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} Introduction

Thermal Path

 Transistors generate heat from lossey switching

* Heat sink transfers heat to ambient

* Thermal interface material (TIM) connects the components
* Mechanically
* Thermally
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P

ntroduction

Electronic assemblies
continue to shrink

Heat flux is increasing
Pentium Processors:

e P1: ~10 W/cm?
e P4: ~100 W/cm?

The thermal path must
become more efficient

Hotting up
Heat generated by Intel processors
Power density, watts/sg.cm
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S

ermal Bondline

_ AT, bondline

Rbondline — q

Factors to optimize:
« h bondline thickness

* AMim
R

contact
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S

ermal Bondline

Deviation from theoretical R, ,, 4, May be due to:
* Phonon scattering at the interfaces
* Incomplete wetting
* Voiding or delamination
* Processing induced heterogeneity
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V '
}- Research Overview

Research goal:
* Minimize R, gjine

Approach:

« Study the bondline formation process
» Assess bondline thermal performance
« Characterize bondline microstructure

» Determine sources of R,,,4ine

e Develop enhanced TIM materials

Sandia
National
Laboratories



} TIM Samples

Bulk Samples: -12.7 mm diameter
- 1 mm thick
- Used for p, Cp, Apyk Measurements

Multilayer Samples: - Aluminum 6061 T6 alloy substrates
- 12.7 mm diameter
- Substrates 1 mm thick
- h determined with thickness gauge
- Used for Ry, 4ine Measurements
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} Bondline Assembly

TA Instruments ARES
rheometer used

Squeeze rate and target

bondline thickness controlled:
* 0.4 to 40 um/s possible
* 40 to 200 um bondlines

Normal force vs. gap width
monitored
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}. Laser Flash Diffusivity Measurements

Equipment:
Anter FlashLine 5000

Analysis:
Anter Advanced Diffusivity
software (bulk samples)
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% Laser Flash Diffusivity Analysis

Multilayer Sample Analysis:
 New numerical model from Anter
» Considers heat losses from front and back faces
« Considers the middle layer as a contact resistance
* No need to provide p, Cp, or h
» Used for TIM 1 and TIM 3 nanocomposite

« Multilayer method developed by Lee [1976]
» Requires middle layer p, Cp, and h
* Does not consider heat losses from front and rear faces
» Used for TIM 2 samples
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};‘ Bulk TIM Sample - Results

D Material p | CP ] o evendor
(g/cm®) | (J/gK) | (cm?/s) | (W/mK)|(W/mK)
Epoxy 1 Unfilled epoxy 1.13 | 1.3 |0.0013
TIM 1 Ag-flake filled epoxy 3.13 | 0.51 |0.0113] 1.8 | 29
TIM 2 Ag-flake filled TIM 2.84 | 0.45 | 0.0830
TIM 3 | 5% Nanocomposite of TIM 1| 2.76 | 0.61 | 0.0051] 0.6
Preparation:

- 3 samples of each tested, average is shown
- Au/Pd and graphite overcoat layers
- A deviation 10-16%

Results:
- All filled materials provide improvement over unfilled epoxy
- Both commercial epoxies A,, lower than on data sheet A, g

- No discernable benefit to addition of 5% nanoparticles for bulk A
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i Multilayer — TIM 1
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« Effect of squeeze rate was not discernable from that of h

Bondline Thickness (um)

* Negative intercept [Campbell et al., 2000]
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V
}' Thermal Bondline Resistance

h
Rbandline + R

contact
kT]M
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},-‘ Multilayer — TIM 1
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« Effective conductivity increases at small h
 Alignment of silver plates at smaller gaps may increase Sandia
probability of contact and percolation path @ o
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' 50 um Bondline - TIM 1

* Electrical connectivity shown
« Sample grounded at rear

*SEM image from different region on same sample
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}i Effect of Squeeze Rate — TIM 1
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* Resistance at the 0.4 um/s is ~double that of 4 um/s and greater
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} Cross Sectioned Multilayers

1 — center
2 — near edge
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Effect of Squeeze Rate — TIM 1

4 um/s - Center 4 um/s — Near edge

* Heterogeneity due to assembly conditions Sandia
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Force vs. Gap — Multilayer Assembly
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* Filtration observed to correspond with Peclet Number Pe < 1
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V '
}- Peclet Number

Peclet number:

T
Pe: ’Z'W
S
where:

* T,, IS the characteristic time for fluid filtration
* T, is the characteristic time for deformation of the suspension

i 1 1/1—m
—m,m
wU h

Ak

u

U o—| Ak

Pe= ¢ hm+1
Hy

[Chaari et al., 2003; Collomb et al., 2003]
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S

ultilayer — Comparison of Materials
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* TIM 2 showed a significant improvement in R, 4. over TIM 1

* TIM 3 (nanocomposite) showed a decreased performance
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_ '
% Summary and Conclusions

TIM materials may not attain A, g0
Rponaine 1S Primarily shown to be a factor of h

For Pe < 1, nonuniform lateral filler distribution observed
« Can affect the ability of the assembly equipment to
reach final bondline thickness, increase in Ry, 4ine
* Did not significantly increase R, 4. P€yond that of
homogeneous bondlines of equivalent thickness

Nanocomposite improved neither bulk or multilayer
properties
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} Numerical Model (Anter)

0T, _ 1 0°Th heat diffusion within first layer
axz 04} ot
O°T: 2
8x22 = 0}2 887;2 heat diffusion within second layer
o " :
— Mg =-h(T1=To)+ (1)  boundary condition at first layer
oT;
Al 8x1 }Q(Tz—Tl) —
— thermal interface condition
ot _, .00
Al ox A2 ox N
8T2 e
252 = —h(T2—To) boundary condition at second layer

T1(x,0)=T2(x,0)=To initial condition
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