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Abstract—We present a local search strategy to improve
the mapping of a parallel job’s tasks to the MPI ranks of
its parallel allocation in order to reduce network congestion
and the job’s communication time. The goal is to reduce
the number of network hops between communicating pairs
of ranks. Our target is applications with a nearest-neighbor
stencil communication pattern running on mesh systems with
non-contiguous processor allocation, such as Cray XE and
XK Systems. Using the miniGhost mini-app, which models
the shock physics application CTH, we demonstrate that our
strategy reduces application running time while also reducing
the runtime variability.

Keywords-Task mapping, stencil communication pattern,
non-contiguous allocation, local search.

I. INTRODUCTION

Task mapping is the assignment of a job’s tasks to the
set of computational elements allocated to that job. When
using MPI programming, it is the decision of which MPI
rank performs which part of the computation. Improved task
mapping has been shown to significantly reduce job running
times for a variety of scientific applications (e.g. [1], [2], [3],
[4], [5]), including achieving a speedup of 1.64 on a quantum
system simulation [3]. Better task mapping reduces the
number of hops between communicating tasks and hence the
amount of system bandwidth consumed by each message. As
systems grow larger and processor performance continues to
improve faster than network performance, the importance of
task mapping will continue to grow.

The job’s communication pattern and the system’s net-
work topology are both important for task mapping. Here,
we focus on jobs with a nearest-neighbor stencil commu-
nication pattern, a very common pattern in computational
science applications. For this pattern, the tasks correspond to
integer points in a grid and communicate with their nearest
neighbors, the 4 closest points in the +x, −x, +y, and −y
directions for 2D or the 6 closest points for 3D (add the +z
and −z directions). This pattern arises naturally from spatial
decompositions into hyperrectangular regions.

In this paper, we target machines whose network topology
is a 3D mesh and allow the possibility that a job is allocated
to a non-contiguous set of nodes. This is appropriate for

the Cray XT, XE, and XK series of systems, including the
Cray XE6 (Cielo) we used for our experiments. An alternate
allocation model is used by systems such as the Blue Gene,
which always assigns each job a contiguous set of nodes
isolated from each other [6]. This isolation provides benefits
[7], but also decreases system utilization (e.g. [8], [9]).
There are task mapping algorithms designed specifically for
systems with contiguous allocation (e.g. [10], [11]). Note
that our algorithms can be applied to the contiguous setting
as well, but that the reverse is not true.

Although jobs are allocated nodes on our target machines,
our task mapping algorithms actually work in terms of
MPI ranks rather than compute nodes allocated to that job.
Each MPI rank is a single process in a distributed memory
program; we will refer to them simply as ranks. In general,
each compute node may support many ranks depending on
the number of cores it has and the mix of distributed-
and shared-memory programming models (e.g. MPI and
OpenMP) used.

A recent task mapping algorithm developed for our setting
is GEOMETRIC (GEOM) [12], which operates by finding
corresponding decompositions of the job tasks and allocated
ranks. This algorithm was shown to outperform a wide
variety of other algorithms, reducing application running
time by around 30% [12], [13].

Contribution: The main contributions of this paper are
as follows:

• We present a local search algorithm that improves on
GEOM by swapping pairs of tasks when doing so
improves the average distance between communicating
tasks.

• We demonstrate our algorithm in a proxy application
and show that it slightly improves the application’s total
running time. Furthermore, it does this while reducing
the variability in total running time.

• We examine the number of swaps made by our algo-
rithm, showing it is reasonable in practice. We also
show that some processor allocations require more, but
use the distribution of swaps made to provide guidance
on when to cut off the search and avoid pathological
cases.
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At a high level, our results again demonstrate that GEOM is
a good task mapping algorithm, but show that local search
can be cheap enough to improve upon it.

Outline: The rest of this paper is organized as follows.
Section II describes our algorithms. Section III describes
the setup for our experiments and simulations. Section IV
describes our results. Section V summarizes related work.
Section VI concludes and discusses future work.

II. GEOM AND GSEARCH

We now describe our task mapping algorithms. GEOM
first rotates the job so that its dimension lengths have the
same order as the bounding box of the ranks (i.e. if the
bounding box of ranks is largest in the x dimension, then
the job’s largest dimension will also be x and so on).

