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This paper applies a pragmatic interval-based approach to validation of a
fire dynamics model involving computational fluid dynamics, combustion,
participating-media radiation, and heat transfer. Significant aleatory and
epistemic sources of uncertainty exist in the experiments and simulations.
The validation comparison of experimental and simulation results, and
corresponding criteria and procedures for model affirmation or refutation,
take place in *“real space” as opposed to “difference space” where
subtractive differences between experiments and simulations are assessed.
The versatile model validation framework handles difficulties associated
with representing and aggregating aleatory and epistemic uncertainties from
multiple correlated and uncorrelated source types, including:

o experimental variability from multiple repeat experiments

e uncertainty of experimental inputs

e experimental output measurement uncertainties

e uncertainties that arise in data processing and inference from raw
simulation and experiment outputs

e parameter and model-form uncertainties intrinsic to the model
¢ numerical solution uncertainty from model discretization effects.
The framework and procedures of the model validation methodology are

here applied to a difficult validation problem involving experimental and
predicted calorimeter temperatures in a wind-driven hydrocarbon pool fire.

1. Introduction

One aspect of the work that Sandia National Laboratories performs for the U.S. Dept. of
Energy is the design and assessment of safing systems that keep nuclear weapon firing
systems inert in accidents and abnormal environments such as fires. (See e.g. reference
[1] for a synopsis of weapon risk considerations and assessment methodology for fire
accidents.) In a supporting activity, the model validation effort described in this paper
centers around the steady-state temperature response of a fire-heated “cone” calorimeter.
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Reference [2] describes in detail the experimental setup, fire tests, and raw experimental
data and results. Reference [3] discusses the geometry and experimental conditions
important to modeling the fire tests. Also documented are the physics and discretization
models in the FUEGO[4] computational fluid dynamics, combustion, and heat-transfer
simulations and results. The massively parallel 3-D code involves 33 degrees of freedom
at each node, representing x-y-z momentum, participating-media radiative transport
directions or ordinates, chemical reactions/combustion, and turbulence, energy, pressure,
and soot and chemical species conservation and transport.

The subject of this paper is validation of the FUEGO fire dynamics model. The following
one-sentence contemporary definition of model validation, and close variants of it, are the
accepted standard definition in [5] - [8]: Model Validation is the process of determining
the degree to which a computer model is an accurate representation of the real world
from the perspective of an intended use of the model. Despite broad agreement on this
one-sentence definition, there is room within the definition for considerable debate
among validation methodology developers and practitioners as to what procedures or
steps lie within the scope of a completed model validation activity. For example, some
consider validation to involve just the discernment of model accuracy versus reality, for
those specific output quantities of the experiment and model that are relevant to intended
use of the model, e.g. for predicting fluid drag on a vessel. Others hold that model
validation further implies the discernment of model adequacy for intended use of the
model (i.e., whether the model accuracy is deemed sufficient for making predictions to
support some design, analysis, or decision-making need).

This paper takes the broader viewpoint, and to avoid confusion often refers to the
adequacy component of model validation as model affirmation. Hence, the definition of
model validation subscribed to here is (from [10]): model validation is the discernment of
the accuracy and adequacy of models and model predictions as compared to reality (i.e.,
some subset or filter of reality that is important to predict for some purpose—in as far as
we can ascertain what reality portends through appropriately designed and controlled
experiments at specific validation points in the modeling space).

Not surprisingly, various modeling communities are still working out the technical
procedures and criteria for assessing and deciding whether a model is considered
validated (affirmed) with respect to a particular intended use. No overriding consensus
yet exists. To be sure, several model validation paradigms and methodologies exist in the
literature. Many of these are considered in refs. [9] - [12], where it is determined that
none of those considered appear to have the full set of enabling features, yet are
pragmatically simple enough, to reasonably handle the difficult model validation problem
pursued in this paper. Indeed, a newly evolved model validation framework and
methodology, developed in the course of model validation practice on several other
challenging application problems, is applied in this paper to the very difficult fire
dynamics model validation problem.

The fire experiments, simulations, and results are briefly summarized in the following.
The majority of the paper is devoted to presentation of a validation-relevant subset of the



experiment and simulation results and uncertainties; processing of these into a form
suitable for model validation comparisons; and description of the comparisons along with
interpretation within the well-exercised and vetted model validation framework
employed. For brevity here, only a representative subset of experimental and simulation
results and model validation processing is presented. The full set of data, processing, and
results from the validation activity can be found in [3].

2. Experiments and Experimental Conditions

As Figure 1 shows, the experiments involved a flow-through partial “enclosure” that
serves the purpose of imitating foreseeable conditions where a fire heats up the walls and
roof of a weapon storage or transportation room or container. The walls and roof then
radiate heat to the weapon, imparting more heat and thus embodying a more severe
heating condition than if no enclosure and only a shallowly engulfing fire (non-optically-
thick) is present.
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Figure 1. Cone calorimeter inside flow-through enclosure with fuel pan in front.
Stands at sides of calorimeter hold thermocouples and (visible) flux gauges.

The walls and roof of the enclosure were comprised of 3/16-inch-thick steel sheet stock
on the inside. These were insulated on the outside with blanket insulation to provide an
easily modeled boundary condition for the validation activity. Therefore, an adiabatic
boundary condition was modeled on the exterior of the enclosure walls and roof in the



FUEGO simulation. The cone calorimeter outside shell is made of 3/16-inch-thick steel
sheet. For ease of modeling, the inside volume is filled with blanket insulation to prevent
convective and radiative heat exchange among the inside walls of the cone. Hence, an
adiabatic boundary condition is applied on the interior of the steel cone shell modeled in
the FUEGO simulations. The nearly adiabatic walls (with insulated back-sides) of the
calorimeter and enclosure also strongly promote a quicker arrival to steady-state wall
temperatures and re-radiation conditions in the experiments.

Thermocouples (TCs) were attached to the inside of the cone shell at 12 height levels that
include the two levels shown in Figure 2. TCs and flux gauges were also placed in the
flow field of the fire (on the stands shown at the sides of the calorimeter in Fig. 1) and on
the walls/roof of the flow-through enclosure that the calorimeter is at the center of. The
steel interior walls, roof, and floor of the enclosure, and the exterior of the calorimeter,
were painted with black Pyromark high-emissivity paint so that they would readily
exchange radiative heat with the fire and with each other, therefore more quickly
reaching steady-state temperature and re-radiation conditions. The Pyromarked surfaces
have an initial emissivity € of nominally 0.86 upon application to the room-temperature
steel surfaces, but the emissivity after experimental “burn-in” of the paint at high
temperature is a significant uncertainty in the experiments. Later it will be described how
this important uncertainty is accounted for in the model validation analysis. Other
uncertain inputs to the experiments will also be discussed.
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Figure 2: Thermocouple locations on Cone Calorimeter for comparison
of experimental results versus FUEGO predicted results.



Details of the fuel and fuel-pan, facility and structure geometries, experiment flow
conditions such as the air inflow and exhaust outflow conditions, and all thermocouple
and flux-gauge locations can be found in either or both of [2] and [3].

3. Initial Model Validation Considerations

Although a wealth of experimental data from the tests is available to compare against
FUEGO predictions for model validation purposes, time and resource considerations
dictated that comparisons in the project be confined to only calorimeter temperature
response. Such response is most directly associated with the validation question driving
the experimental and simulation work here: how well does FUEGO calculate surface
heating conditions on objects (weapons) in wind-driven hydrocarbon fires?

To bring the scope of the validation activity into line with project resources, the
validation comparisons are further limited to eight diverse and representative TC
locations on the calorimeter, although many more locations were monitored in the
experiments. Figure 2 shows four TC locations (at 0°, 90°, 180°, and 270°) on the upper
section of the cone above a field joint (internal bolted attachment) at mid-height, and
another four at the same angular positions on the lower section of the cone below the
attachment joint.

On the upper section of the cone, the Level 10 set of TCs in Figure 2 was chosen in order
to minimize local edge or anomaly effects on conduction behavior and therefore
temperature of the calorimeter shell. Level 10 is about half way between the top edge of
the cone and the height discernable in Fig. 1 where flux gauges inserted into holes of 1.5
to 2 inch diameter in the shell create local anomalies in the conduction and temperature
fields. On the lower section of the cone, unknown and possibly highly varying contact
resistance around the bolted attachments at the mid-height field joint and the base of the
cone could produce local effects on calorimeter temperature. The Level 2 height in Figure
2 was chosen in order to minimize local effects due to these bolted joints.

