

Covariance Propagation in Spectral Indices

**Presented By: Patrick Griffin
From: Sandia National Laboratories**

**Presented at: International Workshop on
Nuclear Data Covariances (CW2014)**

*Exceptional
service
in the
national
interest*

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Outline

- Definitions
- Background
- Methodology for Treatment of Uncertainties
- Verification of Methodology
- Example Application to Neutron Benchmark Fields
 - ^{252}Cf Spontaneous Fission Standard Benchmark Field
 - ^{235}U Thermal Fission Reference Benchmark Field
 - ACRR Central Cavity Reference Benchmark Field

Definitions

- Spectrum-averaged Cross Section, $\langle \sigma \rangle$

$$\bar{\sigma} = \frac{\int_{E_1}^{E_2} \sigma(E) \Phi(E) dE}{\int_{E_1}^{E_2} \Phi(E) dE}$$

- Spectral Index, $S_{\alpha\beta}$

$$S_{\alpha/\beta} = \bar{\sigma}_\alpha / \bar{\sigma}_\beta$$

- C/E for Spectral Index, $C_{\alpha/\beta} = [S_{\alpha/\beta}]_{\text{cal.}} / [S_{\alpha/\beta}]_{\text{obs.}}$

Background

- Metrics are needed to report/reproduce radiation environments.
 - Spectrum-averaged cross section is a baseline metric.
- Issue: difficulty in defining a metric that can easily be reproduced.
 - Uncertainty in low-energy spectrum for reactors.
 - Inadequacy of direct measures for integrated reactor power.
- Community moved to the use of a ratio of spectrum-averaged cross sections, a spectral index.
- For validation purpose (spectrum and cross sections), one needs to examine consistency of a calculated-to-experimental (C/E) ratio.
- Any validation activity need a proper treatment of uncertainties.
- Traditionally, analysts treat the cross section uncertainty and the measurement uncertainty but neglect the spectral uncertainty.

Uncertainty Considerations

- Uncertainty in $C_{\alpha,\beta}$ should include contribution from:
 - Calculated SI
 - Cross section for detector reaction – in numerator
 - Cross section for reference reaction – in denominator
 - Neutron spectrum in numerator
 - Neutron spectrum in denominator
 - **Treatment of correlation of spectrum in numerator and denominator – a nonlinear uncertainty propagation.**
 - Experimental SI
 - Measurement for detector reaction
 - Measurement for reference reaction

Uncertainty Formulation

- Experimental activities uncorrelated, hence add in quadrature.
- Cross section uncertainty contribution in numerator and denominator are assumed to be uncorrelated, hence add in quadrature.
- Best-case spectrum uncertainty: positive correlation of spectrum uncertainty in numerator and denominator, hence cancellation in ratio.

$$\Delta C^{min}_{\alpha,\beta} = \sqrt{\Delta\sigma_{\alpha}^2 + \Delta\sigma_{\beta}^2 + \Delta A_{\alpha}^2 + \Delta A_{\beta}^2}$$

- Worst-case spectrum uncertainty: negative correlation of spectrum uncertainty in numerator and denominator, hence add as systematic terms.

$$\Delta C^{max}_{\alpha,\beta} = \sqrt{\Delta\sigma_{\alpha}^2 + \Delta\sigma_{\beta}^2 + \Delta A_{\alpha}^2 + \Delta A_{\beta}^2} + \Delta\varphi_{num} + \Delta\varphi_{denom}$$

Methodology

- Spectrum uncertainty is quantified via a covariance matrix.
- Covariance matrix for a spectrum is positive semi-definite and obeys a fluence normalization condition.
 - Symmetric matrix with real entries → Hermitian (self-adjoint)
 - Any real square symmetric matrix with linearly independent columns can be represented as a matrix product of elements based on the eigenvectors and eigenvalues:

$$C = Q \Lambda Q^T$$

- A Hermitian matrix has a Cholesky decomposition:

$$C = L L^T$$

$$C = Q \Lambda^{1/2} (\Lambda^{1/2})^T Q^T = (Q \Lambda^{1/2}) (Q \Lambda^{1/2})^T$$

- Sample vector variation of spectrum can be generated as:

$$Z = L u$$

- where **u** is a vector of normal/Gaussian distributed random values with mean 0 and standard deviation 1

Verification Methodology

- Neutron Field: Central Cavity of the Sandia Pulsed Reactor III (SPR-III)
- Least-squares based LSL spectrum adjustment using ;
 - “*a priori*” 640-group SAND-II energy grid for MCNP calculated spectrum
 - 31 measured dosimetry reactions
 - IRDFF v1.02 cross section library
 - Yielded $\chi^2/\text{dof} = 2.193$
- Covariance in 89-group using LSL for spectrum adjustment
- Verified: Positive definite covariance; normalization condition
- 3500 Monte Carlo samples for “total Monte Carlo” propagation generated using Cholesky decomposition matrix

