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This paper applies a pragmatic interval-based approach to validation of a 
fire dynamics model involving computational fluid dynamics, combustion, 
participating-media radiation, and heat transfer. Significant aleatory and 
epistemic sources of uncertainty exist in the experiments and simulations. 
The validation comparison of experimental and simulation results, and 
corresponding criteria and procedures for model affirmation or refutation, 
take place in “real space” as opposed to “difference space” where 
subtractive differences between experiments and simulations are assessed. 
The versatile model validation framework handles difficulties associated 
with representing and aggregating aleatory and epistemic uncertainties from 
multiple correlated and uncorrelated source types, including: 

 experimental variability from multiple repeat experiments 

 uncertainty of experimental inputs 

 experimental output measurement uncertainties 

 uncertainties that arise in data processing and inference from raw 
simulation and experiment outputs 

 parameter and model-form uncertainties intrinsic to the model 

 numerical solution uncertainty from model discretization effects. 

The framework and procedures of the model validation methodology are 
here applied to a difficult validation problem involving experimental and 
predicted calorimeter temperatures in a wind-driven hydrocarbon pool fire. 

1.  Introduction 

 
One aspect of the work that Sandia National Laboratories performs for the U.S. Dept. of 
Energy is the design and assessment of safing systems that keep nuclear weapon firing 
systems inert in accidents and abnormal environments such as fires. (See e.g. reference 
[1] for a synopsis of weapon risk considerations and assessment methodology for fire 
accidents.) In a supporting activity, the model validation effort described in this paper 
centers around the steady-state temperature response of a fire-heated “cone” calorimeter.  
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Reference [2] describes in detail the experimental setup, fire tests, and raw experimental 
data and results. Reference [3] discusses the geometry and experimental conditions 
important to modeling the fire tests. Also documented are the physics and discretization 
models in the FUEGO[4] computational fluid dynamics, combustion, and heat-transfer 
simulations and results. The massively parallel 3-D code involves 33 degrees of freedom 
at each node, representing x-y-z momentum, participating-media radiative transport 
directions or ordinates, chemical reactions/combustion, and turbulence, energy, pressure, 
and soot and chemical species conservation and transport. 
 
The subject of this paper is validation of the FUEGO fire dynamics model. The following 
one-sentence contemporary definition of model validation, and close variants of it, are the 
accepted standard definition in [5] - [8]: Model Validation is the process of determining 
the degree to which a computer model is an accurate representation of the real world 
from the perspective of an intended use of the model. Despite broad agreement on this 
one-sentence definition, there is room within the definition for considerable debate 
among validation methodology developers and practitioners as to what procedures or 
steps lie within the scope of a completed model validation activity. For example, some 
consider validation to involve just the discernment of model accuracy versus reality, for 
those specific output quantities of the experiment and model that are relevant to intended 
use of the model, e.g. for predicting fluid drag on a vessel. Others hold that model 
validation further implies the discernment of model adequacy for intended use of the 
model (i.e., whether the model accuracy is deemed sufficient for making predictions to 
support some design, analysis, or decision-making need).   
 
This paper takes the broader viewpoint, and to avoid confusion often refers to the 
adequacy component of model validation as model affirmation. Hence, the definition of 
model validation subscribed to here is (from [10]): model validation is the discernment of 
the accuracy and adequacy of models and model predictions as compared to reality (i.e., 
some subset or filter of reality that is important to predict for some purpose—in as far as 
we can ascertain what reality portends through appropriately designed and controlled 
experiments at specific validation points in the modeling space).  
 
Not surprisingly, various modeling communities are still working out the technical 
procedures and criteria for assessing and deciding whether a model is considered 
validated (affirmed) with respect to a particular intended use. No overriding consensus 
yet exists. To be sure, several model validation paradigms and methodologies exist in the 
literature. Many of these are considered in refs. [9] - [12], where it is determined that 
none of those considered appear to have the full set of enabling features, yet are 
pragmatically simple enough, to reasonably handle the difficult model validation problem 
pursued in this paper. Indeed, a newly evolved model validation framework and 
methodology, developed in the course of model validation practice on several other 
challenging application problems, is applied in this paper to the very difficult fire 
dynamics model validation problem.   
 
The fire experiments, simulations, and results are briefly summarized in the following. 
The majority of the paper is devoted to presentation of a validation-relevant subset of the 



experiment and simulation results and uncertainties; processing of these into a form 
suitable for model validation comparisons; and description of the comparisons along with 
interpretation within the well-exercised and vetted model validation framework 
employed. For brevity here, only a representative subset of experimental and simulation 
results and model validation processing is presented. The full set of data, processing, and 
results from the validation activity can be found in [3].  
 

