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Definitions
 Spectrum-averaged 

Cross Section, <σ>

 Spectral Index, Sαβ

 C/E for Spectral Index, 
Cαβ



Background
 Metrics are needed to report/reproduce radiation environments.

 Spectrum-averaged cross section is a baseline metric.

 Issue: difficulty in defining a metric that can easily be reproduced.

 Uncertainty in low-energy spectrum for reactors.

 Inadequacy of direct measures for integrated reactor power.

 Community moved to the use of a ratio of spectrum-averaged cross 
sections, a spectral index.

 For validation purpose (spectrum and cross sections), one needs to 
examine consistency of a calculated-to-experimental (C/E) ratio.

 Any validation activity need a proper treatment of uncertainties.

 Traditionally, analysts treat the cross section uncertainty and the 
measurement uncertainty but neglect the spectral uncertainty.



Uncertainty Considerations

 Uncertainty in Cα,β should include contribution from:

 Calculated SI

 Cross section for detector reaction – in numerator

 Cross section for reference reaction – in denominator 

 Neutron spectrum in numerator

 Neutron spectrum in denominator

 Treatment of correlation of spectrum in numerator and 
denominator – a nonlinear uncertainty propagation.

 Experimental SI

 Measurement for  detector reaction

 Measurement for reference reaction



Uncertainty Formulation





Methodology
 Spectrum uncertainty is quantified via a covariance matrix.

 Covariance matrix for a spectrum is positive semi-definite and obeys a fluence 
normalization condition.

 Symmetric matrix with real entries → Hermitian (self-adjoint)

 Any real square symmetric matrix with linearly independent columns can 
be represented as a matrix product of elements based on the 
eigenvectors and eigenvalues:

C = QΛQT

 A Hermitian matrix has a Cholesky decomposition:

C = LLT

C = QΛ1/2(Λ1/2)TQT = (QΛ1/2)(QΛ1/2) T

 Sample vector variation of spectrum can be generated as:

Z = Lu
 where u is a vector of normal/Gaussian distributed random values with 

mean 0 and standard deviation 1



Verification Methodology

 Neutron Field: Central Cavity of the Sandia Pulsed Reactor III 
(SPR-III)

 Least-squares based LSL spectrum adjustment using ;
 “a priori” 640-group SAND-II energy grid for MCNP calculated 

spectrum

 31 measured dosimetry reactions

 IRDFF v1.02 cross section library

 Yielded 2/dof = 2.193

 Covariance in 89-group using LSL for spectrum adjustment

 Verified: Positive definite covariance; normalization condition

 3500 Monte Carlo samples for “total Monte Carlo” 
propagation generated using Cholesky decomposition matrix



Verification Cases

 Spectrum-averaged fluence:
 1.000 +/- 0.0047% (correct Monte Carlo propagation)

 1.000 +/- 10.11% (uncorrelated result)

 Average Neutron Energy
 1.299 MeV +/- 4.387% (correct linear propagation)

 1.299 MeV +/- 7.47% (uncorrelated result)

 1.298 MeV +/- 4.42% (correct Monte Carlo propagation)

 Spectral Index for Identical reactions
 Reaction: 59Ni(n,p)58Co

 Cross Section: IRDFF v1.02

 <σ> result: 55.72 mb +/- 5.82%

 SI result: 1.00 +/- 0.0%



Example Best-Case: Similar Energy
Methodology Metric Value

Covariance
Propagation

32S(n,p)32P Xsec 36.14 mb

Correlated Unc. 5.836 %

Average Unc. 7.023 %

58Ni(n,p)58Co Xsec 55.72 mb

Correlated Unc. 5.82%

Average Unc. 7.18%

Spectral Index 0.6485

Worst-case Unc. 11.66%

Best-case Unc. 0.0

Monte Carlo 
Sampling

32S(n,p)32P Xsec 36.17 mb

Correlated Unc. 5.858%

58Ni(n,p)58Co Xsex 55.76 mb

Correlated Unc. 5.835 %

Spectral Index 0.6485

Correlated Unc. 0.5377 %



Example Worst-Case: Dis-Similar Energy
Methodology Metric Value

Covariance
Propagation

197Au(n,)198Au Xsec 134.7 mb

Correlated Unc. 5.838 %

Average Unc. 15.7 %

58Ni(n,p)58Co Xsec 55.72 mb

Correlated Unc. 5.82%

Average Unc. 7.18%

Spectral Index 2.417

Worst-case Unc. 11.2%

Best-case Unc. 0.0

Monte Carlo 
Sampling

32S(n,p)32P Xsec 134.7 mb

Correlated Unc. 5.435%

58Ni(n,p)58Co Xsex 55.76 mb

Correlated Unc. 5.937 %

Spectral Index 2.431

Correlated Unc. 10.62 %



Application: 252Cf(sf)

 Data Source: NBS (NIST) work by J. A. Grundl, NBSIR 85-03151

 13 spectral indices reported
 Ratio’d to 238U(n,f) as referencereaction

 Approach:
 NBS original analysis

 Used NBS spectrum

 Updated analysis using IRDFF v1.02 cross sections

 Used Mannhart 252Cf spontaneous fission spectrum, IAEA-NDS-98

 Results:
 0% of the cases (0 of 13) showed the spectral uncertainty to be the 

dominant uncertainty contributor, 2 of 13 (15%) had spectrum 
component larger than cross section component.