Verification Cases

- Spectrum-averaged fluence:
 - 1.000 +/- 0.0047% (correct Monte Carlo propagation)
 - 1.000 +/- 10.11% (uncorrelated result)
- Average Neutron Energy
 - 1.299 MeV +/- 4.387% (correct linear propagation)
 - 1.299 MeV +/- 7.47% (uncorrelated result)
 - 1.298 MeV +/- 4.42% (correct Monte Carlo propagation)
- Spectral Index for Identical reactions
 - Reaction: $^{59}\text{Ni}(\text{n},\text{p})^{58}\text{Co}$
 - Cross Section: IRDFF v1.02
 - $\langle\sigma\rangle$ result: 55.72 mb +/- 5.82%
 - SI result: 1.00 +/- 0.0%

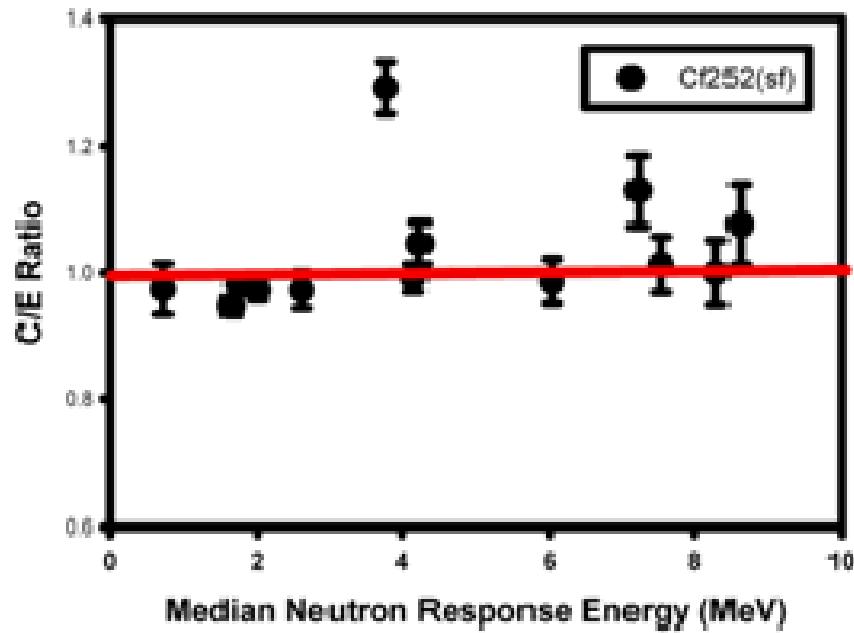
Example Best-Case: Similar Energy

Methodology	Metric	Value
Covariance Propagation	$^{32}\text{S}(\text{n},\text{p})^{32}\text{P}$ Xsec	36.14 mb
	Correlated Unc.	5.836 %
	Average Unc.	7.023 %
	$^{58}\text{Ni}(\text{n},\text{p})^{58}\text{Co}$ Xsec	55.72 mb
	Correlated Unc.	5.82%
	Average Unc.	7.18%
	Spectral Index	0.6485
	Worst-case Unc.	11.66%
	Best-case Unc.	0.0
	$^{32}\text{S}(\text{n},\text{p})^{32}\text{P}$ Xsec	36.17 mb
Monte Carlo Sampling	Correlated Unc.	5.858%
	$^{58}\text{Ni}(\text{n},\text{p})^{58}\text{Co}$ Xsec	55.76 mb
	Correlated Unc.	5.835 %
	Spectral Index	0.6485
	Correlated Unc.	0.5377 %

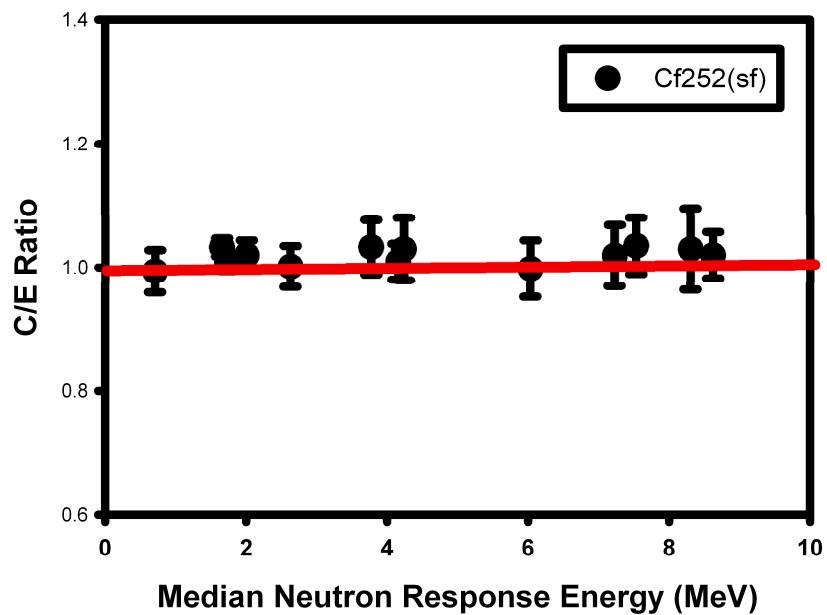
Example Worst-Case: Dis-Similar Energy

Methodology	Metric	Value
Covariance Propagation	$^{197}\text{Au}(n,\gamma)^{198}\text{Au}$ Xsec	134.7 mb
	Correlated Unc.	5.838 %
	Average Unc.	15.7 %
	$^{58}\text{Ni}(n,p)^{58}\text{Co}$ Xsec	55.72 mb
	Correlated Unc.	5.82%
	Average Unc.	7.18%
	Spectral Index	2.417
	Worst-case Unc.	11.2%
	Best-case Unc.	0.0
	$^{32}\text{S}(n,p)^{32}\text{P}$ Xsec	134.7 mb
Monte Carlo Sampling	Correlated Unc.	5.435%
	$^{58}\text{Ni}(n,p)^{58}\text{Co}$ Xsec	55.76 mb
	Correlated Unc.	5.937 %
	Spectral Index	2.431
	Correlated Unc.	10.62 %