2.  Experiments and Experimental Conditions 

As Figure 1 shows, the experiments involved a flow-through partial “enclosure” that 
serves the purpose of imitating foreseeable conditions where a fire heats up the walls and 
roof of a weapon storage or transportation room or container. The walls and roof then 
radiate heat to the weapon, imparting more heat and thus embodying a more severe 
heating condition than if no enclosure and only a shallowly engulfing fire (non-optically-
thick) is present. 
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Figure 1:  Cone calorimeter inside flow-through enclosure with fuel pan in front. 
Stands at sides of calorimeter hold thermocouples and (visible) flux gauges. 
 
 
The walls and roof of the enclosure were comprised of 3/16-inch-thick steel sheet stock 
on the inside. These were insulated on the outside with blanket insulation to provide an 
easily modeled boundary condition for the validation activity. Therefore, an adiabatic 
boundary condition was modeled on the exterior of the enclosure walls and roof in the 
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FUEGO simulation. The cone calorimeter outside shell is made of 3/16-inch-thick steel 
sheet. For ease of modeling, the inside volume is filled with blanket insulation to prevent 
convective and radiative heat exchange among the inside walls of the cone. Hence, an 
adiabatic boundary condition is applied on the interior of the steel cone shell modeled in 
the FUEGO simulations. The nearly adiabatic walls (with insulated back-sides) of the 
calorimeter and enclosure also strongly promote a quicker arrival to steady-state wall 
temperatures and re-radiation conditions in the experiments.   
 
Thermocouples (TCs) were attached to the inside of the cone shell at 12 height levels that 
include the two levels shown in Figure 2. TCs and flux gauges were also placed in the 
flow field of the fire (on the stands shown at the sides of the calorimeter in Fig. 1) and on 
the walls/roof of the flow-through enclosure that the calorimeter is at the center of. The 
steel interior walls, roof, and floor of the enclosure, and the exterior of the calorimeter, 
were painted with black Pyromark high-emissivity paint so that they would readily 
exchange radiative heat with the fire and with each other, therefore more quickly 
reaching steady-state temperature and re-radiation conditions. The Pyromarked surfaces 
have an initial emissivity є of nominally 0.86 upon application to the room-temperature 
steel surfaces, but the emissivity after experimental “burn-in” of the paint at high 
temperature is a significant uncertainty in the experiments. Later it will be described how 
this important uncertainty is accounted for in the model validation analysis. Other 
uncertain inputs to the experiments will also be discussed. 
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Figure 2:  Thermocouple locations on Cone Calorimeter for comparison 
 of experimental results versus FUEGO predicted results.  



Details of the fuel and fuel-pan, facility and structure geometries, experiment flow 
conditions such as the air inflow and exhaust outflow conditions, and all thermocouple 
and flux-gauge locations can be found in either or both of [2] and [3].  

3.  Initial Model Validation Considerations 
 
Although a wealth of experimental data from the tests is available to compare against 
FUEGO predictions for model validation purposes, time and resource considerations 
dictated that comparisons in the project be confined to only calorimeter temperature 
response.  Such response is most directly associated with the validation question driving 
the experimental and simulation work here: how well does FUEGO calculate surface 
heating conditions on objects (weapons) in wind-driven hydrocarbon fires?  
 
To bring the scope of the validation activity into line with project resources, the 
validation comparisons are further limited to eight diverse and representative TC 
locations on the calorimeter, although many more locations were monitored in the 
experiments.  Figure 2 shows four TC locations (at 0˚, 90˚, 180˚, and 270˚) on the upper 
section of the cone above a field joint (internal bolted attachment) at mid-height, and 
another four at the same angular positions on the lower section of the cone below the 
attachment joint.  
 
On the upper section of the cone, the Level 10 set of TCs in Figure 2 was chosen in order 
to minimize local edge or anomaly effects on conduction behavior and therefore 
temperature of the calorimeter shell. Level 10 is about half way between the top edge of 
the cone and the height discernable in Fig. 1 where flux gauges inserted into holes of 1.5 
to 2 inch diameter in the shell create local anomalies in the conduction and temperature 
fields. On the lower section of the cone, unknown and possibly highly varying contact 
resistance around the bolted attachments at the mid-height field joint and the base of the 
cone could produce local effects on calorimeter temperature. The Level 2 height in Figure 
2 was chosen in order to minimize local effects due to these bolted joints.   
 