 8% of cases (1 of 13) deviated by more than 1-sigma: 235U(n,f)



Our Results: Cα,β for 252Cf(sf)

Reaction Expt. SI Unc. Xsec. Unc. Spct. Unc. Cαβ Cαβ Unc.

237Np(n,f) 1.50% 1.69% 0.24% 1.020069 2.37%
115In(n,n’) 2.80% 1.66% 0.40% 1.001451 3.34%

47Ti(n,p) 3.20% 2.73% 0.64% 1.033157 4.31%
58Ni(n,p) 2.10% 1.74% 0.76% 1.009256 2.91%
54Fe(n,p) 3.00% 3.62% 1.41% 1.030588 4.95%
46Ti(n,p) 3.20% 3.05% 1.19% 0.998062 4.63%

63Cu(n, α) 3.60% 2.97% 1.38% 1.01935 4.91%
56Fe(n,p) 3.20% 2.62% 1.45% 1.035295 4.43%
48Ti(n,p) 3.20% 5.31% 1.55% 1.029717 6.42%
27Al(n,α) 3.20% 0.72% 1.61% 1.02009 3.71%
239Pu(n,f) 1.20% 0.46% 0.086% 1.008722 1.45%
235U(n,f) 1.20% 0.42% 0.091% 1.032812 1.44%

197Au(n,) 3.20% 0.57% 1.04% 0.993622 3.48%



Application: 252Cf(sf)

NBS Reported Results Updated Results with IRDFF



Interpretation of 252Cf(sf) Results

 How do we explain the difference in NBS and updated IRDFF 
analysis:
 Discrepant NBS activity is for 47Ti(n,p) reaction. Old cross section used 

in NBS analysis. Mannhart previously uncovered and fixed the cross 
section issue. 

 Changes in other cross sections improved the agreement 

 63Cu(n,α) near 7.22 MeV

 27Al(n, α) near 8.6 MeV

 No SIs are reported where the low energy portion of the spectrum in 
this field dominated the response, e.g. no 6LI or 10B reactions.

 197Au(n,) reaction present but median response was at 0.71 MeV



Enlargement of C/E for SI’s in 252Cf(sf)

Updated Results with IRDFF
 Enlarged view of Cαβ ratios 

shows excellent agreement 
in standard 252Cf(sf)field



Application: 235U(th)

 Data Source: NBS (NIST) work by J. A. Grundl, NBSIR 85-03151

 14 spectral indices reported
 Ratio’d to 238U(n,f) reference reaction

 Approach:
 NBS original analysis

 Used NBS spectrum

 Updated analysis using IRDFF cross sections

 Used JENDL-4 235U thermal fission spectrum

– Selected over ENDF/B-VII due to positive definite covariance attribute

 Results:
 71% of the cases (10 of 14) showed the spectral uncertainty to be the 

dominant uncertainty contributor

 21% of cases (3 of 14) deviated by more than 1-sigma

 consistent with expectations for definition of the 1-sigma level



Results: Cα,β for 235U(th)

Reaction Expt. SI Unc. Xsec. Unc. Spct. Unc. Cαβ Cαβ Unc.
237Np(n,f) 1.7% 1.689% 1.099% 1.006216 3.6286%

93Nb(n,n’) 9.0% 2.659% 2.22% 0.882392 4.4849%

115In(n,n’) 2.0% 1.681% 2.31% 0.994655 4.04557%

47Ti(n,p) 4.2% 2.784% 4.43% 1.014135 6.03340%

58Ni(n,p) 2.0% 1.749% 5.06% 0.96926 6.29753%

54Fe(n,p) 3.5% 2.126% 2.09% 0.985939 12.2782%

46Ti(n,p) 3.0% 3.191% 2.753% 0.967744 10.2960%
63Cu(n,α) 10.0% 3.090% 10.70% 0.883243 11.8241%
48Ti(n,p) 4.2% 5.606% 13.02% 0.980577 14.7317%