Application: $^{252}\text{Cf(sf)}$


- Data Source: NBS (NIST) work by J. A. Grundl, NBSIR 85-03151
- 13 spectral indices reported
 - Ratio'd to $^{238}\text{U}(n,f)$ as referencereaction
- Approach:
 - NBS original analysis
 - Used NBS spectrum
 - Updated analysis using IRDFF v1.02 cross sections
 - Used Mannhart ^{252}Cf spontaneous fission spectrum, IAEA-NDS-98
- Results:
 - **0% of the cases (0 of 13) showed the spectral uncertainty to be the dominant uncertainty contributor, 2 of 13 (15%) had spectrum component larger than cross section component.**
 - 8% of cases (1 of 13) deviated by more than 1-sigma: $^{235}\text{U}(n,f)$

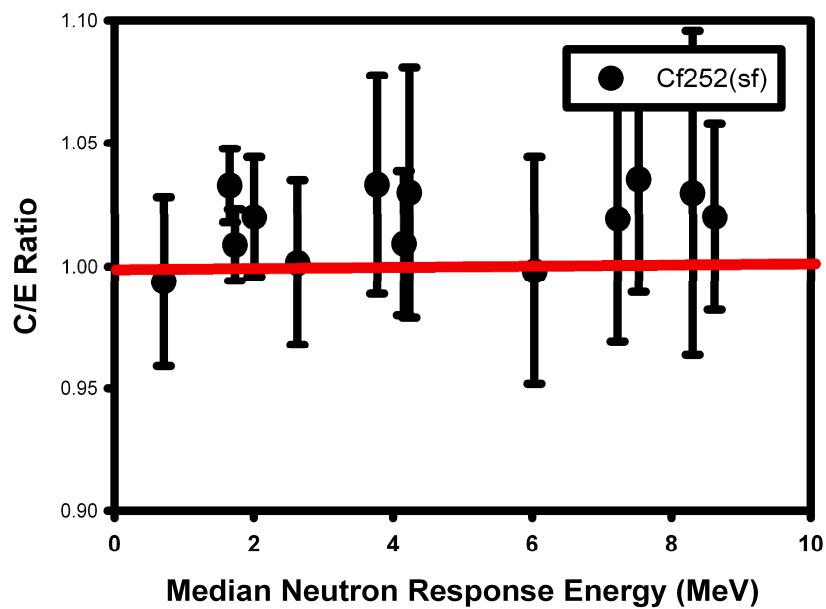
Our Results: $C_{\alpha,\beta}$ for $^{252}\text{Cf(sf)}$


Reaction	Expt. SI Unc.	Xsec. Unc.	Spct. Unc.	$C_{\alpha\beta}$	$C_{\alpha\beta}$ Unc.
$^{237}\text{Np}(n,f)$	1.50%	1.69%	0.24%	1.020069	2.37%
$^{115}\text{In}(n,n')$	2.80%	1.66%	0.40%	1.001451	3.34%
$^{47}\text{Ti}(n,p)$	3.20%	2.73%	0.64%	1.033157	4.31%
$^{58}\text{Ni}(n,p)$	2.10%	1.74%	0.76%	1.009256	2.91%
$^{54}\text{Fe}(n,p)$	3.00%	3.62%	1.41%	1.030588	4.95%
$^{46}\text{Ti}(n,p)$	3.20%	3.05%	1.19%	0.998062	4.63%
$^{63}\text{Cu}(n, \alpha)$	3.60%	2.97%	1.38%	1.01935	4.91%
$^{56}\text{Fe}(n,p)$	3.20%	2.62%	1.45%	1.035295	4.43%
$^{48}\text{Ti}(n,p)$	3.20%	5.31%	1.55%	1.029717	6.42%
$^{27}\text{Al}(n,\alpha)$	3.20%	0.72%	1.61%	1.02009	3.71%
$^{239}\text{Pu}(n,f)$	1.20%	0.46%	0.086%	1.008722	1.45%
$^{235}\text{U}(n,f)$	1.20%	0.42%	0.091%	1.032812	1.44%
$^{197}\text{Au}(n,\gamma)$	3.20%	0.57%	1.04%	0.993622	3.48%