Calorimeter temperature response is not the only quantity relevant to FUEGO validation. 
For example, enclosure temperature response is just as indicative of how well FUEGO 
calculates object surface heating. Certainly, it would be significantly more revealing to 
compare FUEGO predictions against experimental response for both the calorimeter and 
enclosure, instead of just one or the other. Both are time-space integrating sensors of the 
experimental and simulated fires, and corroboration (validation) based on two diverse 
such sensors is of course stronger than corroboration from one alone.  However, 
corroboration based on two diverse integrating sensors also cannot be said to be 
absolutely sufficient to settle the model validation question with regard to the present 
experiments. For instance, a further check against the TCs and flux gauges on the stand in 
the flow field of the fire (see Figure 1) could indicate differently, and refute the fire 
model’s predictive capability locally there. (Such further checks are essentially infinitely 
prescribable—see discussion in [10] on “field validation” versus the validation of only 
certain resultant effects of the field important to an engineering purpose, “effect 
validation”.)  
 



In fact, absolute sufficiency is probably only reachable in theoretical limits and it would 
appear that statistical procedures and arguments would have to be invoked to establish 
validation sufficiency in practical terms (e.g., odds or significance level associated with a 
validation conclusion). This is beyond the scope of the present treatment. In the present 
circumstances we can only address whether a necessary test of model adequacy is met by 
FUEGO with respect to the narrow program-relevant quantity of calorimeter steady-state 
temperature. Indeed, it is shown in the following that a significant validation test is 
passed in this regard, lending credibility to FUEGO’s predictive abilities in the present 
experimental circumstances, although not sufficient to absolutely confirm its predictive 
capability—even for the present experimental conditions.     
 
A substantial relaxation in the strength of the validation case also comes from the fact 
that we compare only steady-state temperature of the calorimeter, as opposed to transient 
temperature response. This is forced by several reasons. First, capabilities for realistic 
modeling of transient startup and growth of the pool fire were not yet available in 
FUEGO. Second, the predominant project driver, assessment of weapon safety risk in 
fires, is concerned with weapon internal response events that take 10’s of minutes to 
develop and are the result of sustained fire heating and are fairly insensitive to the early-
time initial flare-up and stabilization transients of the fire.  
 
Thus, although transient response is a more stringent test of FUEGO predictive 
capability, project constraints dictated that we could only reasonably compare steady-
state temperatures, and this was felt to be acceptable with respect to the driving purpose 
of predicting heating conditions for weapon-response simulations for risk analysis.  
 
4.  Plan of FUEGO Simulations for Uncertainty Quantification in the Model Validation   

Procedure 
 
FUEGO simulations were used in the validation procedure to quantify modeling 
uncertainty. Resource constraints dictated that only 5 or 6 steady-state FUEGO 
simulations could be run at the medium-resolution model described in [3]. (The 
simulations took several weeks on 512 processors.)  
 
Here model resolution involves spatial-discretization cell size; number of discrete-
ordinate directions for solution of participating-media radiation transport; and solver 
numerical-error tolerance parameters employed in the steady-state FUEGO computations. 
The resolution level was surmised from past FUEGO modeling projects to be sufficient 
for the validation purpose here, i.e., to yield simulation results that would change with 
further resolution refinement only relatively little compared to the effects of other 
physical modeling uncertainties and bias errors in the validation activity.  
      
To check that the medium-mesh discretization was indeed sufficient, a simulation was 
planned at a significantly higher resolution. However as explained in [3], the high-
resolution simulation never completed because of difficulties with the required multi-
thousand processor jobs. Thus, in assuming that the calculation results here are 
sufficiently numerically resolved, there is only previous experience to cite from [13] 
which compared results from a similar “medium” resolution to results from a 



substantially higher resolution. Nonetheless, it is explained later how the validation 
framework used in this paper would handle any characterized uncertainty (e.g. by 
methods presented in [14]) due to numerical resolution in the model and simulations.  
 
Regarding fire-physics modeling uncertainty, a consensus of Sandia fire modeling expert 
judgment concluded that the following physics submodel forms and coefficients were 
generically the largest sources of intrinsic4 modeling uncertainty. The nominal values 
and associated uncertainties are listed in Table 1. 

