
Data Fusion and Statistical
Analysis: Piercing the Darkness

of the Black Box

This work supported by the ASC Computational Systems and
Software Environments (CSSE) program element

Jim Brandt, Frank Chen, Vince De Sapio, Ann Gentile, Jackson Mayo,
Phillippe Pebay, Diana Roe, David Thompson, Matthew Wong

With support from:

Marcus Epperson and Jerry Smith

SAND2009-6703C

Black Box Defn.
www.thefreedictionary.com

a. A device or theoretical construct with
known or specified performance
characteristics but unknown or unspecified
constituents and means of operation.

b. Something that is mysterious, especially
as to function.

Motivation
• Large amount of time spent/(wasted?) in checkpointing

• Black Box approach to failures in platforms implies
scaling wall
• Best we can do is adjust checkpointing freq based on the

measured system average MTTI

• Assumption -- If we understood failure mechanisms
– Instrument to get precursor warnings where possible

– System and Application interfaces that would facilitate such
recovery

– Know where to invest more up front for more robust systems
• Power supply redundancy cost/fault tolerance tradeoff

• Memory socket cost/MTTF tradeoff

Resilience Fault Prediction Strategy

• Discover predictors, accuracy, time windows, and coverage with
respect to all non-recoverable faults
• Scalable data collection

• HW related metrics
• Limited by current instrumentation

• Discovery can help drive future system instrumentation

• System related metrics
• RM databases, log files, troubleshooting notes, etc.

• Work with System Administrators to capture as much as possible

• Not available
• Human errors, power grid outages, etc.

• Scalable data analysis
• Definition of analysis methods that make sense given the data and time

scales
• Currently: correlate low probability behaviors with logged failures

• Efficient data exploration tools
• UI

• Visualization

• Quantify Prediction Effectiveness

Approaches

• Statistical analysis
– Learn statistical characteristics of components that

lead to both normal and abnormal operation of a
system or platform

• Data Fusion
– Look for correlations in disparate data to facilitate

understanding of component, system and
application level behavioral interaction, operation,
and failure
• Could be outlier or smack in the middle of normal

operational regions -- TBD

Seek “real time” functional component (Memory
bank, core, communication bus, power supply sub-
systems, etc.) level understanding of health

Ultimate Goal
• Health based allocation given

parameters of application run

• Preemptive task/state migration
based on failure prediction

• Targeted checkpoint frequency
based on health (e.g. resource with
higher chance of failure might save
state frequently but this would be
much faster than saving the
aggregate. Have to address how
much larger the memory footprint
gets for healthy resources having
to maintain state in case of
rollback)

How does this differ?

• Many system level studies (Black Box
approach) give MTTI over the system that
can lead to extrapolated MTTI for a pool
size – Same studies show this approach to
checkpoint frequency calculation doesn’t
scale

Statistical Approaches
• Descriptive

• Numeric metrics such as mem err rates, cpu utlization,
voltage, PS ripple

• Correlation

• Looking at numeric ensemble behaviors in run-time
environment

• Time Series

• Taking into account temporal displacements

• Temporal ensemble behaviors relating to actual codes

• Graph based

• Exploration of both numeric and text (log) data for telltale relationships using
clustering techniques

• Incorporate both parametric and failure data to produce models that target

the prediction of those failures

• Looking for numeric metric correlations with failure that aren’t tied to anomalous
behavior

• Treats failure as a generic event without subtypes

Data Fusion

Cockpit approach with interacting capabilities

• Perform analyses on aggregate of parametric
data, Resource Manager (Slurm) data, Syslog,
and Console logs

– Relate user, application (problems here),
resources used, application and resource based
failures

Data Fusion and Interacting Capabilities

Scheduler and Log
Search

• Integrated Scheduler and Error
Log Searches

• Searchable:

– e.g., OOM && node 234

• Aggregate statistics

• Pie subselection

– e.g. Distribution of failed jobs by
user

Scheduler and Log data Drive Analysis

• Time and component relationship of OOM killer and
failed job leads to invocation of memory utilization
analysis

Data Fusion Visualizations

• Logical and
Physical Displays

• Colored by
analysis results

• Textual Job data
– state and
duration (shaded)

• Textual log data
(x'es)

• Numerical data
(blue)

Data Acquisition

• Impediments
– Failures are “Rare Events” in small aggregations of

machines
– Data collection mechanisms can cause OS noise

which is detrimental in large systems
– In band (/proc, LM sensors, etc.)