Application: $^{252}\text{Cf(sf)}$

NBS Reported Results

Updated Results with IRDFF


Interpretation of $^{252}\text{Cf(sf)}$ Results

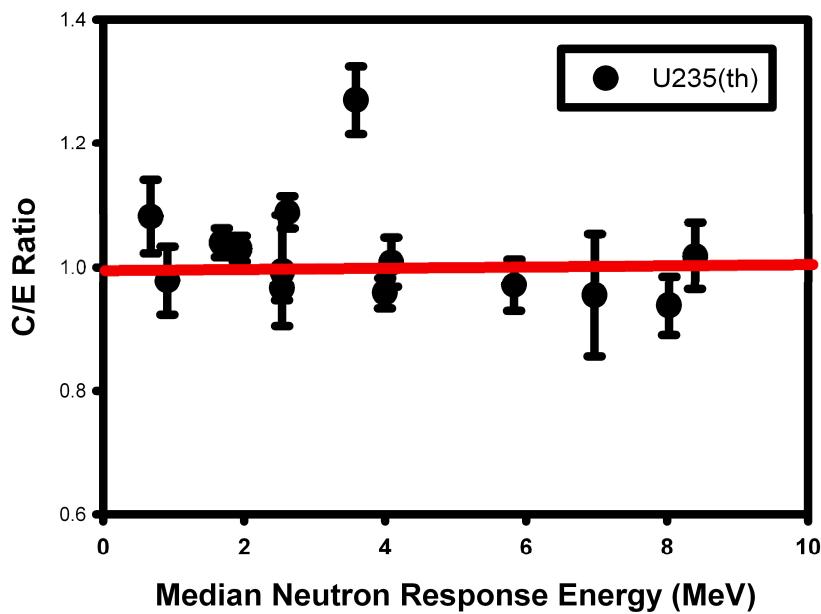
- How do we explain the difference in NBS and updated IRDFF analysis:
 - Discrepant NBS activity is for $^{47}\text{Ti}(\text{n},\text{p})$ reaction. Old cross section used in NBS analysis. Mannhart previously uncovered and fixed the cross section issue.
 - Changes in other cross sections improved the agreement
 - $^{63}\text{Cu}(\text{n},\alpha)$ near 7.22 MeV
 - $^{27}\text{Al}(\text{n}, \alpha)$ near 8.6 MeV
 - No SIs are reported where the low energy portion of the spectrum in this field dominated the response, e.g. no ^6Li or ^{10}B reactions.
 - $^{197}\text{Au}(\text{n},\gamma)$ reaction present but median response was at 0.71 MeV

Enlargement of C/E for SI's in $^{252}\text{Cf(sf)}$

- Enlarged view of $C_{\alpha\beta}$ ratios shows excellent agreement in standard $^{252}\text{Cf(sf)}$ field

Updated Results with IRDFF

Application: $^{235}\text{U}(\text{th})$


- Data Source: NBS (NIST) work by J. A. Grundl, NBSIR 85-03151
- 14 spectral indices reported
 - Ratio'd to $^{238}\text{U}(\text{n},\text{f})$ reference reaction
- Approach:
 - NBS original analysis
 - Used NBS spectrum
 - Updated analysis using IRDFF cross sections
 - Used JENDL-4 ^{235}U thermal fission spectrum
 - Selected over ENDF/B-VII due to positive definite covariance attribute
- Results:
 - **71% of the cases (10 of 14) showed the spectral uncertainty to be the dominant uncertainty contributor**
 - 21% of cases (3 of 14) deviated by more than 1-sigma
 - consistent with expectations for definition of the 1-sigma level

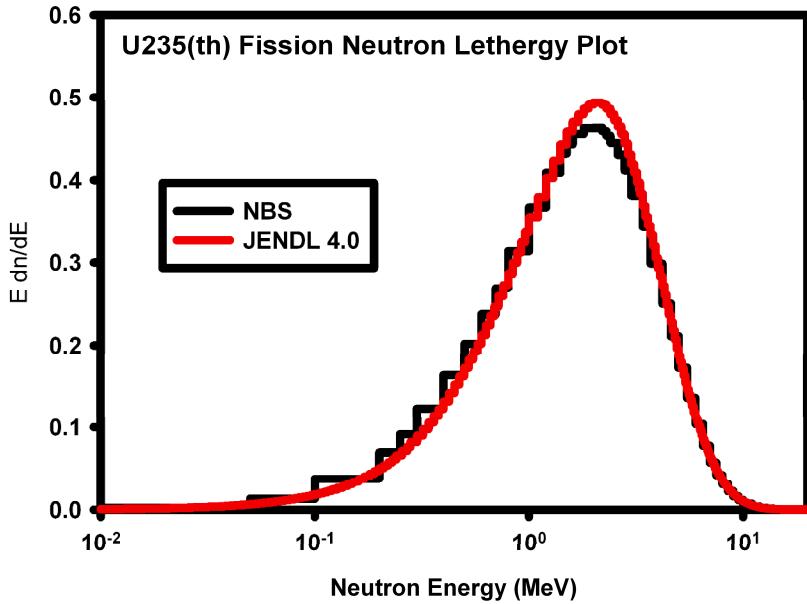
Results: $C_{\alpha,\beta}$ for $^{235}\text{U}(\text{th})$