                                                

 
  Table 1.  Intrinsic Sources of Uncertainty in the Fire Dynamics Model 

 heat of combustion (HOC): 44.66kJ/mol ± 10% 
 soot extinction coefficient (SEC): 7 ± 10% 
 convection coefficient (CC) at object surface: calculated value -50% to +100% 
 flame volume coefficient: (FVC): 2.13 ± 30% 
 flame loading coefficient: (FLC): 0.41 ± 30% 
 turbulence model form: TFNS (nominal) versus BVG 

 
To estimate the modeling uncertainty contributed by the above 6 factors, using only the 
budget of 5 or 6 steady-state FUEGO simulations that could be afforded, information 
from previous uncertainty/sensitivity studies over these modeling factors was drawn 
from. The plan was to get reasonable upper and lower bounds on the FUEGO predicted 
heating of the calorimeter by running a simulation at the combination of parameter values 
within the preceding parameter space (joint “uncertainty space”) that gives the highest 
heating to the calorimeter, and then at a combination of parameter values within the 
uncertainty space that gives the lowest heating to the calorimeter.  
 
The sought parameter combinations were identified to the best possible extent under all 
the presiding constraints and available information as follows. Reference [15] presents a 
blocked experimental design of 16 simulations that explore the above six-factor 
uncertainty space plus spatial discretization and computational solver resolution effects. 
Sixteen simulations were run for “Airplane Fire” and sixteen more for “Truck Fire” 
wind-driven fires. The sensitivity of weapon heating to the six uncertainties was 

 
4 This term signifies a category of modeling uncertainty that is innately associated with the “traveling” 
portion of the model being validated. Only the traveling portion goes on to new predictions beyond the 
validation exercise. That is, certain elements or aspects of the model will be carried forward to new 
predictions, and certain aspects are specific only to the validation setting. The intrinsic uncertainties in 
Table 1 all exist in the validation setting, but also travel to new predictions, as uncertainties that are 
propagated to simulations results in the new prediction settings as well. Other uncertainties in the 
experiment, such as emissivity of the calorimeter and enclosure walls in the modeled experiment, are 
confined to the validation experiments; in general we will simulate new environments and enclosures with 
different emissive properties and uncertainties than the specially prepared Pyromark painted surfaces in the 
validation experiments. Thus, these emissivity uncertainties will not travel to new predictions—they are not 
intrinsic to the FUEGO fire dynamics model. As explained in [12] and demonstrated in this paper, the 
validation framework handles traveling uncertainties differently from non-traveling uncertainties. 



analyzed. From the sensitivity results, the parameter combinations for high and low 
weapon heating5 in each accident scenario were inferred.  
 
The investigation in [15] employed a standard k-epsilon turbulence model and 
alternatively a Buoyant Vorticity Generation (BVG) turbulence model to hopefully bound 
model-form effects of turbulence modeling error in the Reynolds-Averaged Navier-
Stokes (RANS) computational fluid dynamics (CFD) model. The investigations in [3] 
and [13] propose CFD model-form bounds as the BVG RANS formulation and a Time-
Filtered Navier-Stokes (TFNS) RANS formulation. See [3] and [13] for detailed 
summaries of these CFD formulations.  
 
The formulations generally dictate that the BVG-RANS turbulence model has the 
potential to result in larger and hotter simulated fires than the TFNS-RANS turbulence 
model due to the inclusion of a baroclinic torque source-term in the k-equation which 
enhances mixing and therefore combustion in the BVG formulation. Hence, for model 
validation purposes we could minimally run just one FUEGO simulation with the BVG 
model and the inferred “hot fire” extreme combination of values of the other uncertain 
parameters (Set 4 prescribed below); and another simulation with the TFNS model and 
the inferred “cool fire” extreme combination of other parameter values (Set 3 prescribed 
below). A third simulation would be run (analogous to Simulation 6 discussed later) to 
account for the effects of the highly uncertain emissivity of the Pyromarked surface of the 
calorimeter and enclosure.  
 
Nevertheless, to more thoroughly examine the effect of turbulence model form on 
predicted heating in the current physical setting, we ran both model forms with the “hot 
fire” and “cold fire” extreme parameter combinations listed in the first five bullets of 
Table 1. Thus, the following simulations were run. Table 2 summarizes the run matrix. 
 
Set 1 (Simulation 1) – Baseline Case, TFNS with nominal parameter values in Table 1  
 
Set 2 (Simulation 2) – High Heating parameter combination with TFNS  

 
Set 3 (Simulation 3)  – Low Heating parameter combination with TFNS  
 
Set 4 (Simulation 4)  –  same as High Set #2 above, except with BVG turbulence model 
 
Set 5 (Simulation 5)  –  same as Low Set #3 above, except with BVG turbulence model 
 
   

                                                 
5 as a global spatial average over the heated object, but not necessarily locally at all points on its surface 



