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Introduction

Objective: A valid means of
modeling material localization
in finite element analyses.

Goals:

a strong discontinuity
1dealization

a applicable to cohesive zone
modeling

o “continuous discontinuity”

a arbitrary orientation of
discontinuity relative to mesh

Approach: Develop a partition
of unity FEM (PUFEM) that
allows the displacement field
to be enriched in the
neighborhood of a strong
discontinuity.

o can represent a discontinuity
without mesh refinement

a can potentially represent the
gradients near a surface of

localization without mesh
refinement
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Background

Initial related studies Origins of this study
0 Melenk and Babuska (1996) y '
Theory for PUFEM ARL (2001)

motivating problem: armor
a BelytSChkO and Black (1999) penetration

* developed PUFEM for
LEFM SNL

 used asymptotic
displacement fields near a
crack tip for enrichment

motivating problem: HDBT
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Recent Related Studies

PUFEM-Cohesive Zone Studies
0 Wells and Sluys (2001)
0 Moes and Belytschko (2002)

a Z1 and Belytschko (2003) -- tip function addresses tip
position but not the field

0 de Borst ef al. (2004) & Mariani ef al. (2003)
tip at element edges

Current work is closer to:

a Strouboulis, Copps, Zhang, and Babuska (2000, 2001, 2003)
numerical enrichment functions -- handbook functions
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PUFEM Displacement Field Enrichment

o Standard FEM o PUFEM

Global displacement approximations p ~
Ng No Np Ng

u(x)= 2 @,(x)y, u(x)= 2. (), + ZZAJ ()P, (x)e;
i=1 i=1 S j=1 i=l y

Element displacement approximations P ~
NN NN NA NN

u(x)= 2N, (x)u, u(x)= 2N, (X u,+ ZZA (XN, (X)O‘u
i=1 i=1 j=1 i=l

A

enrlchment functions

enriched elements

cohesive zone @ Sandia
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PUFEM Displacement Field Enrichment

Example Problem:

concrete I mx 1 m
in bending

National

fine-scale FEM solution: u, fine-scale FEM solution: o, @ Sandia
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Example response in the “tip-element”

Fine-scale

enrichment
region
\x

Surface plot d

: u, for tip-element
view

PUFEM
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Example enrichment in the “tip element”

2 1
ode 2

\ r ' r—
ZN}AI(X)NZ.(X)(XI]U K j U

SN @
A< oD ko

A

u(x)=




Enrichment Functions: An Analytical Source

Hong & Kim (2003) used the Muskhelishvili formalism for the inverse problem
— assumed linear elastic isotropic material (except for cohesive zone)

Analysis has been used to:
1) verify the proposed solution
2) extend it for field variables required by the PUFEM

Key relationships:

U Displacements

, 1
i+ =2 ko(2)-20'(2) -y (2)}
where @ and v are analytic functions, and z = x+iy.

1 Another set of analytic functions simplify u;; and G;; expressions
/

D(z)=¢'(2) Qz)=z¢'(z) + y(z)]
() i



Enrichment Functions: An Analytical Source

o Displacement gradients

o+ ity = i [~ )0 C)+ k(z)- Q)]

[(z -Z2)D'(2)+ kD(2)+ Q(z) - 2@(2)]

| 1
Uy, —IU,, =—

2,2 1,2
2p

O Stress components

0, +io, =(Z—-z)D'(z2)+D(z)- Q2(2)+2D(z)

0,, —i0, =(z-2)D'(z2)+ D(z)+ Q(z)
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Enrichment Functions: An Analytical Source

 Super-position of two solutions yields a convenient solution form

o Analytic functions \

+ 5,

|

() = % V1 cF(2)~z—cG(2)+ H(Z)]

3(z)= % V4 cF(2)—z—cG(2) - H(2)]

where F, G, and H are entire (analytic over the whole domain)
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Enrichment Functions: An Analytical Source

 Super-position of two solutions yields a convenient solution form

‘ l
o Analytic functions ' and G v
N
Fz/e)= 2 AU, (1) Glzle)= 2BU, (/)
n=0 n=0

where A4, and B, are complex coefficients and
U, are Chebyshev polynomials of the second kind
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| Source

1C4

An Analvyt

Enrichment Functions

Problem for plots

[ First term considered

107 psi, v=0.3

E:

1

=G(2)=
0

a F(2)
o H(z)
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| Source

1C4

An Analvyt

Enrichment Functions

Problem for plots

t term considered

1 Firs

3

1, v=0

107 ps

E:

1

G(z)
0

a F(2)
o H(z)

X/C
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Enrichment Functions: An Analytical Source

d First term considered
a F(z2)=G(z)=1
o H(z)=0

Note: problems differ and CZ
sizes are not to the same scale.

d Qualitative comparison of o,, with fine-scale FEA

Analytical =

4

Fine-scaleFEA !

(&)
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Initial Simple Test Problems

J Concrete test problem

* relevant to HDBT . 2 2
edomain ]l mx 1 m G, = 0.1 mJ/mm* =100 J/m

e process-zone size ~ O(250 mm) =
* representative concrete tensile properties %
(except for simplified linear softening) o7
* mode I quasistatic crack propagation 0
» 2 enrichment functions -> 16-40 dofs 0

6-Element Test Problem 04

Displacement BCs of Corner Nodes
——e— top right node
g '2 0 o bottom right node
o ego2y————— & i e B
] y [{)) g
Ne) 0 X O g |
=~ Q : \
® % 07"// -
Q o 3z
Q c i
\ 0 0.05 0.1 0.15 0.2 0.25 0.3
time (sec.)
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Coarse-scale vs. Fine-scale: Qualitative Evaluation
PUFEM: 16-40 dofs Std FEM: ~ 3360 dofs
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Coarse-scale vs. Fine-scale: Qualitative Evaluation

PUFEM: 16-40 dofs

Prescripe,y u

O
=
Q)
o
X <
(o}
Q)
o
c

Y

cohesive zone path
0.4

25

(

0.5 k.

