

 

Figure 15. Normalized histogram of Fe,r(t,r=10mm,z=30mm) with bin widths of 0.02 Fe,r. Solid red line is the 

position of the maximum and dashed red lines are values used to determine the time interval considered the quasi-

steady. 