 
Table 2.  Fire Model Input Variations for the Six FUEGO Simulations Run 

FUEGO run turbul. model HOC SEC CC FVC FLC є_Pyromark 

Set 1 TFNS 44.66 7 100% 2.13 0.41 0.86 

Set 2 TFNS 44.66+10% 7 100% 2.13 0.41 -30% 0.86 

Set 3 TFNS 44.66-10% 5 200% 2.13 -30% 0.41 +30% 0.86 

Set 4 BVG [……………….…………same as row 2……….……….………] 

Set 5 BVG [……………….…………same as row 3……….……….………] 

Set 6 […………….…..………same as row 2…....…….……….………] 0.96 
 
 
The uncertainties of other inputs to the validation experiment(s), that are non-intrinsic to 
the traveling fire dynamics model, such as calorimeter/enclosure/facility geometry, fuel 
regression rate, air flow rate (wind velocity), and material properties, must also be 
considered in the model validation procedure. Of the parameters in this non-traveling 
category, it was surmised that the only uncertainty of first-order significance impacting 
calorimeter steady-state temperature was emissivity of the calorimeter exterior and of the 
enclosure interior.  
 
This emissivity uncertainty is accounted for by running a simulation (#6, below) to 
quantify the effect of a substantial perturbation from the nominal emissivity єnominal = 
0.86, with all other model inputs held constant. From this, a first-order finite-difference 
approximation to d(cone_local-steady-state-temp.)/dє at every point on the cone surface 
can be formed. Then the linearized relationship ΔT  [d(cone_local-steady-state-
temp.)/dє] • (Δє) can be used to estimate the steady-state temperature change at a given 
location on the calorimeter surface for any value of emissivity єdifferent from єnominal.

6 
Hence, the local ΔT effect from varying єover its applicable uncertainty range can be 
investigated analytically with the above relation, where Δєє– єnominal. This will be 
applied later.   

The uncertainty range for emissivity of the calorimeter exterior surface and the enclosure 
interior surfaces (walls, roof, and floor) is taken to be 0.76 to 0.96 based on measured 
values ([16] - [20]) for both heavily oxidized steel surfaces and burned-in Pyromarked 
steel surfaces like in the present XTF experiments. Whether heavily oxidized (burned-in) 
steel, or burned-in Pyromarked steel, the corresponding emissivity is thought to lie within 
the range cited above. Set 6 employs an emissivity perturbation that goes to the high 
extreme of the emissivity uncertainty range, 0.96. 
 
Set 6 (Simulation 6)  –  Same as Set 2, except є = 0.96 

                                                 
6 For certain reasons not evident in what is presented in this paper, Sim. 6 is a perturbation from parameter 
set #2. In what follows, the assumption is made that the derivative d(cone_local-steady-state-temp.)/dє 
would be approximately the same for a similar emissivity perturbation from any of the simulations # 1 – 5. 
Although the derivative might actually change non-negligibly if computed by perturbations from the other 
simulations, this sensitivity could not be investigated because of the limit on the number of FUEGO 
simulations that could be run.  



 
A less significant but still substantial non-traveling uncertainty in this project is the heat 
transfer between the bottom of the steel cone and the thermally massive steel floor it was 
bolted to. Unfortunately, in this project it was not practical to parameterize a contact 
conductance at this interface into the FUEGO simulations. Instead, a simple adiabatic 
boundary condition was applied at the bottom of the cone. The consequent error (and 
uncertainty thereof) remains unquantified in the present effort. Nevertheless, strong 
arguments are made in Section 6 that neglecting this factor probably does not materially 
change the final validation conclusions.   
 
Geometry uncertainties may also have been possibly significant, but were not considered 
for lack of resources. Finally, the uncertainties associated with fuel regression rate, air 
flow rate, and steel and insulation thermal properties of the calorimeter were judged to 
have relatively little effect on calculated steady-state temperatures, based on applicable 
sensitivity studies from [13].  
 
5.  Experiment and Simulation Results and Uncertainty Processing for Model Validation                     

Comparisons 
 
Here we consider only a representative subset of validation-relevant experiment and 
simulation results and uncertainties. We focus on TC5, about 1/5 of the way down from 
the top of the calorimeter, and facing the oncoming wind-driven fire. The experiment and 
simulation results and validation processing for the other seven TCs in Fig. 2 can be 
found in [3].  
 