After any necessary rotations, GEOM develops corre-
sponding decompositions of the set of tasks in the job
and the set of ranks allocated to it. Each of these are
represented with a list of coordinates, the coordinates of a
task being its position in the job’s communication pattern
and the coordinates of a rank being its position in the
machine’s 3D grid. In addition, the job is represented with a
triple giving its size in each dimension; the job is always a
hyperrectangle. At a given step, the job’s tasks are split into
two hyperrectangles as evenly as possible along its longest
dimension. For example, a 3× 4× 5 job would be initially
split into two hyperrectangles of size 3×4×3 and 3×4×2
respectively. The same dimension is then used to split the
ranks into two subsets with corresponding sizes. This would
put the 36 ranks with smaller z coordinates into the first
subset and the 24 ranks with larger z coordinates into the
second subset (ties broken consistently). The corresponding
subsets of tasks and ranks are then mapped to each other
recursively. The base case is subsets of size one, which are
handled by mapping the only task to the only rank.

Hoefler and Snir [14] describe a recursive bisection
algorithm for general job communication patterns. They
represent the communication pattern with a graph and use
the METIS graph partitioner [15] to split the graph. Often a
more general algorithm is preferable, but in this case GEOM
has two important advantages over the more general algo-
rithm. First, it is a simpler and faster algorithm. Second and
more importantly, it gives better mappings; Deveci et al. [13]
showed that it resulted in job communication times roughly
15% shorter than the more general algorithm. We attribute
this advantage to the benefit of using task coordinates at
every level of the recursion. Consider Figure 1, which shows
two levels of a possible GEOM decomposition. Because
task coordinates are used, tasks with low x coordinates are
near each other (in regions A and C) even when they are
separated by the decomposition’s first cut. This would not
necessarily be the case when a general graph partitioner is
used since reversing the roles of C and D or using different
dimensions to split the tasks and ranks could give equally
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next cuts
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A

Figure 1. Two levels of cuts in decomposition created by GEOM

good cuts. Using the coordinates allows GEOM to easily
exploit the full structure of the problem.

Our other algorithm, GEOM-BASED LOCAL SEARCH
(GSEARCH), uses the observation from [12] that job running
time correlates with the average number of hops between
communicating tasks (average hops metric). GSEARCH aims
to improve the mapping quality by performing a local search
to improve the average hops metric. Specifically, it begins
with the mapping generated by GEOM and examines pairs of
tasks, swapping the ranks executing them whenever doing
so reduces the average hops metric. The search continues
until a local minimum is found, meaning that no pairs can
be swapped to improve the metric. (Some slight variations
of GSEARCH are discussed in Section IV-C.)

III. EXPERIMENTAL SETUP

We evaluate these algorithms using experiments on a
large system and on a trace-based simulator. The simulations
were made comparable to the experiments when possible,
with a similar machine size, interconnect topology, and
processor allocation algorithm. This was done to correlate
the simulations to the experiments so that simulations could
be used when experiments were impractical.

The simulations did not model the effect of mapping on
running time so the algorithms are evaluated based on their
effect on average hops, but in exchange they allowed us
to examine our algorithms on many more jobs, each of
them taken from a real trace and allocated with a realistic
processor allocation algorithm.

A. Cielo
Our experiments were run on the ACES [16] system

Cielo [17], located at Los Alamos National Laboratories.
Cielo is a Cray XE6 with 8,944 compute nodes plus a
smaller number of service nodes connected in a Cray Gemini
3D torus in a sixteen by twelve by twenty-four (XYZ) topol-
ogy, with two nodes (sockets) per Gemini. Each compute
node is a dual AMD Opteron 6136 eight-core “Magny-
Cours” socket G34 running at 2.4 GHz. Each service node
is a 272 AMD Opteron 2427 six-core “Istanbul” socket F
running at 2.2 GHz. The bi-section bandwidth is 6.57 by



Nodes Job Dimensions
4 1× 4× 1
8 2× 4× 1

16 2× 4× 2
32 2× 8× 2
64 4× 8× 2

128 4× 8× 4
256 4× 16× 4
512 8× 16× 4
1K 8× 16× 8
2K 8× 32× 8
4K 16× 32× 8

Figure 2. Job Dimensions used in miniGhost experiments

4.38 by 4.38 (XYZ) TB/s. As of November 2013, Cielo
was number 26 on the Top500 list [18].

