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Introduction

• Transistors generate heat from lossey switching
• Heat sink transfers heat to ambient
• Thermal interface material (TIM) connects the components

• Mechanically
• Thermally 

Thermal Path



Introduction

Electronic assemblies 
continue to shrink

Heat flux is increasing

Pentium Processors:
• P1: ~10 W/cm2

• P4: ~100 W/cm2

The thermal path must
become more efficient

[Economist, 2003]



Thermal Bondline

Factors to optimize:
• h bondline thickness
• TIM

• Rcontact
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Thermal Bondline

Deviation from theoretical Rbondline may be due to:
• Phonon scattering at the interfaces
• Incomplete wetting
• Voiding or delamination
• Processing induced heterogeneity
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TIM



Research Overview

Research goal:
• Minimize Rbondline

Approach:
• Study the bondline formation process
• Assess bondline thermal performance
• Characterize bondline microstructure
• Determine sources of Rbondline

• Develop enhanced TIM materials



Bulk Samples: - 12.7 mm diameter
- 1 mm thick
- Used for , Cp, bulk measurements

TIM Samples

Multilayer Samples: - Aluminum 6061 T6 alloy substrates
- 12.7 mm diameter 
- Substrates 1 mm thick
- h determined with thickness gauge
- Used for Rbondline measurements



Bondline Assembly

TA Instruments ARES 
rheometer used

Squeeze rate and target 
bondline thickness controlled:

• 0.4 to 40 m/s possible
• 40 to 200 m bondlines

Normal force vs. gap width 
monitored



Laser Flash Diffusivity Measurements

Equipment:
Anter FlashLine 5000

Analysis:
Anter Advanced Diffusivity 
software (bulk samples)



Laser Flash Diffusivity Analysis

Multilayer Sample Analysis:
• New numerical model from Anter

• Considers heat losses from front and back faces
• Considers the middle layer as a contact resistance
• No need to provide , Cp, or h
• Used for TIM 1 and TIM 3 nanocomposite

• Multilayer method developed by Lee [1976]
• Requires middle layer , Cp, and h
• Does not consider heat losses from front and rear faces
• Used for TIM 2 samples



Bulk TIM Sample - Results

Preparation:
- 3 samples of each tested, average is shown
- Au/Pd and graphite overcoat layers
-  deviation 10-16%

Results:
- All filled materials provide improvement over unfilled epoxy
- Both commercial epoxies exp lower than on data sheet vendor

- No discernable benefit to addition of 5% nanoparticles for bulk 

 Cp   vendor

(g/cm3) (J/gK) (cm2/s) (W/mK) (W/mK)

Epoxy 1 Unfilled epoxy 1.13 1.3 0.0013 0.2 -

TIM 1 Ag-flake filled epoxy 3.13 0.51 0.0113 1.8 29

TIM 2 Ag-flake filled TIM 2.84 0.45 0.0830 10.6 17

TIM 3 5% Nanocomposite of TIM 1 2.76 0.61 0.0051 0.6 -

MaterialID



Multilayer – TIM 1

• Effect of squeeze rate was not discernable from that of h
• Negative intercept [Campbell et al., 2000]
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Thermal Bondline Resistance

contact
TIM

bondline R
k

hR 



Multilayer – TIM 1

• Effective conductivity increases at small h
• Alignment of silver plates at smaller gaps may increase
probability of contact and percolation path
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50 m Bondline – TIM 1

• Electrical connectivity shown
• Sample grounded at rear

Height C-AFM CurrentSEM

Sample
orientation

*SEM image from different region on same sample



Effect of Squeeze Rate – TIM 1

• Resistance at the 0.4 m/s is ~double that of 4 m/s and greater
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Cross Sectioned Multilayers

1 2

1 – center
2 – near edge



Effect of Squeeze Rate – TIM 1

0.4 m/s - Center

1 m/s - Center

4 m/s - Center

0.4 m/s – Near edge

1 m/s – Near edge

4 m/s – Near edge

• Heterogeneity due to assembly conditions

 = 0.54

 = 0.51

 = 0.43

 = 0.35

 = 0.40

 = 0.42



Force vs. Gap – Multilayer Assembly

Target bondline: 80 mm

• Filtration observed to correspond with Peclet Number Pe < 1
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Peclet Number
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[Chaari et al., 2003; Collomb et al., 2003]



Multilayer – Comparison of Materials

• TIM 2 showed a significant improvement in Rbondline over TIM 1
• TIM 3 (nanocomposite) showed a decreased performance
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Summary and Conclusions

TIM materials may not attain vendor

Rbondline is primarily shown to be a factor of h

For Pe < 1, nonuniform lateral filler distribution observed
• Can affect the ability of the assembly equipment to 

reach final bondline thickness, increase in Rbondline

• Did not significantly increase Rbondline beyond that of 
homogeneous bondlines of equivalent thickness

Nanocomposite improved neither bulk or multilayer 
properties
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Numerical Model (Anter)
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