Calorimeter temperature response is not the only quantity relevant to FUEGO validation.
For example, enclosure temperature response is just as indicative of how well FUEGO
calculates object surface heating. Certainly, it would be significantly more revealing to
compare FUEGO predictions against experimental response for both the calorimeter and
enclosure, instead of just one or the other. Both are time-space integrating sensors of the
experimental and simulated fires, and corroboration (validation) based on two diverse
such sensors is of course stronger than corroboration from one alone. However,
corroboration based on two diverse integrating sensors also cannot be said to be
absolutely sufficient to settle the model validation question with regard to the present
experiments. For instance, a further check against the TCs and flux gauges on the stand in
the flow field of the fire (see Figure 1) could indicate differently, and refute the fire
model’s predictive capability locally there. (Such further checks are essentially infinitely
prescribable—see discussion in [10] on “field validation™ versus the validation of only
certain resultant effects of the field important to an engineering purpose, “effect
validation™.)



In fact, absolute sufficiency is probably only reachable in theoretical limits and it would
appear that statistical procedures and arguments would have to be invoked to establish
validation sufficiency in practical terms (e.g., odds or significance level associated with a
validation conclusion). This is beyond the scope of the present treatment. In the present
circumstances we can only address whether a necessary test of model adequacy is met by
FUEGO with respect to the narrow program-relevant quantity of calorimeter steady-state
temperature. Indeed, it is shown in the following that a significant validation test is
passed in this regard, lending credibility to FUEGO’s predictive abilities in the present
experimental circumstances, although not sufficient to absolutely confirm its predictive
capability—even for the present experimental conditions.

A substantial relaxation in the strength of the validation case also comes from the fact
that we compare only steady-state temperature of the calorimeter, as opposed to transient
temperature response. This is forced by several reasons. First, capabilities for realistic
modeling of transient startup and growth of the pool fire were not yet available in
FUEGO. Second, the predominant project driver, assessment of weapon safety risk in
fires, is concerned with weapon internal response events that take 10’s of minutes to
develop and are the result of sustained fire heating and are fairly insensitive to the early-
time initial flare-up and stabilization transients of the fire.

Thus, although transient response is a more stringent test of FUEGO predictive
capability, project constraints dictated that we could only reasonably compare steady-
state temperatures, and this was felt to be acceptable with respect to the driving purpose
of predicting heating conditions for weapon-response simulations for risk analysis.

4. Plan of FUEGO Simulations for Uncertainty Quantification in the Model Validation
Procedure

FUEGO simulations were used in the validation procedure to quantify modeling
uncertainty. Resource constraints dictated that only 5 or 6 steady-state FUEGO
simulations could be run at the medium-resolution model described in [3]. (The
simulations took several weeks on 512 processors.)

Here model resolution involves spatial-discretization cell size; number of discrete-
ordinate directions for solution of participating-media radiation transport; and solver
numerical-error tolerance parameters employed in the steady-state FUEGO computations.
The resolution level was surmised from past FUEGO modeling projects to be sufficient
for the validation purpose here, i.e., to yield simulation results that would change with
further resolution refinement only relatively little compared to the effects of other
physical modeling uncertainties and bias errors in the validation activity.

To check that the medium-mesh discretization was indeed sufficient, a simulation was
planned at a significantly higher resolution. However as explained in [3], the high-
resolution simulation never completed because of difficulties with the required multi-
thousand processor jobs. Thus, in assuming that the calculation results here are
sufficiently numerically resolved, there is only previous experience to cite from [13]
which compared results from a similar “medium” resolution to results from a



substantially higher resolution. Nonetheless, it is explained later how the validation
framework used in this paper would handle any characterized uncertainty (e.g. by
methods presented in [14]) due to numerical resolution in the model and simulations.

Regarding fire-physics modeling uncertainty, a consensus of Sandia fire modeling expert
judgment concluded that the following physics submodel forms and coefficients were
generically the largest sources of intrinsic® modeling uncertainty. The nominal values
and associated uncertainties are listed in Table 1.

Table 1. Intrinsic Sources of Uncertainty in the Fire Dynamics Model

heat of combustion (HOC): 44.66kJ/mol + 10%

soot extinction coefficient (SEC): 7 + 10%

convection coefficient (CC) at object surface: calculated value -50% to +100%
flame volume coefficient: (FVC): 2.13 + 30%

flame loading coefficient: (FLC): 0.41 + 30%

turbulence model form: TENS (nominal) versus BVG

To estimate the modeling uncertainty contributed by the above 6 factors, using only the
budget of 5 or 6 steady-state FUEGO simulations that could be afforded, information
from previous uncertainty/sensitivity studies over these modeling factors was drawn
from. The plan was to get reasonable upper and lower bounds on the FUEGO predicted
heating of the calorimeter by running a simulation at the combination of parameter values
within the preceding parameter space (joint “uncertainty space’) that gives the highest
heating to the calorimeter, and then at a combination of parameter values within the
uncertainty space that gives the lowest heating to the calorimeter.

The sought parameter combinations were identified to the best possible extent under all
the presiding constraints and available information as follows. Reference [15] presents a
blocked experimental design of 16 simulations that explore the above six-factor
uncertainty space plus spatial discretization and computational solver resolution effects.
Sixteen simulations were run for “Airplane Fire” and sixteen more for “Truck Fire”
wind-driven fires. The sensitivity of weapon heating to the six uncertainties was

* This term signifies a category of modeling uncertainty that is innately associated with the “traveling”
portion of the model being validated. Only the traveling portion goes on to new predictions beyond the
validation exercise. That is, certain elements or aspects of the model will be carried forward to new
predictions, and certain aspects are specific only to the validation setting. The intrinsic uncertainties in
Table 1 all exist in the validation setting, but also travel to new predictions, as uncertainties that are
propagated to simulations results in the new prediction settings as well. Other uncertainties in the
experiment, such as emissivity of the calorimeter and enclosure walls in the modeled experiment, are
confined to the validation experiments; in general we will simulate new environments and enclosures with
different emissive properties and uncertainties than the specially prepared Pyromark painted surfaces in the
validation experiments. Thus, these emissivity uncertainties will not travel to new predictions—they are not
intrinsic to the FUEGO fire dynamics model. As explained in [12] and demonstrated in this paper, the
validation framework handles traveling uncertainties differently from non-traveling uncertainties.



analyzed. From the sensitivity results, the parameter combinations for high and low
weapon heating’ in each accident scenario were inferred.

The investigation in [15] employed a standard k-epsilon turbulence model and
alternatively a Buoyant Vorticity Generation (BVG) turbulence model to hopefully bound
model-form effects of turbulence modeling error in the Reynolds-Averaged Navier-
Stokes (RANS) computational fluid dynamics (CFD) model. The investigations in [3]
and [13] propose CFD model-form bounds as the BVG RANS formulation and a Time-
Filtered Navier-Stokes (TFNS) RANS formulation. See [3] and [13] for detailed
summaries of these CFD formulations.

The formulations generally dictate that the BVG-RANS turbulence model has the
potential to result in larger and hotter simulated fires than the TFNS-RANS turbulence
model due to the inclusion of a baroclinic torque source-term in the k-equation which
enhances mixing and therefore combustion in the BVG formulation. Hence, for model
validation purposes we could minimally run just one FUEGO simulation with the BVG
model and the inferred “hot fire” extreme combination of values of the other uncertain
parameters (Set 4 prescribed below); and another simulation with the TFNS model and
the inferred “cool fire” extreme combination of other parameter values (Set 3 prescribed
below). A third simulation would be run (analogous to Simulation 6 discussed later) to
account for the effects of the highly uncertain emissivity of the Pyromarked surface of the
calorimeter and enclosure.

Nevertheless, to more thoroughly examine the effect of turbulence model form on
predicted heating in the current physical setting, we ran both model forms with the “hot
fire” and “cold fire” extreme parameter combinations listed in the first five bullets of
Table 1. Thus, the following simulations were run. Table 2 summarizes the run matrix.