Figure 3 shows experimental and predicted temperature response curves for TC5. The 
data for two nominal repeat experiments, #6 and #7, are shown. As described in [2], the 
previous five experiments were partial trial experiments needed to refine the geometry 
configuration and experimental conditions, and to “burn in” the Pyromark-painted 
radiating surfaces. Also plotted on the figure are the results of all six simulations. The 
simulation results will be discussed in detail later, but it is mentioned here that these were 
false-transient simulations to reach steady-state temperatures as quickly as possible. 
Therefore, the transient response for the simulations is plotted on a scale of seconds to 
reach steady state (whereas the experimental responses are plotted on a scale of minutes 
to reach steady state).  It is also informative to mention here that results for Simulation 5 
are falling rather than rising to a steady state because a mistake in one of the parameter 
values was noticed and corrected mid-way through the weeks-long calculation. Also, 
only the late-time portion of the Sim. 1 results were saved for plotting. 
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Figure 3. Calorimeter Temperature at TC #5,  top - 0 facing the fire 
 

 
 
Characterization of Raw Experimental Results:  For the experimental results in Figure 3 
it is obvious that it is important to use appropriate time windows over which to average 
TC5 temperature responses in order to get representative steady-state values for model 
validation comparisons. The time windows used are depicted graphically in Figure 4. 
These correspond to a six-minute window from 32 - 38 minutes in Exp. 6 and a 13-
minute window from 54 – 67 minutes in Exp. 7. 
 
The time-window boxes in Figure 4 have a middle horizontal line that represents the 
arithmetic mean of the data within the time window, where readings were recorded at 1-
second intervals. The means are listed in Table 3. The upper and lower horizontal lines 
that define the top/bottom of the box are given respectively by the mean +/– 5K. The 
rationale is that other time-windows than those used here, perturbed wider/narrower 
and/or later/sooner in time could be just as appropriate or representative. A few such 
physically-reasonable perturbations were examined. These resulted in changes in time-
window means of a few degrees K or less. Accordingly, a deemed-reasonable uncertainty 
band of +/– 5K was assigned to the mean temperatures (representative experimental 
steady-state point values) in Table 3. As additional information, the table also lists 
maximum and minimum instantaneous temperatures over the time windows, but these 
should not be mistaken to represent reasonable uncertainty bounds on the steady-state 
means over the time windows. 
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Figure 4. Uncertainty on steady-state experimental and simulation results at TC 5. 
 

 
 

Table 3.  Mean, Max., and Min. Temperatures over Time-Windows in Figure 4  

 
Time-window 

mean, µ 
Maximum over 
time-window 

Minimum over 
time-window 

Exper. 6 
1394 K 

or 1121°C 
µ6 + 33 K or °C µ6 - 31 K or °C 

Exper. 7 
1412 K 

or 1139°C 
µ7 + 24 K or °C µ7 - 34 K or °C 

 

Characterization of Raw Simulation Results:  For the simulation results, representative 
steady-state values are actually less definite in many instances. In particular, Figures 4 
and 5 show that the temperature results corresponding to Simulations 1, 3, and 5 have not 
yet stabilized completely. Simulations 1, 3, and 5 had to be terminated due to resource 
limitations in the project. (Each simulation took several weeks on 512 processors.) 
Consequently, results were extrapolated to estimated steady-state values. The procedure 
involved visually extrapolating a TC curve to form reasonable uncertainty bands of 
plausible upper and lower bounds on the asymptotic steady-state value, and then taking 
the midpoint of the bounds as the single most representative point-estimate for steady-
state temperature. For example, for Sim. 3 it is visually judged that the steady-state 
asymptote of the temperature curve is within an uncertainty bar plotted in Fig. 4 that runs 
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Figure 5. Uncertainty on steady-state simulation results at TC 5. 
 

 
from 5K below the last plotted temperature from the simulation, to 20K above the last 
plotted temperature. This information is recorded in Table 4. These values of -5K and 
+20K are added to Sim. 3’s last plotted temperature in Table 5 to get the Min. and Max. 
values listed for Sim. 3 in Table 5. The Min. and Max. values correspond to the lower 
and upper extents of Sim. 3’s uncertainty bar shown in Fig. 4. The midpoint of the 
uncertainty bar for Sim. 3 coincides with the ‘midway’ temperature listed for Sim. 3 in 
Table 5. 
 
 
Table 4.    Values in brackets [] are visually projected limits to anticipated change 

from end-of-simulation temperatures to asymptotic steady-state values. 
For Simulation 6 the averaging time-window is listed from which a mean 
estimate for steady-state temperature is determined.  