The application used in the experiments was miniGhost.
As part of the exascale research program, the DOE lab
community is developing mini applications (miniApps) that
are representative of the computational core of major ad-
vanced simulation and computing codes. MiniGhost is a
miniApp for exploring boundary exchange strategies using
stencil computations in scientific parallel computing. The
miniGhost application [19] is a bulk-synchronous message
passing code whose structure is modeled on the compu-
tational core of CTH [20]. CTH is a multi-material, large
deformation, strong shock wave, solid mechanics code de-
veloped at Sandia National Laboratories.

A set of experiments consists of miniGhost runs for
various numbers of nodes (powers of 2). In each experiment,
the two mapping algorithms are run one after the other with
the same allocation to minimize the experimental variances
other than the task mapping algorithm used. All experiments
in a set were submitted to the system queue at roughly the
same time. We ran a total of six sets.

The communication pattern for each job was a 3D nearest
neighbor stencil with dimensions as shown in Figure 2.
(These dimensions are the same as those used for this
application in prior work on task mapping [12], [21]; the
aspect ratio comes from a shaped charge problem for CTH.)
Internode communication was performed with MPI. Each
MPI rank ran on all 16 cores in a node, with intranode
parallelism managed with OpenMP. The miniGhost output
includes total time, communication time as a percentage of
total time, and average hops between neighboring ranks in
the application. The application spends about thirty percent
of its time communicating.

B. Simulator
For our simulation, we ran a trace-based simulator with

the LLNL-Atlas trace (version 1.1 clean) from the Parallel
Workloads Archive [22]. The trace is from a cluster with
9,216 nodes. To match this node count with a mesh system,

our simulation assumed it was a 24×24×16 mesh. From this
trace, we took job start times, execution times, and number
of nodes needed. (Note that most Parallel Workloads Archive
traces give job arrival times and thus require scheduling;
since the LLNL-Atlas trace gives start times instead, every
job runs exactly when it did on the real system.)

To identify the nodes allocated for each job, we used a
linear allocation algorithm called snake best fit that combines
ideas of Lo et al. [8] and Leung et al. [23]. This algorithm
organizes the nodes in a linear order along a “snake” or “s-
curve”, which curves back and forth along the machine’s
shortest dimension (z). The free nodes are grouped into
intervals by their position along the curve and the algorithm
allocates nodes from the smallest interval with enough nodes
(best fit). If no interval is large enough, then nodes are
selected to minimize the span, the maximum distance along
the curve between selected nodes. This scheme is fast and
generates good allocations [24]. It is also similar to the
algorithm used in practice on Cray systems.

IV. RESULTS

Now we present our experimental results in three parts.
First, we demonstrates that GSEARCH yields better task
mappings than GEOM. Second, we look at the number of
swaps that GSEARCH makes, a potential concern for its
running time. Third, we look at a couple of slight variations
on GSEARCH that were designed to reduce the number of
swaps needed.

A. Mapping quality

The main criteria for task mapping quality is application
running time. Figure 3 shows the average running times
for miniGhost runs of different sizes using GEOM and
GSEARCH. The two algorithms are essentially tied at small
job sizes, with GSEARCH gradually becoming better as the
job size increases to 2K nodes and then essentially tying
again at 4K nodes. GSEARCH gives a better average time
for all these sizes, with the largest difference being 0.83
seconds at 2K.

The relatively close performance of the two algorithms at
4K nodes breaks the apparent performance trends up to that
point. In particular, it appears anomalous since the running
time of GEOM breaks its clear upward path prior to that
job size. One possible cause of this variation is random
noise due to contention from other jobs, which is known
to significantly affect running times [7]. An examination of
individual runs does reveal significant variation, but not in a
way that supports this explanation, however. In only one of
the six runs at 4K nodes did GEOM take longer than 24.25
seconds, its average time at 2K nodes. Even the best 4K
run for GSEARCH relative to GEOM only beat it by 0.52
seconds, less than the average amount by which GSEARCH
beat GEOM for the 2K node size. The apparent anomaly of
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Figure 3. Running time by job size for miniGhost on Cielo (Average over
6 sets of experiments)
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Figure 4. Difference between max and min running time by job size for
miniGhost on Cielo

GEOM’s performance at 4K is an interesting open issue and
we return to it in Section VI.

A second criteria for task mapping quality is predictability
of performance. Figure 4 shows the difference between the
longest and shortest running times for each algorithm on
each job size. We see that the range of running times in-
creases with job size for both algorithms, but that GSEARCH
generally delivers only about two thirds of the runtime
variability of GEOM. Thus, the performance of GSEARCH
seems to be both slightly better and more predictable.