Set 1 (Simulation 1) — Baseline Case, TFNS with nominal parameter values in Table 1

Set 2 (Simulation 2) — High Heating parameter combination with TFNS

Set 3 (Simulation 3) — Low Heating parameter combination with TENS

Set 4 (Simulation 4) — same as High Set #2 above, except with BVG turbulence model

Set 5 (Simulation 5) — same as Low Set #3 above, except with BVG turbulence model

> as a global spatial average over the heated object, but not necessarily locally at all points on its surface



Table 2. Fire Model Input Variations for the Six FUEGO Simulations Run

FUEGO run | turbul. model HOC SEC CC FVC FLC  e_Pyromark
Set 1 TENS 44.66 7 100% 213 0.41 0.86
Set 2 TENS 44.66+10% 7 100% 213 0.41 -30% 0.86
Set 3 TFENS 44.66-10% 5 200% 2.13-30% 0.41 +30% 0.86
Set4 BVG Lo SAME aSTOW 2.....oieeieiiiaiaanen, ]
Set5 BVG [ SAME ASTOW 3....vviiniiieeniinenannns, |
Set 6 [ SAME ASTOW 2. ..iiiiviiieiiieiiee e, | 0.96

The uncertainties of other inputs to the validation experiment(s), that are non-intrinsic to
the traveling fire dynamics model, such as calorimeter/enclosure/facility geometry, fuel
regression rate, air flow rate (wind velocity), and material properties, must also be
considered in the model validation procedure. Of the parameters in this non-traveling
category, it was surmised that the only uncertainty of first-order significance impacting
calorimeter steady-state temperature was emissivity of the calorimeter exterior and of the
enclosure interior.

This emissivity uncertainty is accounted for by running a simulation (#6, below) to
quantify the effect of a substantial perturbation from the nominal emissivity €nomina =
0.86, with all other model inputs held constant. From this, a first-order finite-difference
approximation to d(cone local-steady-state-temp.)/de at every point on the cone surface
can be formed. Then the linearized relationship AT = [d(cone local-steady-state-
temp.)/de] « (A€) can be used to estimate the steady-state temperature change at a given
location on the calorimeter surface for any value of emissivity € different from enommal.é
Hence, the local AT effect from varying € over its applicable uncertainty range can be
investigated analytically with the above relation, where A€ =€ — €nominal. This will be
applied later.

The uncertainty range for emissivity of the calorimeter exterior surface and the enclosure
interior surfaces (walls, roof, and floor) is taken to be 0.76 to 0.96 based on measured
values ([16] - [20]) for both heavily oxidized steel surfaces and burned-in Pyromarked
steel surfaces like in the present XTF experiments. Whether heavily oxidized (burned-in)
steel, or burned-in Pyromarked steel, the corresponding emissivity is thought to lie within
the range cited above. Set 6 employs an emissivity perturbation that goes to the high
extreme of the emissivity uncertainty range, 0.96.

Set 6 (Simulation 6) — Same as Set 2, except €= 0.96

® For certain reasons not evident in what is presented in this paper, Sim. 6 is a perturbation from parameter
set #2. In what follows, the assumption is made that the derivative d(cone local-steady-state-temp.)/de
would be approximately the same for a similar emissivity perturbation from any of the simulations # 1 — 5.
Although the derivative might actually change non-negligibly if computed by perturbations from the other
simulations, this sensitivity could not be investigated because of the limit on the number of FUEGO
simulations that could be run.



A less significant but still substantial non-traveling uncertainty in this project is the heat
transfer between the bottom of the steel cone and the thermally massive steel floor it was
bolted to. Unfortunately, in this project it was not practical to parameterize a contact
conductance at this interface into the FUEGO simulations. Instead, a simple adiabatic
boundary condition was applied at the bottom of the cone. The consequent error (and
uncertainty thereof) remains unquantified in the present effort. Nevertheless, strong
arguments are made in Section 6 that neglecting this factor probably does not materially
change the final validation conclusions.

Geometry uncertainties may also have been possibly significant, but were not considered
for lack of resources. Finally, the uncertainties associated with fuel regression rate, air
flow rate, and steel and insulation thermal properties of the calorimeter were judged to
have relatively little effect on calculated steady-state temperatures, based on applicable
sensitivity studies from [13].

5. Experiment and Simulation Results and Uncertainty Processing for Model Validation
Comparisons

Here we consider only a representative subset of validation-relevant experiment and
simulation results and uncertainties. We focus on TCS5, about 1/5 of the way down from
the top of the calorimeter, and facing the oncoming wind-driven fire. The experiment and
simulation results and validation processing for the other seven TCs in Fig. 2 can be
found in [3].

Figure 3 shows experimental and predicted temperature response curves for TCS. The
data for two nominal repeat experiments, #6 and #7, are shown. As described in [2], the
previous five experiments were partial trial experiments needed to refine the geometry
configuration and experimental conditions, and to “burn in” the Pyromark-painted
radiating surfaces. Also plotted on the figure are the results of all six simulations. The
simulation results will be discussed in detail later, but it is mentioned here that these were
false-transient simulations to reach steady-state temperatures as quickly as possible.
Therefore, the transient response for the simulations is plotted on a scale of seconds to
reach steady state (whereas the experimental responses are plotted on a scale of minutes
to reach steady state). It is also informative to mention here that results for Simulation 5
are falling rather than rising to a steady state because a mistake in one of the parameter
values was noticed and corrected mid-way through the weeks-long calculation. Also,
only the late-time portion of the Sim. 1 results were saved for plotting.
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Figure 3. Calorimeter Temperature at TC #5, top - 0° facing the fire

Characterization of Raw Experimental Results: For the experimental results in Figure 3
it is obvious that it is important to use appropriate time windows over which to average
TCS5 temperature responses in order to get representative steady-state values for model
validation comparisons. The time windows used are depicted graphically in Figure 4.
These correspond to a six-minute window from 32 - 38 minutes in Exp. 6 and a 13-
minute window from 54 — 67 minutes in Exp. 7.

The time-window boxes in Figure 4 have a middle horizontal line that represents the
arithmetic mean of the data within the time window, where readings were recorded at 1-
second intervals. The means are listed in Table 3. The upper and lower horizontal lines
that define the top/bottom of the box are given respectively by the mean +/— 5K. The
rationale is that other time-windows than those used here, perturbed wider/narrower
and/or later/sooner in time could be just as appropriate or representative. A few such
physically-reasonable perturbations were examined. These resulted in changes in time-
window means of a few degrees K or less. Accordingly, a deemed-reasonable uncertainty
band of +/— 5K was assigned to the mean temperatures (representative experimental
steady-state point values) in Table 3. As additional information, the table also lists
maximum and minimum instantaneous temperatures over the time windows, but these
should not be mistaken to represent reasonable uncertainty bounds on the steady-state
means over the time windows.
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Figure 4. Uncertainty on steady-state experimental and simulation results at TC 5.

Table 3. Mean, Max., and Min. Temperatures over Time-Windows in Figure 4

Time-window Maximum over Minimum over
mean, U time-window time-window

1394 K o o
Exper. 6 or 1121°C N6 +33Kor°C | u6-31Kor°C

1412 K 0 o
Exper. 7 or 1139°C M7 +24 Kor°C | u7-34Kor°C

Characterization of Raw Simulation Results: For the simulation results, representative
steady-state values are actually less definite in many instances. In particular, Figures 4
and 5 show that the temperature results corresponding to Simulations 1, 3, and 5 have not
yet stabilized completely. Simulations 1, 3, and 5 had to be terminated due to resource
limitations in the project. (Each simulation took several weeks on 512 processors.)
Consequently, results were extrapolated to estimated steady-state values. The procedure
involved visually extrapolating a TC curve to form reasonable uncertainty bands of
plausible upper and lower bounds on the asymptotic steady-state value, and then taking
the midpoint of the bounds as the single most representative point-estimate for steady-
state temperature. For example, for Sim. 3 it is visually judged that the steady-state
asymptote of the temperature curve is within an uncertainty bar plotted in Fig. 4 that runs
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Figure 5. Uncertainty on steady-state simulation results at TC 5.

from 5K below the last plotted temperature from the simulation, to 20K above the last
plotted temperature. This information is recorded in Table 4. These values of -5K and
+20K are added to Sim. 3’s last plotted temperature in Table 5 to get the Min. and Max.
values listed for Sim. 3 in Table 5. The Min. and Max. values correspond to the lower
and upper extents of Sim. 3’s uncertainty bar shown in Fig. 4. The midpoint of the
uncertainty bar for Sim. 3 coincides with the ‘midway’ temperature listed for Sim. 3 in
Table 5.

