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Technical Basis & Objective

• Technical basis: Under the support of LDRD, 
we have developed a suite of inorganic 
nanocomposite materials (SNL-NCP) that can 
effectively entrap various radionuclides, 
especially for I-129 and Tc-99 (Patents 
pending). 

• Objective: We propose to further evaluate and 
optimize SNL-NCP materials for entrapping and 
immobilizing I-129 and radioactive noble gases 
(Kr and Xe). 



Development of a New Generation Waste Forms through 
Nano-immobilization & Nano-encapsulation
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Wang et al. (to be submitted); 1 patent pending; 1 patent in preparation
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Why Nano-scale?

• Novel sorption capability: e.g. I-129, Kr & Xe

• Fast sorption kinetics

– Getter materials

– Membrane separation

• Easy to encapsulate

– Durability: host minerals

– Flexibility

• Mechanic strength

• Chemical durability



Nanopore Structures & Radionuclide Retention

• Sorption of I onto nanoporous silica is not detectable, surface 
chemistry is an important factor controlling RN sorption

• Nanoporous structures not only enhance I sorption but also help to 
retain I during the fixation and encapsulation.

• No silver is needed for I retention.

Material I sorption (ppm) % of I lost during 
fixation

% of I lost during 
vitrification

Particles 98 ~100% ~100%

Activated 
particles

8700 45 65

Nanoporous 
material

25000 ~ 0 ~ 0



Material Synthesis

• General route for synthesizing nanoporous metal oxides
– Based on a sol-gel method

– Inorganic precursors & block copolymer (as a structural 
template) 

– Inexpensive, scalable for a large quantity production

• One-pot synthesis
– Multiple metal oxides

– Compositional & structural homogeneity ensured

• Formation of monolith
– Preferred for material handling

• Total > 300 materials synthesized and tested

U.S. Patent No. 7,238,288; two pending patents 



Material Synthesis (cont.)

TEM image of nanoporous double metal oxide 
synthesized using the one-pot route, showing 
worm-like pore structures.
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Iodine Sorption Tests: Materials Tested

• SNL-NCP materials

– NC-77

– NC-88: Two preparations

– Mesoporous Silica

• Other materials

– Sepiolite

– Palygorskite

– Activated Alumina



Relative Humidity Testing

• Saturated Salt Solutions

– LiCl = 10.23% RH

– MgCl2 = 24.12% RH

– KCl = 78.5% RH

• DI Water = 100% RH

500mL Teflon vessel

Glass vial with water or
saturated salt solution

NCP

I2



I2 Sorption: Effect of Humidity
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I2 Sorption: Effect of CO2



I2 Sorption: Effect of N2O

Ambient CO2 N2O

NC77 45728 61814.44 32987.32
NC88-380 25536 14907.62 15773.96
NC88-600 34808.18
Sepiolite 65270 68101.24
Palygorskite 21343 42162.79
Meso-Si 27496.25368 15774.66



I2 Sorption: Temperature Effect
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Kr & Xe Sorption Tests

• TGA analysis

• Two stages:

– Degassing



Ar sorption @ room temperature & 0.9 atm

Adsorbents Weight percentage of noble gas adsorbed (wt.%)

Zeolite-M1 0.07

Zeolite-X1 0.08

NC 77 (SNL Nanocomposite) 0.33

NC 95 (unground) (SNL 
Nanocomposite)

0.23

NC 95 (ground) (SNL 
Nanocomposite)

0.31

S51HF (Nanostructured carbon) 0.68

Hydromagnesite 0.02

Carbon-D (Nanostructured carbon) 0.72

SNL-CBD-1 (SNL Composite) 0.42±0.06

SNL-CBD-2 (SNL Composite) 0.37±0.01

S159-2-B (unground) 0.20

Microporous-P 0.26

Microporous-S 0.36

Zeolite-N 0.27

Zeolite-NA 0.12



Kr sorption @ room temperature & 0.9 atm

Adsorbents Weight percentage of noble gas adsorbed (wt.%)

Zeolite-M 0.36±0.08

Zeolite-X 0.64

NC 77 0.24

Hydromagnesite 0.05

Carbon-D 3.60

SNL-CBD-1 3.01

SNL-CBD-2 2.51

Microporous-S 0.71

SNL-CBD-3A 1.93

SNL-CBD-3BA 1.97

SNL-CBD-3C 2.56

SNL-CBD-4 1.63

SNL-CBD-5 2.69

Zeolite-N 1.74

Microporous-P 1.03

S159-2-B (Surface-grafted NC) 0.30

S185-4 (Surface-grafted NC) 0.30

S185-5 (Surface-grafted NC) 0.42



Model System for Iodine Sorption

Charge vs. Energy
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Molecular Dynamic Modeling: Iodine Sorption

gamma-Alumina (363K)
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Molecular Dynamic Modeling: Iodine Sorption
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Molecular Dynamic Modeling: Iodine Sorption
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Molecular Dynamic Modeling: Kr & Xe Sorption

gamma-alumina (363K)
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Functionalized Nanoporous Materials



Ongoing & Future Work

• Synthesis & optimization of NCP materials
– Enhancement of Kr & Xe sorption

– Two methods for nanopore surface functionalization 
under development. 

• More tests for Gaseous Radionuclide sorption
– Sorption kinetics

– Collaboration with PNNL

• Mechanistic understanding of material 
performance
– MD modeling