Sim. 1 Sim. 2 Sim. 3 Sim. 4 Sim. 5 Sim. 6 

[-10,+30] K [-30,+30] K [-5,+20] K [-5,+20] K [-15,0] K 190 - 241 sec 

 



 

Table 5.   End-of-simulation temperatures at TC5 location, with mean or 
extrapolated-asymptotic steady-state values and uncertainty bounds 

FUEGO run ending T (K) Max. (K) Min. (K) Central estimate (K) 

Sim. 1 1309 1339 1299 1319 (midway) 

Sim. 2 1496 1526 1466 1496 (midway) 

Sim. 3 1265 1285 1260 1273 (midway) 

Sim. 4 1537 1557 1532 1545 (midway) 

Sim. 5 1352 1352 1337 1345 (midway) 

Sim. 6 1534 1546 1510      1529 (mean) 

 
 
For Simulations 2, 4, and 6, temperature results did plateau to quasi-steady values before 
the simulations were terminated. Processing Sim. 6 first, an estimate of steady-state 
temperature was obtained by averaging over the time window shown in Fig. 4 and listed 
in Table 4. However, unlike for the experimental data, no empirical investigation was 
performed to determine sensitivity of the time-window mean temperature (as the steady-
state temperature estimate) to perturbations of the window wider/narrower and/or 
later/sooner in time. Instead, uncertainty bounds listed in Table 5 are the maximum and 
minimum instantaneous temperatures over the time window. These are also depicted by 
the upper and lower extents of the time box in Fig. 4.  
 
This latter approach is an easy way to get bounds, but is thought to give considerably 
exaggerated uncertainty magnitudes for simulation results that have plateaued to a 
(perhaps noisy) steady state. Indeed, the time-window maximum and minimum for the 
experimental data are found in Table 2 to be roughly 25K to 35K higher or lower than the 
time-window mean, yet experimentation with different plausible time windows on the 
steady-state portion of the experimental data indicated that a more reasonable uncertainty 
to ascribe to the time-window means is ± 5K. In comparison, the upward and downward 
instantaneous differences from the mean for Sim. 6 in Table 5 are roughly 20K—
considerably less than the 25 to 35K differences from experimental time-window means. 
Therefore, if the experimental and simulation results have proportionate sensitivities of 
their time-window means to different plausible time windows that could reasonably have 
been chosen, then something less than ± 5K would be more reasonable to assign for the 
uncertainty of steady-state temperature for Simulation 6.  
 
Indeed, the different vertical extents of the three time-window boxes in Fig. 4 portray an 
exaggerated uncertainty regarding the Sim. 6 results. For Experiments 6 and 7 and for 
Simulation 6 the scale of temperature oscillation over their time windows is roughly the 
same, yet the vertical extents of the time boxes, which represent the uncertainty ascribed 
to the time-window means as estimates of steady-state temperature, are vastly different.  
 
Hence, it is reasonable to conclude that an easy and conservative approach to bounding 
the uncertainty on time-window means, as an alternative to the labor intensive approach 



of sampling different reasonable time windows (recall that we had 7 other TCs to 
process), is to use instantaneous maximum and minimum temperature over the time 
window. However, this likely exaggerates the uncertainty by a considerable amount. 
Because of this, it was concluded that no significant advantage results from the processes 
of determining a  representative time window and then computing the mean within it, 
versus the much simpler approach of treating plateaued simulation results with the same 
visual procedure that is applied to the non-plateued results. Since an extrapolation does 
not have to be made when the results have already plateued, even if noisy, it is much 
easier to make a visual judgment for reasonable upper and lower bounds on steady-state 
temperature by considering the character of the response curve and the level of noise 
toward the end of the curve. This was done for Simulations 2 and 4, with the results listed 
in Tables 4 and 5.  
 
Note that the error bars and time-window boxes are drawn in the figures so that readers 
can judge for themselves whether the subjectively determined uncertainty ranges on 
steady-state temperatures are reasonable. The error bars (and vertical extents of the 
plotted time boxes for cases of averaging over time windows) are only accurate to within 
“hand drawn” accuracy. These give a qualitative sense of the magnitudes of the quantities 
involved, but for quantitative accuracy the tables should be consulted. Regardless of how 
the uncertainties are determined, in the context of a time-windowing procedure or a 
visual extrapolation procedure, these uncertainties are referred to as “graphical 
processing uncertainties” in the following. We have seen that both the experimental and 
simulation results possess significant graphical processing uncertainties.  
 
Uncertainty Processing of Experimental Data for Model Validation Comparisons  
       The experimental data is here processed in a specific manner for model validation 
comparison to simulation results according to the validation paradigm and procedures 
detailed in [12]. There are many other model validation approaches of various flavors that 
one could pursue (see [10] for a sampling of references on this subject). However, the 
one applied here appears to uniquely have the required features to handle all the difficult 
attributes of the current FUEGO validation problem.  
 