Reaction	Expt. SI Unc.	Xsec. Unc.	Spct. Unc.	$C_{\alpha\beta}$	$C_{\alpha\beta}$ Unc.
$^{237}\text{Np}(\text{n,f})$	1.7%	1.689%	1.099%	1.006216	3.6286%
$^{93}\text{Nb}(\text{n,n'})$	9.0%	2.659%	2.22%	0.882392	4.4849%
$^{115}\text{In}(\text{n,n'})$	2.0%	1.681%	2.31%	0.994655	4.04557%
$^{47}\text{Ti}(\text{n,p})$	4.2%	2.784%	4.43%	1.014135	6.03340%
$^{58}\text{Ni}(\text{n,p})$	2.0%	1.749%	5.06%	0.96926	6.29753%
$^{54}\text{Fe}(\text{n,p})$	3.5%	2.126%	2.09%	0.985939	12.2782%
$^{46}\text{Ti}(\text{n,p})$	3.0%	3.191%	2.753%	0.967744	10.2960%
$^{63}\text{Cu}(\text{n,}\alpha)$	10.0%	3.090%	10.70%	0.883243	11.8241%
$^{48}\text{Ti}(\text{n,p})$	4.2%	5.606%	13.02%	0.980577	14.7317%
$^{27}\text{Al}(\text{n, }\alpha)$	4.2%	0.750%	13.02%	0.979511	14.2724%
$^{239}\text{Pu}(\text{n,f})$	1.7%	0.461%	0.462%	0.995686	3.23907%
$^{235}\text{U}(\text{n,f})$	1.7%	0.417%	0.456%	1.026186	3.37307%
$^{10}\text{B}(\text{n, }\alpha)$	4.5%	0.069%	2.09%	0.833304	4.90081%
$^6\text{Li}(\text{n,}\alpha)$	4.5%	0.0647%	2.753%	0.713872	5.07067%

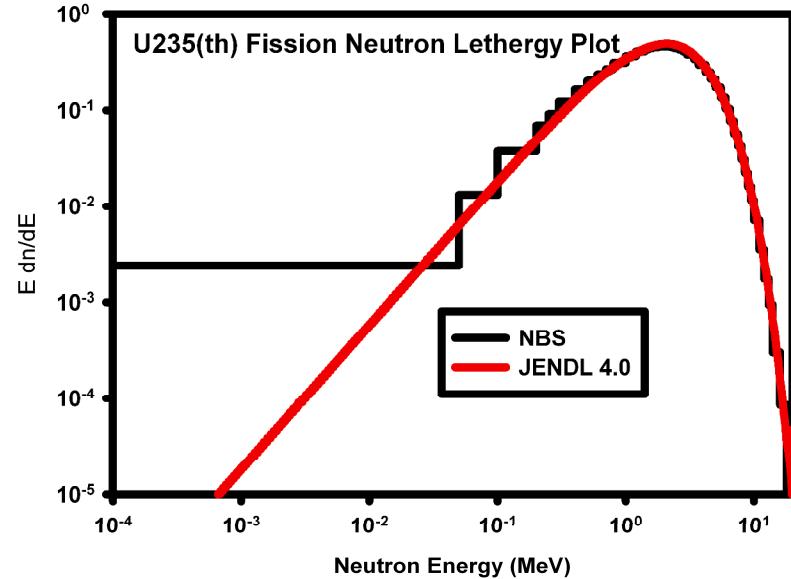
Application: $^{235}\text{U}(\text{th})$