Table 4. Values in brackets [] are visually projected limits to anticipated change
from end-of-simulation temperatures to asymptotic steady-state values.
For Simulation 6 the averaging time-window is listed from which a mean
estimate for steady-state temperature is determined.

Sim. 1 Sim. 2 Sim. 3 Sim. 4 Sim. 5 Sim. 6
[-10,+30] K [-30,+30]K [-5,+20] K [-5,+20]1 K [-15,00 K 190 - 241 sec




Table 5. End-of-simulation temperatures at TC5 location, with mean or
extrapolated-asymptotic steady-state values and uncertainty bounds

FUEGO run | ending T (K) Max. (K) Min. (K) Central estimate (K)
Sim. 1 1309 1339 1299 1319 (midway)
Sim. 2 1496 1526 1466 1496 (midway)
Sim. 3 1265 1285 1260 1273 (midway)
Sim. 4 1537 1557 1532 1545 (midway)
Sim. 5 1352 1352 1337 1345 (midway)
Sim. 6 1534 1546 1510 1529 (mean)

For Simulations 2, 4, and 6, temperature results did plateau to quasi-steady values before
the simulations were terminated. Processing Sim. 6 first, an estimate of steady-state
temperature was obtained by averaging over the time window shown in Fig. 4 and listed
in Table 4. However, unlike for the experimental data, no empirical investigation was
performed to determine sensitivity of the time-window mean temperature (as the steady-
state temperature estimate) to perturbations of the window wider/narrower and/or
later/sooner in time. Instead, uncertainty bounds listed in Table 5 are the maximum and
minimum instantaneous temperatures over the time window. These are also depicted by
the upper and lower extents of the time box in Fig. 4.

This latter approach is an easy way to get bounds, but is thought to give considerably
exaggerated uncertainty magnitudes for simulation results that have plateaued to a
(perhaps noisy) steady state. Indeed, the time-window maximum and minimum for the
experimental data are found in Table 2 to be roughly 25K to 35K higher or lower than the
time-window mean, yet experimentation with different plausible time windows on the
steady-state portion of the experimental data indicated that a more reasonable uncertainty
to ascribe to the time-window means is + 5K. In comparison, the upward and downward
instantaneous differences from the mean for Sim. 6 in Table 5 are roughly 20K—
considerably less than the 25 to 35K differences from experimental time-window means.
Therefore, if the experimental and simulation results have proportionate sensitivities of
their time-window means to different plausible time windows that could reasonably have
been chosen, then something less than *+ 5K would be more reasonable to assign for the

uncertainty of steady-state temperature for Simulation 6.

Indeed, the different vertical extents of the three time-window boxes in Fig. 4 portray an
exaggerated uncertainty regarding the Sim. 6 results. For Experiments 6 and 7 and for
Simulation 6 the scale of temperature oscillation over their time windows is roughly the
same, yet the vertical extents of the time boxes, which represent the uncertainty ascribed
to the time-window means as estimates of steady-state temperature, are vastly different.

Hence, it is reasonable to conclude that an easy and conservative approach to bounding
the uncertainty on time-window means, as an alternative to the labor intensive approach



of sampling different reasonable time windows (recall that we had 7 other TCs to
process), is to use instantaneous maximum and minimum temperature over the time
window. However, this likely exaggerates the uncertainty by a considerable amount.
Because of this, it was concluded that no significant advantage results from the processes
of determining a representative time window and then computing the mean within it,
versus the much simpler approach of treating plateaued simulation results with the same
visual procedure that is applied to the non-plateued results. Since an extrapolation does
not have to be made when the results have already plateued, even if noisy, it is much
easier to make a visual judgment for reasonable upper and lower bounds on steady-state
temperature by considering the character of the response curve and the level of noise
toward the end of the curve. This was done for Simulations 2 and 4, with the results listed
in Tables 4 and 5.

Note that the error bars and time-window boxes are drawn in the figures so that readers
can judge for themselves whether the subjectively determined uncertainty ranges on
steady-state temperatures are reasonable. The error bars (and vertical extents of the
plotted time boxes for cases of averaging over time windows) are only accurate to within
“hand drawn” accuracy. These give a qualitative sense of the magnitudes of the quantities
involved, but for quantitative accuracy the tables should be consulted. Regardless of how
the uncertainties are determined, in the context of a time-windowing procedure or a
visual extrapolation procedure, these uncertainties are referred to as “graphical
processing uncertainties” in the following. We have seen that both the experimental and
simulation results possess significant graphical processing uncertainties.

Uncertainty Processing of Experimental Data for Model Validation Comparisons

The experimental data is here processed in a specific manner for model validation
comparison to simulation results according to the validation paradigm and procedures
detailed in [12]. There are many other model validation approaches of various flavors that
one could pursue (see [10] for a sampling of references on this subject). However, the
one applied here appears to uniquely have the required features to handle all the difficult
attributes of the current FUEGO validation problem.

Figure 6 presents the perceived dominant experimental uncertainties (from a model
validation perspective) concerning steady-state temperature at the location of TCS. The
sizes of the error bars in the figure are approximately to scale for the numerical
magnitudes denoted in the figure.



Aggregate

1600 K = experimental
uncertainty
117 Exper. 7
Exper. 6 T
1500 K == Exper.-to-Exper. ~ + 66
+ 66 variability | T
+39 +11
+11 + 1412 +5< Meas.
1400 K s Meas. E e~ — — — — - = = - - - uncer.
uncer. = N1394 45 / —11
- -39
il 1L = 1403 — 66
1300 K = — 66 J Emis. uncer.
Emis. uncer. 1 1_7
1200 K ==

Figure 6: Experimental uncertainties and rollup to aggregate experimental
uncertainty at TC5. All temperatures are in degrees K.

We first consider Experiment 6. From Table 3 it has a steady-state mean temperature of
1394K over the applicable time window. It was previously established that this mean is
subject to a + 5K graphical uncertainty, thus the designation 1394K +5K in the figure.

The * 11K measurement uncertainty indicated in the figure is an amalgamation of several
sources. First, manufacturing variability of the 1/16-inch diameter ungrounded-junction
MIMS Type-K TCs used in the experiments is specified by the manufacturer to result in a
“two-sigma accuracy of 2.2°C or 0.75% of reading in °C, whichever is greater” (see
[21]). This accuracy level is said to exist over a temperature measurement range from
200°C to 1000°C. The wording is generally interpreted (e.g. [21]) to imply that, although
a given TC’s particular transducing error € (= Tindicated — Ttrue) 1S DOt known, the relative
likelihood of what the error might be is governed by a normal distribution with standard
deviation o = %(2.2°C or 0.75% of reading in °C, whichever is greater). (See shaded
distribution associated with note @ in Figure 7.) Hence, the probability that the absolute
value of the error is less than 26 is given by integrating the shaded portion of the normal
distribution that lies within +26 of Tiygicated- This integration yields a value slightly larger
than 0.95. Accordingly, >95% probability exists that the given TC’s error has a
magnitude less than 26; [Tingicated — Ttrue] < 20. Unfurling this inequality yields:
Tindicated — 20 < Tiue < Tindicated + 20. Hence, >95% probability exists that the true bead
temperature lies with +2c of the indicated bead temperature.



The above characterization is presumably obtained with a measurement system
(particular data acquisition system, length of TC leads, length of electrical signal cables,
etc.) that is properly calibrated for accuracy. Bias error is then introduced by the different
particulars of the Sandia measurement system relative to the manufacturer’s system.
Characterization of the Sandia measurement TC channels in e.g. [2] and [21] has
determined that channel accuracies usually range well within 1°C even for high-
temperature calibration signals (standards) emulating 1000°C (1273 K), in the
neighborhood of calorimeter temperatures in the present tests. With the error
characterization from these activities, individual TC readings in the experiments could be
bias-corrected, but usually are not because of the relatively small errors involved. Instead,
a “blanket” uncertainty is assigned to the reported data to cover any error due to the
Sandia measurement system. We here assign an interval uncertainty of  0.25% of °C

reading. This equates to greater than + 2.5°C in the present case, representing a

reasonable upper bound on measurement system errors traditionally seen in assessments
against calibration standards at these elevated temperatures.