27Al(n, α) 4.2% 0.750% 13.02% 0.979511 14.2724%

239Pu(n,f) 1.7% 0.461% 0.462% 0.995686 3.23907%

235U(n,f) 1.7% 0.417% 0.456% 1.026186 3.37307%

10B(n, α) 4.5% 0.069% 2.09% 0.833304 4.90081%

6Li(n,α) 4.5% 0.0647% 2.753% 0.713872 5.07067%



Application: 235U(th)

NBS Reported Results Updated Results with IRDFF



Interpretation of 235U(th) Results

 How do we explain the difference in NBS and updated IRDFF 
analysis:
 Discrepant NBS activity is for 47Ti(n,p) reaction. Old cross section used 

in NBS analysis. Mannhart previously uncovered and fixed the cross 
section issue. 

 NBS spectrum reported a much smaller energy-dependent cross 
section uncertainty than the JENDL-4 or ENDF/B-VII.1 evaluations.

 E.g. at 8 MeV: JENDL-4 uncertainty = 13%, NBS uncertainty = 5.3%

 NBS used a 45-group representation that was not adequate for low 
energy portion of spectrum critical for 6Li(n,α) and 10B(n, α) ratios.

 NBS report cautioned about use of low energy detectors in this field 
“because of uncertainties in the graphite return field”. Rather, the 1-
meter cavity at SCK/CEN is recommended.



Comparison of NBS and JENDL-4  
235U(th) Fission Spectrum

Linear-Log lethergy Plot Log-Log Lethergy Plot



Application: ACRR Central Cavity

 “pool-type” reactor

 “a priori” neutron spectrum 
used in LSL spectrum 
adjustment
 Produced with MCNP6

 ENDF/B-VII.1 cross sections

 640-group SAND-II output 
representations

 Structure represents resonances 
in cross sections for reactor 
materials, e.g. oxygen

 40 measured activities

 2/dof = 2.06



C/E for SI’s for ACRR Central Cavity

Linear Energy Axis Logarithmic Energy Axis



Results of ACRR Central Cavity Analysis 

 In 62% of sensors (25 of 40) the spectrum is the dominant 
uncertainty contributor

 4 of the 39 Cα,β ratios deviate from 1 by more than 3-sigma
 55Mn(n,) with Cd cover 

 SNL analysis often shows difficulties with this reaction

 56Fe(n,p) with B4C cover

 Cover correction suspect since reaction without cover shows good 
agreement

 58Ni(n,2n) 

 In conflict with 3 other reactions in the high energy ~14-MeV response 
region: 90Zr(n,2n); 93Nb(n,2n); 59Co(n,2n)

 Measurement needs to be replicated

 Cross section updated in IRDFF v1.03

 115In(n,n’)

 Questions are being pursued about measurement



EXFOR Data Comparison for 
58Ni(n,2n) IRDFF Cross Section
 This cross section is in adequate agreement with 14-MeV 

EXFOR data – but there is a large variation in the 
experimental measurements



IRDFF Covariance 58Ni(n,2n) Cross 
Section
 This cross section shows a small 

but highly correlated  
uncertainty

 This uncertainty is in conflict 
with observed variation in the 
raw EXFOR raw data, but the 
evaluator would have 
performed a much more 
rigorous investigation of the 
available experimental data 
when he set the uncertainty as 
captured in the nuclear data 
evaluation.



58Ni(n,2n) Cross Section Agreement 
in Other Neutron Benchmark Fields
 Cross section shows good C/E agreement in 252Cf(sf) and 

235U(th) benchmark neutron fields

Radiation Field
Bench-mark 

Field

Metric C/E

Spectrum-Averaged Cross Section (mb)
Experimental Calculated

[Unc. ( |  ) ]1

[E05, E50, E95 ]2

252Cf 
spontaneous 

fission

0.008952 +/- 3.57% 0.00915
[ 6.043% | 1.63% ]

[13.063, 14.891, 18.214]

1.0221 +/-
7.21%

235U thermal 
fission

0.0036 +/- 7% 0.00378
[ 11.5% | 1.799% ]

[12.986, 14.67, 17.789]

1.04 +/- 13.58%



Conclusions

 The contribution from the spectrum uncertainty typically 
dominates the overall uncertainty for spectral indices and 
must be addressed in analyses.
 An exception is the very well characterized 252Cf standard neutron 

field

 A methodology is presented for determining this spectral 
uncertainty component in the calculated SI and C/E ratio.
 When a spectrum covariance matrix is available, i.e. when its 

uncertainty is characterized, a Cholesky decomposition can be applied 
to generate a random draw and a “total Monte Carlo” approach can 
be applied to accurately capture the uncertainty in a non-linear 
quantity like the spectral index.

 Example applications of this methodology are presented.



Questions?