NBS Reported Results

Updated Results with IRDFF

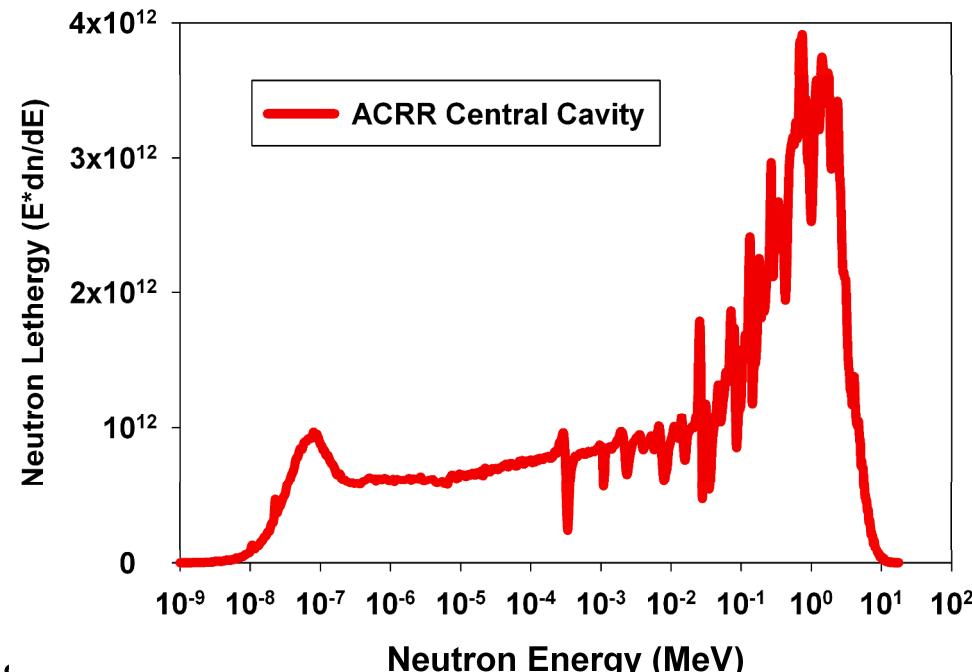


Interpretation of $^{235}\text{U}(\text{th})$ Results

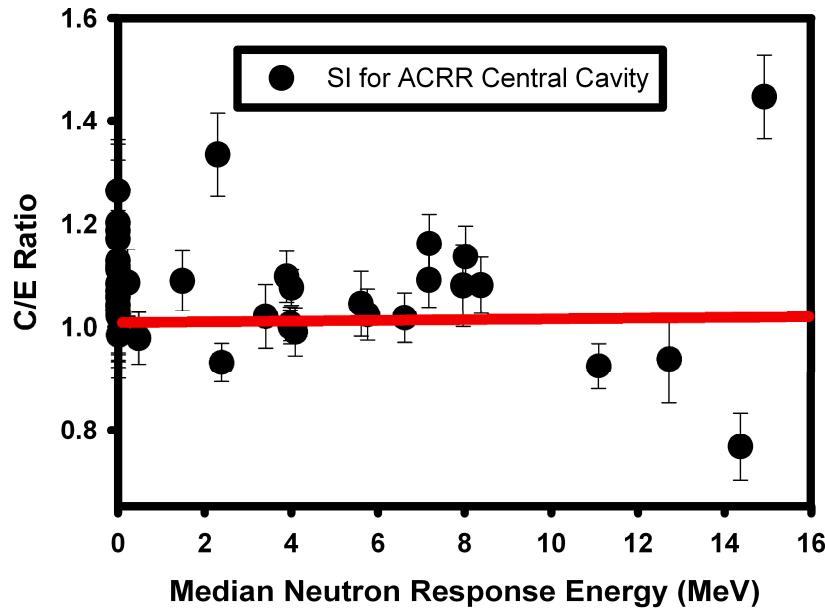

- How do we explain the difference in NBS and updated IRDFF analysis:
 - Discrepant NBS activity is for $^{47}\text{Ti}(\text{n},\text{p})$ reaction. Old cross section used in NBS analysis. Mannhart previously uncovered and fixed the cross section issue.
 - NBS spectrum reported a much **smaller energy-dependent cross section uncertainty** than the JENDL-4 or ENDF/B-VII.1 evaluations.
 - E.g. at 8 MeV: JENDL-4 uncertainty = 13%, NBS uncertainty = 5.3%
 - NBS used a 45-group representation that was not adequate for low energy portion of spectrum critical for $^{6}\text{Li}(\text{n},\alpha)$ and $^{10}\text{B}(\text{n}, \alpha)$ ratios.
 - NBS report cautioned about use of low energy detectors in this field “because of uncertainties in the graphite return field”. Rather, the 1-meter cavity at SCK/CEN is recommended.