Our simulation results also support the idea that
GSEARCH improves upon GEOM task mappings except
for the smallest jobs. Figure 5 shows the average distance
metric as a function of job size for both task mapping
algorithms; recall that the simulations do not model the
effect of mapping on running time but that average hops has
been shown to correlate with it. Since GSEARCH explicitly
optimizes this metric, it always achieves average hops that
are at least as low as GEOM. Just as in the experiments,
there is neglible difference between the algorithms for small
jobs; with few nodes, there is little opportunity to improve

A
v

er
ag

e 
ed

g
e 

le
n

g
th

 (
h

o
p

s)

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000
Job size (nodes); displayed in buckets of 200 nodes

Geom
GSearch

 1

Figure 5. Average edge length by job size for LLNL-Atlas trace

on a reasonable mapping. With larger jobs, GSEARCH gives
consistently better average hops. The curves are roughly
parallel, indicating that variations are caused by allocation
quality, which would affect both task mapping algorithms.
We believe that the specific peaks and valleys are artifacts
of the allocations; these are not smoothed out because some
of the job sizes correspond to only a few jobs. Nonetheless,
the general behavior is clear, with GSEARCH consistently
reducing the average hops metric.

This reduction in average distance may contribute to the
reduction in runtime variability that GSEARCH provides
relative to GEOM. Much “random” variability in job running
times is caused by congestion on network links, which can
delay messages [7]. Reducing the number of hops between a
pair of communicating tasks makes that pair’s messages less
susceptible to congestion. It also makes that pair’s messages
less likely to interfere with other messages in the system,
including messages between other tasks in the same job.

B. Number of swaps needed

Having discussed mapping quality, we now examine the
number of swaps made by GSEARCH. This was one of
our initial concerns about GSEARCH; if the number of
swaps is too large, the extra time spent improving the task
mapping would eliminate the benefit of doing so. In order
to study this issue, we looked at the numbers of swaps used
in our experiments and simulations, as well as performing
additional simulations specifically to get a sense of the
distribution of swap frequencies. This work assuaged our
concerns and suggested bounds that could be used to limit
the number of swaps and avoid extreme worst-case behavior.

Figure 6 shows the average and maximum number of
swaps GSEARCH performed on jobs of each size during our
experiments on Cielo. Both the average and maximum val-
ues seem to grow linearly with the job size. The difference
between them shrinks in proportion of the average value,
though its absolute magnitude generally increases with job
size (not visible from the graph because of the log-log scale).
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Figure 7. Number of swaps made by GSEARCH as a function of job size
on LLNL-Atlas trace

The exception is that the values are relatively close at 4K,
possibly because this size uses so much of the machine.
Jobs occupying a large fraction of the machine must have
large contiguous components and GEOM does well in this
case; it gives a perfect mapping if the allocation and job
communication pattern have matching shapes.

Figure 7 shows the number of swaps as a function of
job size for the trace-based simulation. The points show
the average value and the top of the error bar shows the
maximum value. This figure shows considerably more noise
than Figure 6 because many sizes are represented by only a
few jobs, but the trends are very similar. Again, the average
number of swaps seems to increase linearly with the job
size; here we can see the slope is around one fourth. The
upper envelope of the maximum numbers of swaps also
seems to be growing linearly up through jobs of size 4K. We
attribute this to the size affect mentioned above and also to
the fact that nearly all of these large sizes were represented
by relatively few jobs.

To further demonstrate that the number of swaps is not
overwhelming, we ran some additional simulations: for a

F
re

q
u

en
cy

 500

 1000

 1500

 2000

 2500

 3000

 50  100  150  200  250  300  350  400  450
Number of swaps

9x9x9
10x10x10
11x11x11

Job size:          8x8x8

 0

Figure 8. Swap count frequencies from 100,000 random allocations on
16× 24× 24 system

variety of job sizes, we counted the number of swaps made
by GSEARCH on a randomly-chosen allocation of nodes.
Each job size was tested with 100,000 allocations. Figure 8
plots the number of allocations that resulted in each number
of swaps. All of sizes give bell-shaped frequency curves,
indicating that the number of swaps is fairly concentrated
about the mean value. As the job size increases, the curves
move to the right and do flatten somewhat. Even for the
largest job (11× 11× 11), however, the maximum number
of swaps (429) is only 120=39% above the mean for its
curve (309) and 99% of the allocations use at most 368
swaps, only 19% above the mean.