– Don’t know what parameters matter so currently
collect as many as possible on as fine a time
granularity as possible

• Data collection scaling issues
– Storage/retrieval bandwidth
– Need to store all data for long enough to allow for failure data to

be gathered also

Data Acquisition Cont.

• Out of Band (OOB) collection should have
minimal impact

– Separate processor for acquisition and export

– Separate network for communication

– IPMI and SNMP can facilitate out of band
collection of a subset of desired parameters

• Many parameters are not available OOB

– /proc -- CPU, Memory, Network, etc.

Enabling Architecture for Data
Collection and Fusion

• OVIS is a suite of 3 applications – baron, shepherd,
sheep – sharing a common distributed database

• Baron: A VTK/Qt user interface (ParaView version in
development)

• Data characteristic exploration

• Shepherd: service-node program:

• Advertises DB availability

• Responds to requests for analyses

• Sheep: a service-node or compute-node program:

• Listens for shepherds

• Stores measurements to database on shepherd
node

Storage Overview

• OVIS avoids all storage except the database

• Static metadata is stored in an XML file used to initialize a DB

• For scalability, parallel distributed databases are required

• Analysis requests/results are propagated to all DBs asynchronously

• Some metadata tables are shared between databases

• Parallel databases also imply a parallel baron
(in development)

Case Studies

• Red Storm

– OOB RAS system caused system instability even at a
once-per-hour data collection frequency

• Too course grained

• TLCC

– Currently collecting on 2SU (288 node, 4K core)
system at Sandia Albuquerque (Glory)

• Hardware related data – once-per-minute

• Slurm – as it occurs

• Log file data – before we need it for analysis

Glory Failures

• We set out to discover precursors of the top
three causes of TLCC failures
• Power Supply

• Collect various regulated voltages
• Problems occur upstream of the regulators (caps, inductors,

resistors)
• Need to work with PS designers to understand what it makes

sense to instrument

• Use only a single PS which then runs closer to spec limits

• Out of Memory
• Precursor symptoms discovered but root cause yet unknown

• Stuck CPU
• Still under investigation

Out of Memory (OOM)

Abnormal Active Memory
utilization, detectable
during any idle period
(yellow shaded region),
is seen to persist for
hours finally resulting in
process being killed due
to OOM condition.

Statistically abnormal
behavior during idle time

OOM failure event

Abnormal Active Memory
utilization, detectable during
any idle period, is seen to
result in job failures (pink
shaded regions) due to the
OOM condition. There are
also processes that are killed
due to the OOM condition
even during idle periods
(shaded yellow).

Abnormal Active Memory
utilization was detectable
both during the idle period
(white region) and during
the job (right-most grey
shaded region). Due to this
application’s memory
requirements the OOM
threshold was not reached
and this did not result in job
death in this case.

Statistically abnormal
behavior during idle time
and run time

OOM failure events
Resulting in job death

Group of four nodes
Involved in same job
(light grey region)

Note that Active Memory is represented as a fraction
of available system memory (32GB in this case).

Time Time Time

A
c
ti
v
e

 M
e

m
o

ry

Conclusions

• While “black box” approach works for
current sized systems it is at best a stop-
gap approach

• We are beginning to “pierce the darkness”
but still have a long way to go

– Statistical methods show promise

– Scalable data collection mechanisms
necessary

– Need more advanced mixed data type
analysis methodologies

Future Work

• Cleansed data sets for other researchers
to use

• Deployment on additional and larger
platforms

• More advanced analyses

• Tighter integration of disparate data
sources

• More UI usability features with respect to
plotting and graphing

Questions?

https://ovis.ca.sandia.gov

Motivation
• Large amount of time spent/(wasted?) in checkpointing
• Black Box approach to failures in platforms implies

scaling wall
• Best we can do is adjust checkpointing freq based on the

measured system average MTTI

• Assumption -- If we understood failure mechanisms
– Instrument to get precursor warnings where possible
– Instrument to detect fine granularity failures that could still allow

state recovery and hence restart on other resources
– System and Application interfaces that would facilitate such

recovery
– Know where to invest more up front for higher level of fault

tolerance
• Power supply redundancy cost/fault tolerance tradeoff
• Memory socket cost/MTTF tradeoff