Comparison of NBS and JENDL-4 $^{235}\text{U}(\text{th})$ Fission Spectrum

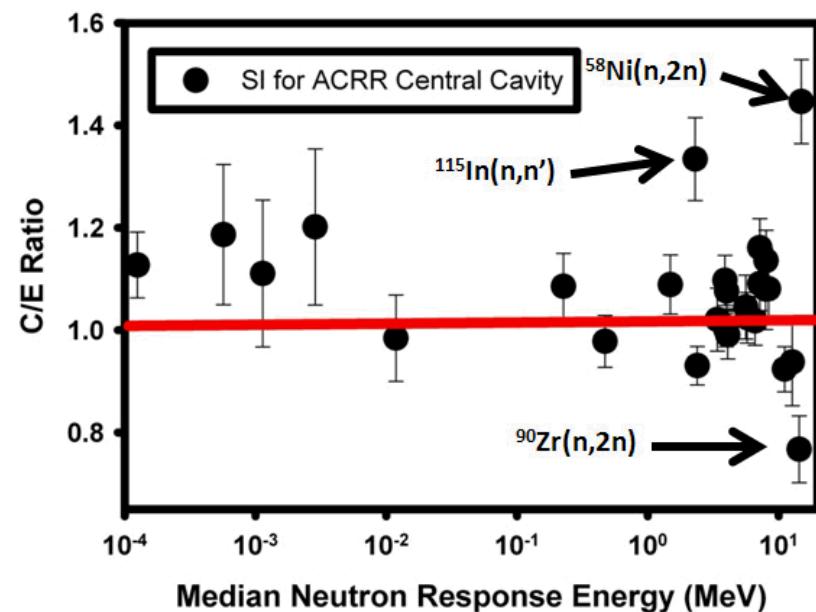
Linear-Log lethergy Plot



Log-Log Lethergy Plot


Application: ACRR Central Cavity

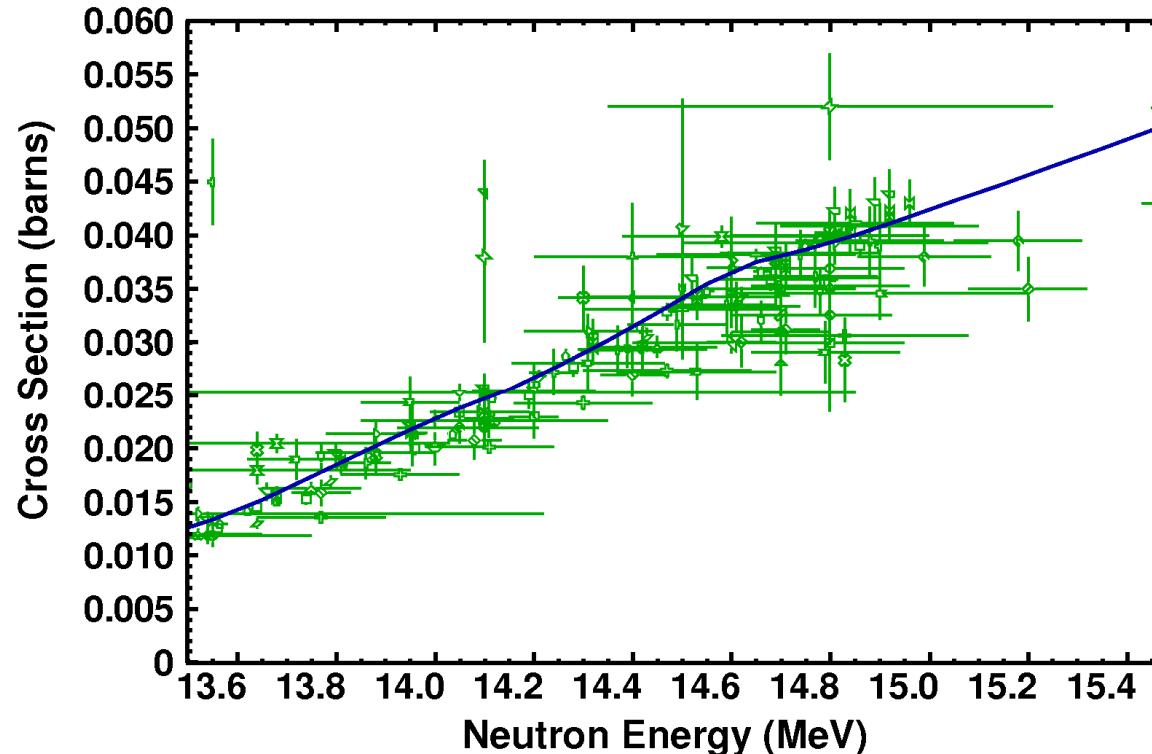
- “pool-type” reactor
- “*a priori*” neutron spectrum used in LSL spectrum adjustment
 - Produced with MCNP6
 - ENDF/B-VII.1 cross sections
 - 640-group SAND-II output representations
 - Structure represents resonances in cross sections for reactor materials, e.g. oxygen
- 40 measured activities
- $\chi^2/\text{dof} = 2.06$