Hence, two significant sources of uncertainty are surmised to exist with regard to face-
value temperature readings in the present experiments. Figure 7 helps illustrate the
uncertainty sources and their implications. The probability density functions (PDFs) in
the figure represent the uncertainty in true temperature due to TC-to-TC variable error
(aleatory uncertainty) characterized by the manufacturer, assuming channel bias in their
measurement system is corrected using a reliable calibration standard. The depicted
potential shifts in the PDF (and therefore where the true temperature is expected to lie)
are caused by potential differences between the manufacturer and Sandia measurement
systems. Uncertainty in the magnitude of the systematic differences is here taken to be an
interval (epistemic) uncertainty of + 0.25% of reading in °C.

Accordingly, if no Sandia measurement-system bias exists, the true TC bead temperature
would be expected with >95% probability to lie within the range marked by the smaller
error bar in the figure. However, when Sandia measurement-system bias does exist, and
its value is characterized to lie e.g. within an uncertainty range of —~A™ to +A" as depicted
in Figure 7, then the said PDF uncertainty (and therefore where the true temperature is
expected to lie) might be shifted up or down by any value within the extremes shown.’

7 Under such shifts, the superposition spoken of here is a simplifying approximation, but is
reasonable for the present circumstances and validation assessment. True superposition requires
that the PDF in Figure 7 is independent of the second uncertainty that precipitates the shifting,
and that the distribution remain unchanged or invariant as it shifts. The independence condition is
met here and in many other real settings. However, the invariance condition is not strictly met
here, and is probably difficult to strictly meet in general. Here, the standard deviation (thus width)
of the distribution is posed as a percentage of temperature reading. Since temperature magnitude
changes as the distribution shifts vertically over the [-A™, +A"] range in Figure 7, the width of the
distribution would change as well, violating the strict superposition conditions. However, this
non-invariance effect is not large enough to be material to the validation conclusions here. If the
non-invariance effect is significant and therefore important to capture, a Monte Carlo procedure
like that demonstrated in [22] can be employed.
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Figure 7: Uncertainty of TC reading error is governed by probabilistic
uncertainty (PDF) and potential systematic shifts in the PDF.
Aggregate uncertainty interval shown at right is given by shifting either
PDF or its interval representation shown, through the uncertainty range
[-A~, +A"] of the potential error of Sandia meas. system relative to TC
manuf. meas. system (that manuf. supplied PDF is referenced to).

Thus, the region within which the true temperature is expected to lie (at the 95%
probability level) is given by the large error bar at right in Figure 7. The lower and upper
extremes of the large error bar are formed by simply adding the respective extremes of
the PDF and interval source uncertainties: [L,U] = [(-A” + -20), (A" + 20)].

For the present case we get [L,U] = [(-0.25% + -0.75%), (0.25% + 0.75%)] of °C reading
= [-1%, 1%] of °C reading. This uncertainty range can also be expressed conventionally
as + 1% of °C reading. Consulting Table 3 for °C reading for Experiments 6 and 7, + 1%
yields the numerically rounded [-11K, +11K] error bars in Figure 6 (analogous to the
large error bar in Figure 7).

Usually, a third—and dominant—source of temperature indication error exists, due to TC
attachment effects. That is, the TC bead is not usually at the same temperature as the
surface it is attached to because of contact resistance effects and heat transfer to or from
the bead. See [23] for a detailed presentation of the issues, and quantification of the
effects via finite-element modeling. Since it is really the surface temperature that is
desired from the measurement, and not actually the bead temperature, any difference
between the two is usually considered to be an error in the measurement. Such error has
been indicated in Sandia investigations (e.g. [17], [21]) to be as much of 6% of °C
reading under certain conditions. Such temperature differences or lags are not considered



in the present activity because steady-state temperature is the quantity of interest. For this
quantity, positive and negative temperature lags are presumed to cancel out in the
calculation of mean temperature as the instantaneous temperature oscillates noisily about
the steady-state mean. Depending on the actual oscillation history, non-symmetric time-
weighting of positive and negative lags could lead to non-complete cancellation, but any
such effect is likely to be small to negligible. It seems reasonable to assume here that any
such effects are small enough to be covered by the significant margin of conservatism in
the assigned 0.25% uncertainty discussed previously.

Another source of validation uncertainty in the indicated experimental steady-state
temperature is represented by the [-66K, +66K] error bars labeled “Emis. uncer.” in
Figure 6. It is evident that these are dominant uncertainties in the individual experiments.
These arise from an uncertain input to the experiments (calorimeter and enclosure
emissivity) as opposed to the aforementioned uncertainties in the measurement and
processing of the experimental output (temperature).

By far, emissivity of the calorimeter exterior and enclosure interior is thought to be the
factor that yields the highest sensitivity of calorimeter steady-state temperature to
experimental input-factor uncertainty. As previously explained, Simulation 6 at € = 0.96
is a perturbation from Sim. 2 at €,ominal = 0.86, all other simulation parameters being the
same. From Sim. 6 and Sim. 2 results, a first-order finite-difference approximation to
d(cone local-steady-state-temp.)/de at every point on the cone surface can be formed.
Then the linear projection equation AT = [d(cone_local-steady-state-temp.)/d€] * A€ can
be used to estimate the steady-state temperature change AT from Sim. 2 steady-state
temperature at a given point on the calorimeter surface, for any value of emissivity
€ different from €,ominai (Where A€ = € — €pominal)-

The uncertainty range for emissivity of the calorimeter exterior surface and the enclosure
interior surfaces (walls, roof, and floor) is indicated to be € = 0.76 to 0.96 as established
earlier. The upward AT perturbation at TCS5, corresponding to the upper-bound
perturbation € = 0.96 from €nominal = 0.86, is given directly by subtracting the central
estimate for Sim. 2 steady-state temperature in Table 5 from the central estimate for Sim.
6 steady-state temperature. The result is AT = +33K. From the fact that a downward
uncertainty perturbation € = 0.76 from the nominal value 0.86 is the same magnitude as
the upward perturbation from 0.86 to 0.96, the downward temperature perturbation is
—33K by linearity of the projection equation. Therefore, the full uncertainty range of
temperature at TC5 due to an emissive uncertainty [0.76, 0.96] is projected to be 66K,
given by the uncertainty interval [-33K, +33K].

Indeed, in the next section this interval [-33K, +33K] is an element of the prediction
uncertainty for steady-state temperature at TCS (see Fig. 8). Furthermore, since the
validation framework applied here assesses how closely the experimental and modeled
systems transform experimental inputs to output results, an objective assessment would
map any uncertainty of the experimental inputs through the modeled and physical
systems, and then compare how output results differ. However, unlike the modeling case,
in the physical case we do not have empirical quantification of how the physical system



outputs of calorimeter TC temperatures vary as the Pyromark emissivity varies over its
uncertainty range. This experimental knowledge deficit, and the fact that the
experimental output results correspond to a specific but unknown input emissivity
(although it almost certainly lies within the uncertainty range discussed), have several
important implications for model validation and model validation methodology (see [11],

[12]).

Accordingly, the present circumstances that the uncertain input of interest is non-
traveling (see Footnote 4) and is predominantly systematic over the two experiments,
dictate a somewhat non-intuitive treatment (‘“‘data-conditioning” of the experimental data
with respect to the uncertain emissivity) to minimize the chances of committing a “Type
X model validation error.® Here the uncertainty added to the experimental results turns
out to be [-66K, +66K] as shown in Figure 6. This is twice the uncertainty [-33K, +33K]
added to the prediction results in Fig. 8.°

Finally, we address the test-to-test variability of the experimental results. Consider the
uncertainty in Figure 6 associated with the nominal point results of the two experiments,
6 and 7. First note that the measurement and emissivity-related uncertainties are
completely correlated. That is, since the same TC and data acquisition system and
channel was used for TCS in the two experiments, any associated bias errors in reading

¥ The model validation methodology employed here is skewed toward preventing a “Type X”
model validation error ([11]) of an incorrect conclusion of ‘no significant model bias’ when in
fact significant bias does exist but is hidden by systematic uncertainty in non-traveling input
factors in the experiments. The drawback is that the framework likely exaggerates the uncertainty
“resolution level” within which it can be established that the model emulates the real system.
(The tradeoff here is analogous to the situation in statistical hypothesis testing, where the more
one chooses to skew (decrease) the odds of incorrectly rejecting a true hypothesis (Type I error),
the more likely it is that a Type Il error will be committed of incorrectly accepting a false
hypothesis. As in hypothesis testing, the presence of uncertainty forces one into a position of
having to make a choice of which undesirable outcome is the least undesirable.) Thus, the
methodology here favors incurring a “Type Y™ error of exaggerating the range of possible model
bias relative to what it is likely to actually be, and accepts this tradeoff in preference to incurring
a Type X error of underestimating the model bias. This choice is argued in [11] to best support
the objectives of Best Estimate + Uncertainty extrapolative predictions with the model.