Random sampling like this may miss the outermost tails
of a probability distribution, but these results are useful for
determining a threshold at which to stop seeking swaps.
The mean number of swaps made seems to consistently be
around n/4 for a job of size n. To allow all the values shown
in Figure 8, we increase this by 40% to 1.4×n/4 = 0.35n.
Increasing this by a small additive term so that small jobs
are given some flexibility gives a threshold 0.35n+10. The
exact constants can be tuned, but using this threshold would
allow the search to continue in all except the most extreme
cases.

To check the behavior of GSEARCH if its search is
terminated due to hitting a threshold on the number of swaps,
we had our simulator print the average hops metric after each
100 swaps. Figure 9 shows the results for some jobs of size
4K. There are 286 jobs of this size in the trace so the figure
only depicts a few of them selected to show the range of
behavior. Depicted are the five jobs which received the worst
initial mapping from GEOM, required the largest number of
swaps, improved the most in the local search, improved the
least, and received the best initial mapping from GEOM (this
job also had the best final mapping). There were other jobs
in the trace with similar values for all these characteristics
(initial/final average hops, number of swaps, and amount of
improvement). Some jobs appeared exactly the same; at least
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Figure 9. Average edge length as a function of the number of swaps
made on sample jobs from the LLNL-Atlas trace. All selected jobs used
4K nodes

in some cases this occurred because the jobs ran one after
another and thus received identical allocations. There were
also many jobs that had intermediate values for all of the
listed characteristics. The amount of improvement for most
jobs was similar in each 100 swaps (appearing as a straight
line in the figure), but there was some variation; the rate of
improvement noticeably trails off for the job with the worst
initial mapping. Different jobs also improved at significantly
different rates (appearing as different slopes) in a way that
does not appear to be related to the quality of the initial
mapping; the lines for many jobs cross even though this
happens only once among the jobs selected for depiction in
Figure 9. (Recall that those jobs were selected because they
are boundary cases.)

In addition to these simulations of the effect of a thresh-
old, we ran a couple of experiments with swap thresholds
on Cielo. Each consisted of a series of miniGhost runs with
a different threshold. Every run in an experiment had the
same allocation and they were executed consecutively, but
random noise causes the performance to jump much more
than the smooth progression shown in Figure 9 suggests.
Despite this, using a threshold does not appear to harm the
algorithm, which is all we really need since the goal of using
a threshold is to prevent pathological behavior.

In order to investigate the true worst case number of
swaps, we also exhaustively tried GSEARCH on all allo-
cations for some small cases. We found that a 4× 2× 1 job
can require as many as 12 swaps (1.5 times the job size) on
a 4× 4× 2 machine. Using this many swaps is vanishingly
rare, however, with only 4 allocations of

�32
8

�
= 10, 518, 300

requiring this many; see Figure 10 for the full distribution.
We also observed that it is important to start with a

good initial task mapping. We were able to hand construct
bad initial mappings that gave longer sequences of swaps
than any we saw with GSEARCH. In particular, we found
improving sequences of swaps of length 14 for a 2×3 job, 23
for a 3×3 job, 31 for a 3×4 job. These give ratios of number
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Figure 10. Swap count frequencies from all possible allocations of a
4× 2× 1 job on a 4× 4× 2 system

of swaps to job size of 2.3, 2.5, and 2.585 respectively, much
higher than even the 1.5 that we saw above when running
GSEARCH on all allocations; clearly the quality of the initial
mapping matters.

It seems challenging to give an absolute bound on the
number of swaps that are possible. One idea is to bound the
number of times a given pair of tasks can swap. Surprisingly,
we observed several cases in which a pair of tasks can swap
more than once, with the second swap putting the tasks back
onto their original ranks. This can happen when intervening
swaps move their neighbors in a way that makes the original
swap detrimental.

C. Variations on GSEARCH

Thus far, this paper has discussed a particular local search
strategy which makes any swap that improves the average
distance as soon as it is identified. Early in this research, we
used simulations to compare this algorithm (GSEARCH) with
a couple of alternate ways to choose swaps. In particular, we
looked at the following alternatives:

1) Consider swaps rank by rank, testing all swaps involv-
ing a given rank before making the best one (i.e. the
one which improves the average distance by the most).

2) Test swaps of all pairs before making the single best
one.