C/E for SI's for ACRR Central Cavity

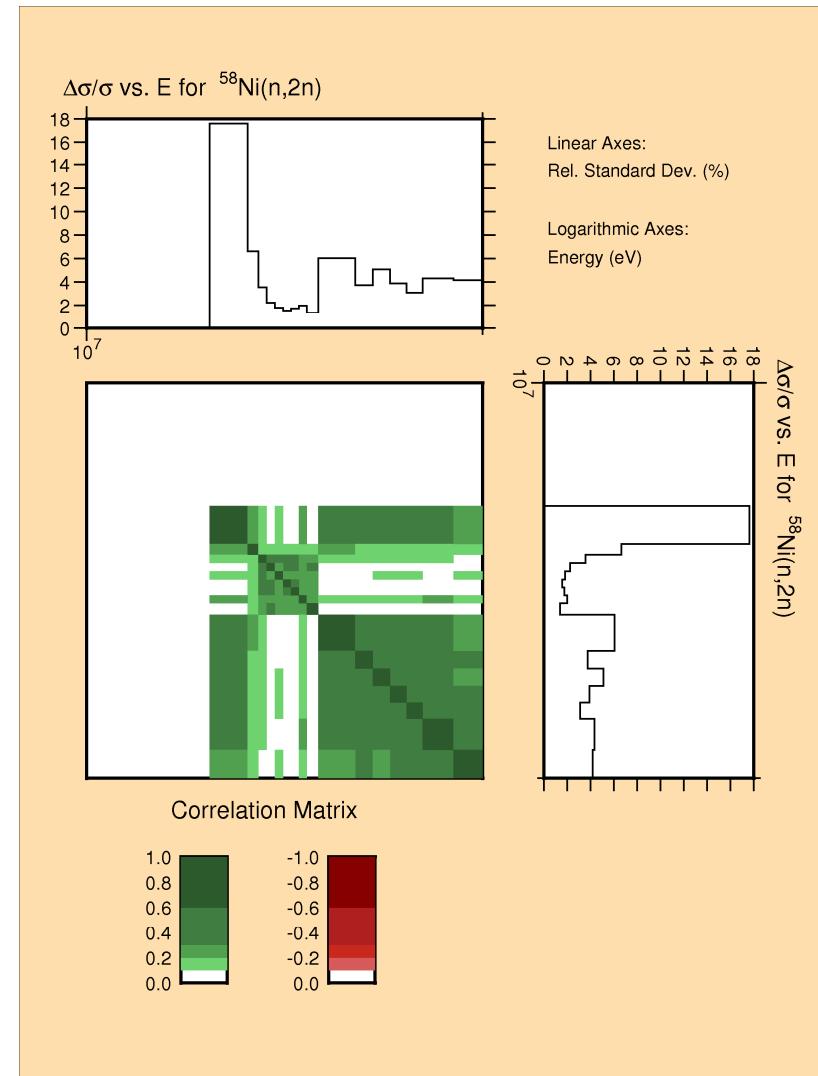
Linear Energy Axis

Logarithmic Energy Axis


Results of ACRR Central Cavity Analysis

- In 62% of sensors (25 of 40) the spectrum is the dominant uncertainty contributor
- 4 of the 39 $C_{\alpha,\beta}$ ratios deviate from 1 by more than 3-sigma
 - $^{55}\text{Mn}(n,\gamma)$ with Cd cover
 - SNL analysis often shows difficulties with this reaction
 - $^{56}\text{Fe}(n,p)$ with B_4C cover
 - Cover correction suspect since reaction without cover shows good agreement
 - $^{58}\text{Ni}(n,2n)$
 - In conflict with 3 other reactions in the high energy \sim 14-MeV response region: $^{90}\text{Zr}(n,2n)$; $^{93}\text{Nb}(n,2n)$; $^{59}\text{Co}(n,2n)$
 - Measurement needs to be replicated
 - Cross section updated in IRDFF v1.03
 - $^{115}\text{In}(n,n')$
 - Questions are being pursued about measurement

EXFOR Data Comparison for

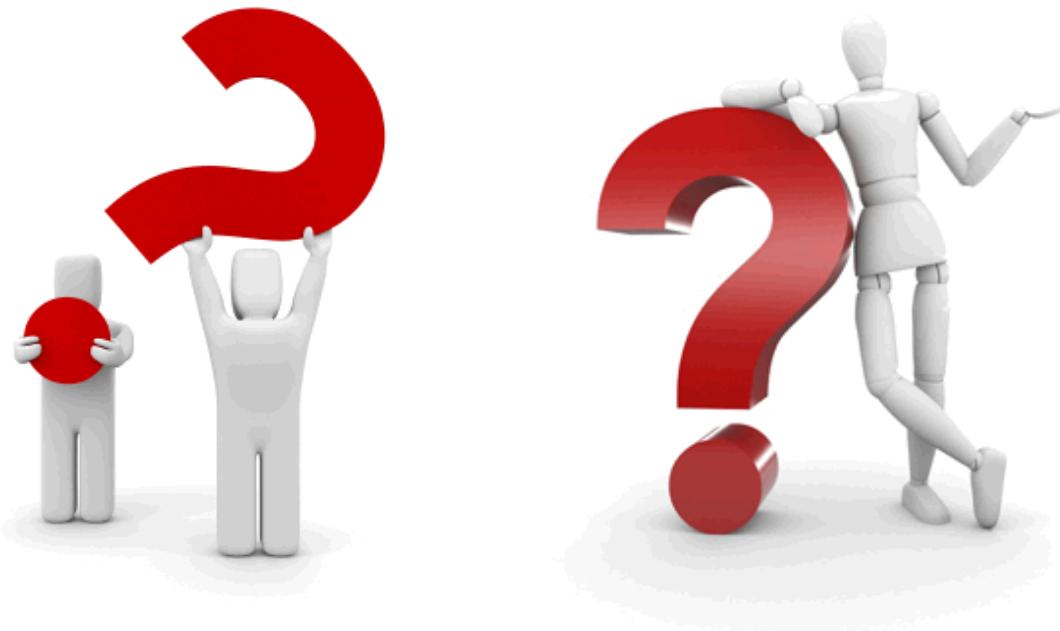

$^{58}\text{Ni}(\text{n},2\text{n})$ IRDFF Cross Section

- This cross section is in adequate agreement with 14-MeV EXFOR data – but there is a large variation in the experimental measurements

IRDFF Covariance $^{58}\text{Ni}(n,2n)$ Cross Section

- This cross section shows a small but highly correlated uncertainty
- This uncertainty is in conflict with observed variation in the raw EXFOR raw data, but the evaluator would have performed a much more rigorous investigation of the available experimental data when he set the uncertainty as captured in the nuclear data evaluation.

$^{58}\text{Ni}(\text{n},2\text{n})$ Cross Section Agreement in Other Neutron Benchmark Fields


- Cross section shows good C/E agreement in $^{252}\text{Cf}(\text{sf})$ and $^{235}\text{U}(\text{th})$ benchmark neutron fields

Radiation Field Bench-mark Field	Metric		C/E	
	Spectrum-Averaged Cross Section (mb)			
	Experimental	Calculated [Unc. $(\phi \sigma)$] ¹ [E_{05}, E_{50}, E_{95}] ²		
^{252}Cf spontaneous fission	$0.008952 \pm 3.57\%$	0.00915 [$6.043\% 1.63\%$] [$13.063, 14.891, 18.214$]	$1.0221 \pm 7.21\%$	
^{235}U thermal fission	$0.0036 \pm 7\%$	0.00378 [$11.5\% 1.799\%$] [$12.986, 14.67, 17.789$]	$1.04 \pm 13.58\%$	

Conclusions

- The contribution from the spectrum uncertainty typically dominates the overall uncertainty for spectral indices and must be addressed in analyses.
 - An exception is the very well characterized ^{252}Cf standard neutron field
- A methodology is presented for determining this spectral uncertainty component in the calculated SI and C/E ratio.
 - When a spectrum covariance matrix is available, i.e. when its uncertainty is characterized, a Cholesky decomposition can be applied to generate a random draw and a “total Monte Carlo” approach can be applied to accurately capture the uncertainty in a non-linear quantity like the spectral index.
- Example applications of this methodology are presented.

Questions?