’ This factor of two arises when the model is used as an approximation for the experimental
change (slope) in TC5 temperature versus change in the input factor (here emissivity). This is just
a nominal estimate for what the data conditioning factor actually should be. The factor is formally
two times the ratio r of experimental slope to modeled slope. Thus, the factor is two when r = 1,
i.e., under the nominal approximation of equal experimental and modeled slopes. However, the
sensitivity of validation conclusions to uncertainty in r should be investigated as part of the
validation procedure. It is determined that the actual ratio of experimental to modeled slopes can
be up to r = 1.5 (for a factor of 3) before the experimental uncertainty bar in Fig. 8 extends
outside the range of prediction uncertainty and changes the validation conclusions arrived at later.
The actual experimental slope is expected to be well within this allowable 50% difference from
the modeled slope.



vs. true temperature are essentially the same in the two experiments. The same is true of
the uncertainty due to emissivity in the experiments. Although the emissivity in the
experiments is unknown to within a relatively large range of 0.76 to 0.96, it is reasonable
to postulate the experiment-to-experiment differences in emissivity are small
comparatively. Hence, the associated uncertainty in experiment 6 and 7 results is closely
correlated (systematic over the two experiments).

Conversely, the = 5K graphical uncertainties associated with the steady-state temperature

averaging windows for the two experiments can be considered to be independent and
uncorrelated among the two experiments. This dictates that this source of uncertainty, for
the purposes of characterizing experiment-to-experiment variability, be treated differently
than the ones above.

First, however, consider the instructional case of only one experiment (either 6 or 7). The
aggregate uncertainty for the single experiment would be constructed as follows. The
[-11K, +11K] measurement uncertainty in Figure 6 can be conceived as being subject to
vertical shifting over the range [-66K, +66K] due to the emissive uncertainty. Such
shifting is already familiar from the previous discussion pertaining to Figure 7. In the
way that the uncertainty ranges are added or superposed in accordance with the
assumptions in Footnote 7, the results here would yield [(-11K + -66K), (11K + 66K)] =
[-77K, +77K]. This uncertainty bar about the nominal measured temperature would in
turn be subject to vertical shifting of + 5K associated with the steady-state temperature
graphical processing uncertainty. An aggregate uncertainty of [-82K, +82K] would result.
This would be the case for either Experiment 6 or 7 alone.

Now consider Experiments 6 and 7 together. With reference to Figure 6, the nominal
results are respectively 1394 K and 1412 K. The 18 K difference between these results
cannot be explained by the + 5K uncorrelated processing uncertainties in each result.
(Recall that the other uncertainties are effectively correlated or systematic between the
two experiments, so cannot explain or contribute to any relative differences in the two
experimental results.) Therefore, some other explanation lies behind the experimental
differences. Certainly, things varied between the two experiments that we could not
characterize or explicitly treat in this project due to practical limitations. '’

' If we had quantified the input variabilities and could afford to propagate them to the simulation
output, just as the experimental system propagated them to the experimental output, then we
would have approximately offsetting effects in the validation comparisons to come later. Instead,
neglectance of experimental input variabilities on the simulation side may show up as an under-
represented uncertainty band in the validation comparison against the aggregate experimental
uncertainty. Any consequent “uncertainty shortfall” might then be mapped into selected
parameters of the model to add a physical variability effect to it. This so-called “model
conditioning” ([9] - [12]) arguably supports an objective of Best Estimate + Uncertainty modeling
for extrapolative prediction. It will be established later that no such model conditioning is
indicated to be necessary in the present activity. Indeed, the model-intrinsic uncertainties of Table
1 will be seen to bound the experiment-to-experiment variability in the physical results.



In any case, we can reasonably posit that if many other repeat experiments were run, the
results would vary according to a Normal distribution, as is often the case with complex
experimental systems. We can get estimates of what the mean and variance of the Normal
distribution would be by calculating these from the 1394 K and 1412 K nominal
experimental results. The mean of these is 1403 K as denoted in the figure. The standard
deviation S, times two, is 2S = 25 K. It must be kept in mind that this two-sigma
magnitude of 25 K only nominally corresponds to 95% included probability in the
postull?ted normal distribution of experiment-to-experiment steady-state temperature at
TCs.

The nominal treatment also ignores the + 5K graphical processing uncertainties in the
two steady-state temperatures. Because this uncertainty is uncorrelated over the two
experiments, a worst-case (largest variance) treatment of this uncertainty involves
decreasing the lower nominal result, 1394 K, by the maximum possibility over the
applicable + 5K uncertainty range; and increasing the upper nominal result, 1412 K, by
the maximum possibility over its independent + 5K uncertainty range. This yields
adjusted results of 1394K —5K = 1389 K, and 1412K + 5K = 1417 K. The accompanying
two-sigma magnitude is S _high = 39.1. This compares to the two-sigma value of 25
obtained in the previous paragraph when the uncorrelated + 5K window processing
uncertainties were not accounted for. A rounded value of 39 (shown in Figure 6) is used
in the following.

The effect of the correlation treatment is very significant here. If the £ SK uncertainties
were perfectly correlated among the two experiments, then these would constitute a
systematic uncertainty over the two experiments. Then, consistent with Figure 7, the
aggregate uncertainty from these two factors (graphical processing and experiment-to-
experiment variability) would be to shift the (two-sigma = 25K) normal distribution over
a * 5K range. The result would be [(-5K + -25K), (5K + 25K)] = [-30K, +30K] by the

linear superposition approximation (Footnote 7).

Instead, if the £ 5K graphical processing uncertainties are treated as independent and
uncorrelated over the two experiments, the result is [-2S high, +2S high] = [-39K,
+39K] as already determined. Therefore, the added effect of the uncorrelated +5K

" The actual standard deviation of a large number of experimental repeats could be very different
from the S = 25K/2 calculated from just the two experiments. The small-sample uncertainty in the
standard deviation value, and also in the mean value, is not accounted for in this paper. Hence, we
cannot state with reasonable statistical confidence that the mean+2S = 1403K +25K defines an
interval that encompasses 95% of the postulated normal distribution for experiment-to-
experiment steady-state temperature variability. We can only state that this interval gives a
nominal quantification of the physical variability. In fact, if the small-sample uncertainty on the
apparent experimental variability is taken into account, this “uncertainty on the variability” or
“epistemic uncertainty on the aleatory uncertainty” is large enough that it can potentially overturn
our validation affirmations at some of the eight TC locations. Nonetheless, within the sampling
uncertainty, it is also possible that an even stronger affirmation of model validity could occur,
depending on the direction of the actual errors in the calculated values & =1403K and S = 25K/2.



processing uncertainties is a 14K increment to the standing #2S = 125.0 nominal
uncertainty from experimental variability. The +14K is nearly three times the added
effect if the + 5K processing uncertainties are treated as perfectly correlated (systematic)
over the two experiments.

To close out this section, we combine the experimental measurement and emissivity-
related interval uncertainties with the normal PDF for experiment-to-experiment
variability (mean 1403K and standard deviation S high = 39K/2). Following the
paradigm of Figure 7, the [-11K, +11K] measurement uncertainty (interval) is
superposed/added with the PDF uncertainty to get: [(-11K + -39K), (11K + 39K)] =
[-50K, +50K]. The interval uncertainty [-66K, +66K] due to uncertain emissivity is
combined in by further superposition to get: [(-66K + -50K), (66K +50K)] = [-116K,
+116K]. By using the numbers from each term with more decimal-place precision, we get
the more accurate result [-117K, +117K] depicted by the uncertainty bar labeled
‘Aggregate experimental uncertainty’ in Figure 6.

Analogous quantities and results to those presented in Figure 6 for TCS are presented in
[3] for the other TCs.