9500

—— fine-scale model: step 55
- —— fine-scale model: step 60

coarse-scale model: step 941
coarse-scale model: step 95§ -

Std FEM: ~ 3360 dofs

o
Q.15

fine-scale model: step 55 1
fine-scale model: step 60 B
coarse-scale model: step 94 | 1
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Initial PUFEM Issues

o Crack profiles differed significantly with fine-scale results
in the traction free region.

o If several terms are needed to obtain better crack profiles
the efficiency will be reduced.

a A length scale exists in the enrichment functions.
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Enrichment Modification

o Change to step enrichment
0 Analytical radius -- could be applied to the whole plane

~—'a T ~ tip enrichment
S ~ step enrichment

S S T T T
— r. a
S S T T T
T @ Sandia
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Quantitative Models

o Fine-scale — Standard FEM
41x40 ~ 3444 dofs 61x60 ~ 7564 dofs 81x80 ~ 13,284 dofs

o Coarse-scale — PUFEM
5x5 ~ 72436 dofs 9%x9 ~ 200+52 dofs 17x17 ~ 648+88 dofs

(&)
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Fine vs. Coarse -- Cohesive Zone Response

0.9 < 9 PUFEM elements >
€ .
= ——fine-scale FEM | |
— - PUFEM
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Extremes & Length History

0-3 T T T T 7T T TTTTTT T T T = ] T
- Cohesive Zone Extremes Hlstory i Cohesive Zone
- I Length Hlstory

1 5 O S S 0

| — tip, fine-scale
----e---- free-pt

—=— tip, PUFEM 9x9
----==--- free-pt

7\\\3\\\3\\\3\\\€\
-goo Y (mm) 0 100 200 300

>00 length (mm)

2 coarse meshes
c=125 mm
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Extremes & Length History

0.3\{;w1\\\\ T T T T T T T T T T T T T T T T T T T

- Cohesive Zone Extremes Hlstory ] Cohesive Zone
- ; : Length Hlstory
021 e ONELL -
AL e -
S ——tip, fine-scale .
o -------- free-pt I SRR R S R -
—=— tip, PUFEM 9x9
- | ----@---- free-pt
O 7\ L1 | L1 | I | 11 ‘ ‘ ‘ ‘ i
500 Y (mm) 500 ° 100 200 300

length (mm)

decreasing c to 85 mm
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Extremes & Length History

03 T T T T T T T T T T

T T T T T T T T T T T T T - T T
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Skewed Mesh Tests
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Results and Enrichment

mesh:
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Results
1/10 of the way through the second element

Skewed mesh

for the t

i
&@s.{
IAANA
Yy
Gl
RO,
BN N
o
AORAD
000
AL
RN
CRIHAK
RN
QL
&%
&

1p

Results

N
|
ety
qn
U
W
I
ot
3

¥
i

e
AR

227

22
L

)

&,
22
74T
ELLS
R
RILLLRLEE
RRRLRILL
e
s
s

=
7

2%

%

2>

s
277

L2

e

Sandia
National

Laboratories




Its
u nt
cS eme
ional Ii)nd y
d dltli the se
A oug
thr
y

dwa

h
S
wed me
Ske

% X/
10 %
2-$-8
:%.M%w& s
5 90!
XL X

X 25

X

y

X
..%«s&o.?v 4

s R

% 9 2 %

s

R
0

) (X

507

%“»« 0
A
0K, e
%
o
A
¢¢.~.~
ol

S
o

-0.

@w,i D
NQ&Q bg
v..zsit o,
&Q&@&.r/sﬁiﬁg s&.ﬁﬁ... §
avh&? e;; a#».z &
%ﬁ»«%&@@éﬁ%&@ﬁ.ﬁ
.?w.&,
3@\\%@&«3@»&&?
«NMN&Q%QW%MNNWMMWWNW&
538% ;
o5 3%.0.3&@
&%«MMW%@%&MW&

o
#E/@

t&i&aws
loge

%
#&

5
s
:#&.3.
?.ui»
$ew“»$no%
q..wa..w@uw~QMw&w.. .
&i R e
a&vt&#&#@,@o
.e&:#&%#%t«
ss.......ee..n

% #n@% KT
% o

6
4 .

“.diaal :
i

i

Ipm

for the ¢

Results




Neighborhood Enrichment

Aka the Mr. Roger’s modification
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Observations & Conclusions

Modification of the enrichment to step enrichment 1n the
wake of the ¢z can significantly improve the prediction of the
crack profile.

Initial results are not very sensitive to ¢, but adjustment of ¢
for the tip-functions may be necessary for some classes of
problems.

o PUFEM is exhibiting convergence (with mesh refinement)
0 Product form of enrichment has negative effects with a

“coarse’ skewed-mesh.

PUFEM for cohesive zone modeling of localization has
potential and merits further investigation.

No free-lunch -- algorithm complexity 1s high.
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