The goal of each of these alternatives was to reduce the
number of swaps by avoiding long sequences of swaps that
provide little benefit. We found that the alternate algorithms
accomplish this, reducing the number of swaps performed by
12% and 35% respectively while giving final mappings that
are of essentially indistinguishable quality (average distance
within 0.2%). Unfortunately, the additional time required to
find each of the swaps eliminated the savings of doing fewer
of them; the first alternative took 2% longer than GSEARCH
and the second took 2.5 times as long. The simple strategy
used by GSEARCH seems to be the best of these ideas.



V. RELATED WORK

There is a wide variety of prior research on task map-
ping in different settings, which we now summarize. Be-
fore GEOM, the main algorithms for task mapping with
non-contiguous allocations were based on linear orderings.
MiniGhost’s default behavior is to assign tasks to ranks in
row-major order; this is typical for applications that do not
specifically consider task mapping. With ALPS and Moab,
MPI ranks are determined by the allocation order, which
comes from a node numbering along a space-filling curve
[25] using an algorithm similar to the one described in
Section III-B. The default mapping then assigns rows along
this curve, which can create long edges in the task columns
and at the end of each row. Barrett et al. [21] observed that
this mapping did not scale well above 4K cores (256 nodes)
on Cielo and improved it by renumbering the tasks so that
a submeshes of the job are assigned to each node.

GEOM was proposed by Leung et al. [12], who originally
called it RCB. They showed that it beat the strategies
above and adaptations of task mapping algorithms from the
contiguous setting proposed by Bhatelé et al. [11]. Deveci
et al. [13] created MULTI-JAGGED (MJ), a slight general-
ization of GEOM that uses multi-way partitions instead of
bisections to decompose the sets of tasks and ranks. They
also considered shifts to account for the wraparounds of a
torus interconnect and trying all rotations rather than just
the one that gives the job and ranks the same dimension
ordering. The shifts and extra rotations gave a slight benefit
to miniGhost and more for miniMD [26], a miniapp based
on a molecular dynamics application whose communication
pattern can propagate information further in a single step.
For both applications, GEOM and MJ outperformed the
graph partitioning-based mapping algorithm by Hoefler and
Snir [14] described in Section II.

Other heuristic strategies have also been applied to task
mapping with non-contiguous allocations, including greedy
[27], genetic algorithms [28], simulated annealing [29], and
partitioning by spectral methods [30].

VI. DISCUSSION

We have shown that the local search strategy GSEARCH
can slightly improve the running time of stencil-based appli-
cations while meaningfully reducing the variation between
runs. On one hand, our results further demonstrate the
quality of the GEOM algorithm, which seems to obtain
solutions near a local optimum. On the other hand, they also
show that local search is cheap enough to be beneficial.

The main outstanding question from our work is to explain
the apparent anomaly of GEOM improving between the 2K
and 4K sizes. A similar phenomenon was reported in a
slightly different setting in prior work by Leung et al. [12].
Specifically, they reported a slight decline in GEOM running
time for miniGhost going from 2K nodes to 4K nodes when
each MPI rank ran on 4 cores rather than 16 as in our

experiments. One likely explanation is that this improvement
comes from the job using such a large part of the machine;
this necessarily means that many of the allocated processors
are contiguous, which simplifies task mapping, and also
lessens the interference from other jobs since there are
fewer of them. This explanation is not entirely consistent
with Figure 5, however, since that figure shows GSEARCH
improving the average hops metric for all job sizes. Possible
reasons for this discrepancy include the following:

• Architectural differences; the simulated system has a
longer y-dimension instead of 2 nodes at each mesh
location as Cielo does.

• Differences in job shapes.
• Imperfections in metric; average hops is not the same as

job running time, despite the correlation between them
and other evidence of the metric’s usefulness as a proxy
for running time (like the benefits from GSEARCH).

We plan to investigate these issues and also consider other
possible causes of GEOM’s performance improvement at the
largest size.

Beyond this open question, a logical next step in this work
is to develop a fully parallel implemenation of GSEARCH;
our current version computes the mapping serially even
though all nodes in the allocation are available. The search
space of possible swaps is large and most swaps are inde-
pendent so parallelism should help reduce the search time,
but it is not obvious how to decompose the search space or
handle swaps that will affect multiple parts of it. One idea
is to build on MJ [13], which already investigates different
shifts and rotations in parallel.
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