Uncertainty Processing of Simulation Results for Model Validation Comparisons

Figure 8 shows FUEGO simulation results at TCS location for Simulations 1 — 5.
These were all run with the nominal value of emissivity, €,ominat = 0.86. The range of
aggregate experimental uncertainty from Fig. 6 is plotted in Figure 8 to lend a sense of
scale and location relative to the simulation uncertainty. The central-estimate values of
steady-state temperature from Table 5 are printed in the figure beside the plotted filled
dots. The maximum and minimum reasonable steady-state temperature bounds from
Table 5 are also plotted in Figure 8, as unfilled diamond symbols.

The nominal steady-state temperature values indicate that the BVG turbulence model
yields greater object heating than the TFNS model—all other simulation parameters
being equal. This agrees with expectations.

When the emissivity uncertainty is accounted for, the expectations still hold up. For
instance, consider the TFNS-High simulation (#2) and the BVG-High simulation (#4).
The emissivity-related [-33K, +33K] uncertainty bars of these two simulations overlap
some in Fig. 8. However, recall that these uncertainty bars represent correlated or
systematic uncertainty over the set of simulations. That is, whatever the true value of
emissivity is, it is the same for all simulations. If the true value (or any value) were input
to the simulations, it would not yield e.g. a value on the upper portion of the uncertainty
bar of Sim. 2 and a value on the lower portion of the uncertainty bar of Sim. 4. Rather,
the results would be correlated such they would both lie at closely the same vertical
position within each error bar. Therefore, although the error bars of Sim. 2 and Sim. 4
overlap some, giving the appearance that it is possible to get a temperature realization
from BVG-High Sim. 4 that is lower than a corresponding realization from TFNS-High
Sim. 2, this is not really the situation here.
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Figure 8: Simulation results and uncertainties at TC5, with range of prediction
uncertainty compared against range of aggregate experimental
uncertainty. All temperatures in degrees K.

The expected ordering holds even up when the graphical processing uncertainty is
accounted for. In contrast to the emissivity related uncertainty, the graphical processing
uncertainties (min and max bounds in Table 5) are uncorrelated across the various
simulation results, and can significantly shift simulation results relative to each other. For
example, in the extreme worst combination the graphical uncertainty could allow: a) a
shift of Sim. 4’s uncertainty bar downward until its midpoint (filled dot) aligns with the
local lower diamond; and b) a shift of Sim. 2’s uncertainty bar upward until its midpoint
aligns with the local upper diamond. Even in this worst case the BVG-High Sim. 4
uncertainty bar remains higher in vertical position than the TFNS-High Sim. 2 bar. This
implies a higher simulated temperature for BVG-High than for TFNS-High. Recall also
that this is under a worst-case realization of the uncorrelated graphical uncertainties, and
that the graphical uncertainty magnitudes are likely highly exaggerated for the simulation
results, as discussed earlier.

It is otherwise observed that, for a given turbulence model form (TFNS or BVG), the
prescribed parameter sets for Low, Nominal, and High heating give consecutively hotter
fires, or at least consecutively greater heating of the calorimeter as indicated at TC5 and
the other seven TC locations (see [3]). This ordering is retained at all TC locations under
all possible realizations of the graphical and emissivity uncertainties.



These results support the proposition that, for the model validation purposes here (and for
extrapolative predictions in general) it is not necessary to expend simulations at the
BVG-Low and TFNS-High and Medium parameter sets. These parameter sets (#5, 2, and
1 respectively) routinely yield results that lie between the heating extremes of parameter
sets #3 (TFNS-Low) and #4 (BVG-High).

Thus, the effects of the six dominant sources of intrinsic modeling uncertainty in the fire
dynamics model (Table 1) can be effectively bounded by running FUEGO simulations at
just the two “extreme” parameter sets #3 and #4. Of course, other simulations have to be
run to assess the effects of other sources of uncertainty (like uncertain emissivity,
numerical discretization, etc.) in a given prediction.

We now turn to the model validation objective of our analysis. Ultimately the aggregate
experimental uncertainty in Figure 8 will be compared against an aggregate simulation
uncertainty that is appropriate to a validation assessment. The criterion for the model to
be affirmed is that the model predictions, with uncertainties properly accounted for, yield
an uncertainty band that encompasses the aggregate experimental uncertainty.

Otherwise, the processed experimental uncertainty, as presumably the best empirical
evidence of where “reality” lies and where the next experimental result(s) would occur,
lies outside the range predicted by the modeling. Thus, the predictions would fall short of
spanning and capturing the empirical evidence—whether through improper model form
or via misrepresented parameter uncertainties, or both. In any case, it could not be
asserted that the model was fully ‘valid’. Again, this is the criterion of the present
validation framework, but other validation criteria and frameworks are actively being
discussed in the literature. No over-riding consensus has emerged yet, but the current
framework arguably directly supports a goal of Best Estimate + Uncertainty extrapolative
prediction. See [10] for further discussion.

In the present framework, the preliminary aggregate prediction uncertainty in Fig. 8—
before accounting for graphical uncertainties—ranges from the low end of the lowest
uncertainty bar (given by TFNS-Low Sim. 3), to the high end of the highest uncertainty
bar (from BVG-High Sim. 4). That is, the emissivity uncertainty and the six uncertainties
in Table 1 have possible combinations or realizations over their joint uncertainty space
(where these seven factors are justifiably assumed to be independent of each other) that
can yield model predictions which vary from the low end to the high end of the said
uncertainty range. This preliminary range of prediction uncertainty is impacted by the
graphical uncertainties as explained next.

The graphical processing uncertainty for the BVG-High Sim. 4 results is given by the
min and max bounds in Table 5. The graphical uncertainty allows that Sim. 4’s
uncertainty bar in Fig. 8 can really lie anywhere within an upward or downward shift
where its midpoint (filled dot) remains between the upper and lower unfilled diamonds to
the side of the uncertainty bar. Analogous freedoms are allowed for the Sim. 3
uncertainty bar to be shifted between the upper and lower diamonds at its side. Recall that



the graphical uncertainties are not correlated with each other, so the allowable shifting of
Sim. 4’s uncertainty bar is independent of Sim. 3’s.

At the upper end of the simulated temperature range, treatment of the graphical
uncertainty for Sim. 4 impacts the validation determination relative to the high end (1520
K) of the experimental temperature uncertainty range shown in Fig. 8. Analogous
considerations hold for the graphical uncertainty for Sim. 3 and the validation
determination at the low end (1286 K) of the experimental uncertainty range. Within the
graphical uncertainty, the Sim. 4 uncertainty bar could be translated upward, and the Sim.
3 results could be translated downward, such that validation margins are greater at both
the upper and lower ends. The opposite extreme possible combination is a downward
shift in Sim. 4 results and an upward shift in Sim. 3 results, such that validation margins
decrease at both the upper and lower ends.

A treatment which increases validation margins here, or which tends to create a closer
comparison when positive margins like those in Fig. 8 do not exist, is said to be non-
conservative.'* This type of treatment could enable the validation criterion to be (falsely)
met or approached closer, while the actual value of the factor (for no graphical processing
error) might correspond to a more biased model than the validation assessment leads one
to believe. Hence, this is one possible way to commit Type X model validation error.
Type X error can arise from many other sources, such as model discretization
uncertainties, systematic uncertainties of non-traveling experimental inputs (here,
emissivity as already discussed), and other sources catalogued in [12].

To guard against the potential for Type X error that the graphical uncertainties pose, the
framework takes a conservative approach of attempting to eliminate the risk entirely. To
do this, the most extreme possible combination is invoked of shifting the Sim. 4
uncertainty bar downward the full allowable amount until its midpoint (filled dot) is
beside the lower diamond at its side, and shifting the Sim. 3 uncertainty bar upward the
full amount until its midpoint is beside the upper diamond at its side. This maximally
decreases the validation margins at both the upper and lower ends of the data range.
Hence, this likely causes a Type Y model validation error of the framework exaggerating
the perceived extent of potential model bias. Unfortunately, eliminating the risk of Type
X validation error comes with a tradeoff of committing a Type Y error. An alternative is

12 Accounting for simulation uncertainty of the intrinsic modeling factors of Table 1 and for the emissivity
uncertainty have the effect of expanding the prediction uncertainty as well. Yet, this expansion is not
considered to be non-conservative in the validation formulation. As [12] explains, from a model validation
perspective (in the context of extrapolative predictions and hierarchical modeling) these factors are
different in nature from the graphical uncertainty, so are handled differently. The intrinsic modeling factors
of Table 1 proceed to any new predictions with the (validated) model, so their uncertainty is transported
inherently to new prediction results. This is not the case with the graphical uncertainties being discussed
here. New graphical uncertainties/magnitudes will be present in new simulation results. For example, if the
new simulations are terminated after arriving at a smooth, flat asymptotic steady-state, no graphical
uncertainty will be present at all. In terms of the emissivity uncertainty, like the uncertainties in Table 1 this
is an uncertain input to the model, not a (graphical) uncertainty from processing of the outputs of the
model. Furthermore, the emissivity uncertainty is propagated into both the simulation and experimental
results. This is not the case with the graphical uncertainties discussed here. They are relevant to only the
simulation results.



to just simply ignore the graphical processing uncertainties. However, this incurs a
substantial risk of Type X error in the validation conclusions.

Hence, the “validation conservative” lower temperature limit of prediction uncertainty is
obtained as follows. The Sim. 3 uncertainty bar in Fig. 8 is centered on the upper
diamond to its right, which has a temperature of 1285 K (= ‘max’ value for Sim. 3 in
Table 5). The temperature at the bottom of this uncertainty bar is therefore 1285 K — 33K
= 1252K. This temperature is marked by the lower horizontal dashed line in the figure.

The validation-conservative upper temperature limit is obtained by a mirrored procedure.
The Sim. 4 nominal 1545K result is shifted downward to the lower diamond at its right,
at 1532K (= ‘min’ value for Sim. 4 in Table 5). The temperature at the top of this
uncertainty bar is therefore 1532K + 33K = 1565K. This temperature is marked by the
upper horizontal dashed line in the figure. Accordingly, the final aggregate range of
prediction uncertainty is 1252K to 1565K.

6. Analysis and Discussion of Validation Comparisons

Analogous quantities and results to those plotted in Figures 6 - 8 for TC5 can be found in
[3] for all eight TCs. Speaking to the TC5 results here, there is considerable margin for
error in the uncertainty estimates and processing of experimental and simulation results
before the model affirmation would be overturned. The upper and lower simulation
bounds in Figure 8 are seen to fairly spaciously encompass the range of the aggregate
experimental uncertainty within which steady-state experimental temperatures are
provisionally expected to lie. Errors would have to “conspire” (i.e., coordinate in enough
antagonistic directions and magnitudes) to overcome the existing margin for error of 45K
(= 1565K — 1520K) at the top. At the bottom, a margin of 34K (= 1286K — 1252K) exists
against errors that might conspire. The existence of errors is a given. However, it is much
less likely that they would be sufficiently large and sufficiently conspiring that the net
result would exceed the indicated margins for error.

At the other seven TC locations the margins for error are even greater at 13 of the 14
upper and lower ends. In no case does the range of experimental uncertainty extend
outside the prediction uncertainty. Therefore, a provisional but foreseeably robust
conclusion of model affirmation is arrived at based on validation analysis and
comparisons at the eight diversely spaced TCs on the calorimeter.

The word ‘provisional’ here signifies that large error may exist in our quantification of
experiment-to-experiment variability. Nominal mean and standard-deviation results based
on only two experimental repeats were used. The uncertainty on these small-sample
statistics, and also in the assumption itself of normally distributed variability, could result
in errors in an antagonistic direction and large enough to overturn the nominal
affirmations at most TC locations. However, note that antagonistic error from this source
could be partially offset or even completely overwhelmed by the substantial
conservatisms introduced at several points in our experimental and simulation results
processing. Moreover, the small-sample errors could go the other way, to more strongly
affirm the validation conclusions at any and all TC locations. In any case, uncertainty due



to experiment-to-experiment variability is at least nominally accounted for in our
validation analysis, results, and conclusions.

Finally, a mitigating factor is pointed out concerning contact resistance between the
bottom of the steel cone and the thermally massive steel floor it was bolted to. It was not
practical in this project to model the contact resistance at this interface, so an adiabatic
boundary condition was applied at the bottom of the cone. This modeling error could be
substantial, depending on the particular location considered on the calorimeter. The error
causes higher temperatures to be predicted in the calorimeter than would occur if heat
transfer from the cone to the steel floor was modeled. It turns out that the experimental
uncertainty bars at all TC locations are skewed toward the lower ranges of the prediction
bars. That is, modeling the contact conductance at the interface would shift the predicted
temperatures downward, especially for the bottom four TCs 1 — 4. This would move
things in the “right” direction toward better central agreement between the experimental
and predicted temperatures. Since the corrections would be expected to be only 10’s of
degrees (not hundreds), there is sufficient margin at the top of the simulation uncertainty
bars to absorb such corrections and still encompass the experimental data at the upper
end.

In fact, the lowest upper margin for such a correction is 45K at TC5. All other TCs have a
significantly larger upper margin. Also note that TCS is from the upper set of TCs (level
10 in Fig. 2), where the effect of the correction would be expected to be fairly small.
Indeed, the margin for correction at TC5 and the other TCs in the top row is considered to
be far more than adequate. Among the lower set of TCs, the smallest available margin at
the upper end for correction is 168K at TC1. This seems to be well in excess of what a
correction would reasonably be expected to yield.

All in all, correcting for what is thought to be by far the largest unaccounted-for source of
physics modeling error in the validation comparisons would be expected to move things
in a direction that strengthens the validation conclusions, but not by a magnitude so large
that it goes too far in this direction and overturns the affirmation at the upper end.

Finally, the issue of calculation verification is considered. As previously explained,
project constraints required the use of “medium” spatial discretization cell sizes and a
“medium” number of discrete-ordinate directions for resolving the participating-media
radiation transport. The solver error-tolerance parameters that control numerical
resolution in the steady-state FUEGO computations were also set at “medium” levels.
(See [3] for details of discretization and solver resolution levels.) The medium levels used
for spatial discretization, radiation transport, and solver computations are representative
of what are routinely used for production calculation work by Sandia fire analysts. This is
a pragmatic choice to achieve reasonable calculation run times (a few weeks on a
thousand processors or less), but is also heuristically supported by comparisons against
considerably finer resolution levels also tried on other projects (see e.g. [13]).

In any case, if any discretization-related errors happen to be in the “wrong” (antagonistic)
direction that would work against validation margins, the allowable margins for error are



10’s of degrees K as already established. This is significant room for error, but
experience indicates that discretization effects could be this larger or larger. If a
quantification of discretization-error uncertainty was available from resolution-
refinement studies (e.g. by the methods presented in [14]), then in the validation analysis
these would be handled like the simulation graphical processing uncertainties were.
Finally, it is noted that substantial code verification efforts for FUEGO have been
undertaken ([24]), which counts toward the veracity of the validation conclusions here.

7. Conclusions

In view of the arguments just made and the many conservatisms in the validation
processing, it is reasonable to state that based on the validation results at the eight
diversely representative TC locations on the calorimeter, FUEGO modeling for wind-
driven fire conditions is nominally affirmed to capture the experimental results here
(steady-state temperature) according to the pragmatic validation criterion and
methodology applied.

Furthermore, there is considerable room for errors in the uncertainty estimates and
processing of experimental and simulation results before this validation conclusion would
be overturned. Moreover, the errors would have to be sufficiently large in magnitude and
sufficiently conspiring (combining in antagonistic directions and/or sufficiently avoiding
cancelation) to exceed the indicated substantial margins for error. The probability of
these joint events occurring may be very low, and cannot reasonably be expected to be
high—but could occur. In particular, the greatest concerns are: 1) the error associated
with using the small-sample (two sample) standard deviation as representative of the
standard deviation from a large number of repeat fire tests; and 2) error in the calculated
steady-state results due to under-resolution in the discretized model and computation.

Nevertheless, on balance the analysis supports the validation conclusion provisionally
arrived at in the present experimental/physical setting. This is a significant result for
FUEGO and for Sandia’s fire modeling program. The current work also represents a
significant advancement in model validation methodology. The versatile model validation
analysis framework demonstrated here handles difficulties associated with representing
and aggregating aleatory and epistemic uncertainty from multiple correlated and
uncorrelated source types.
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