Figure 6 presents the perceived dominant experimental uncertainties (from a model 
validation perspective) concerning steady-state temperature at the location of TC5. The 
sizes of the error bars in the figure are approximately to scale for the numerical 
magnitudes denoted in the figure. 
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Figure 6:  Experimental uncertainties and rollup to aggregate experimental 

 uncertainty at TC5.  All temperatures are in degrees K.   
 
We first consider Experiment 6. From Table 3 it has a steady-state mean temperature of 
1394K over the applicable time window. It was previously established that this mean is 
subject to a ± 5K graphical uncertainty, thus the designation 1394K ±5K in the figure.  
 
The ± 11K measurement uncertainty indicated in the figure is an amalgamation of several 
sources. First, manufacturing variability of the 1/16-inch diameter ungrounded-junction 
MIMS Type-K TCs used in the experiments is specified by the manufacturer to result in a 
“two-sigma accuracy of 2.2°C or 0.75% of reading in °C, whichever is greater” (see 
[21]). This accuracy level is said to exist over a temperature measurement range from 
200°C to 1000°C. The wording is generally interpreted (e.g. [21]) to imply that, although 
a given TC’s particular transducing error ε (= Tindicated – Ttrue) is not known, the relative 
likelihood of what the error might be is governed by a normal distribution with standard 
deviation σ = ½(2.2°C or 0.75% of reading in °C, whichever is greater). (See shaded 
distribution associated with note  in Figure 7.) Hence, the probability that the absolute 
value of the error is less than 2σ is given by integrating the shaded portion of the normal 
distribution that lies within ±2σ of Tindicated. This integration yields a value slightly larger 
than 0.95. Accordingly, >95% probability exists that the given TC’s error has a 
magnitude less than 2σ; |Tindicated – Ttrue| <  2σ. Unfurling this inequality yields:  
Tindicated  2σ < Ttrue < Tindicated + 2σ. Hence, >95% probability exists that the true bead 
temperature lies with ±2σ of the indicated bead temperature.   
 



The above characterization is presumably obtained with a measurement system 
(particular data acquisition system, length of TC leads, length of electrical signal cables, 
etc.) that is properly calibrated for accuracy. Bias error is then introduced by the different 
particulars of the Sandia measurement system relative to the manufacturer’s system. 
Characterization of the Sandia measurement TC channels in e.g. [2] and [21] has 
determined that channel accuracies usually range well within 1°C even for high-
temperature calibration signals (standards) emulating 1000°C (1273 K), in the 
neighborhood of calorimeter temperatures in the present tests. With the error 
characterization from these activities, individual TC readings in the experiments could be 
bias-corrected, but usually are not because of the relatively small errors involved. Instead, 
a “blanket” uncertainty is assigned to the reported data to cover any error due to the 
Sandia measurement system. We here assign an interval uncertainty of ± 0.25% of °C 
reading. This equates to greater than ± 2.5°C in the present case, representing a 
reasonable upper bound on measurement system errors traditionally seen in assessments 
against calibration standards at these elevated temperatures. 
 
Hence, two significant sources of uncertainty are surmised to exist with regard to face-
value temperature readings in the present experiments. Figure 7 helps illustrate the 
uncertainty sources and their implications. The probability density functions (PDFs) in 
the figure represent the uncertainty in true temperature due to TC-to-TC variable error 
(aleatory uncertainty) characterized by the manufacturer, assuming channel bias in their 
measurement system is corrected using a reliable calibration standard. The depicted 
potential shifts in the PDF (and therefore where the true temperature is expected to lie) 
are caused by potential differences between the manufacturer and Sandia measurement 
systems. Uncertainty in the magnitude of the systematic differences is here taken to be an 
interval (epistemic) uncertainty of ± 0.25% of reading in °C. 
 
Accordingly, if no Sandia measurement-system bias exists, the true TC bead temperature 
would be expected with >95% probability to lie within the range marked by the smaller 
error bar in the figure. However, when Sandia measurement-system bias does exist, and 
its value is characterized to lie e.g. within an uncertainty range of –Δ– to +Δ+ as depicted 
in Figure 7, then the said PDF uncertainty (and therefore where the true temperature is 
expected to lie) might be shifted up or down by any value within the extremes shown.7  

 

                                                 
7 Under such shifts, the superposition spoken of here is a simplifying approximation, but is 
reasonable for the present circumstances and validation assessment. True superposition requires 
that the PDF in Figure 7 is independent of the second uncertainty that precipitates the shifting, 
and that the distribution remain unchanged or invariant as it shifts. The independence condition is 
met here and in many other real settings. However, the invariance condition is not strictly met 
here, and is probably difficult to strictly meet in general. Here, the standard deviation (thus width) 
of the distribution is posed as a percentage of temperature reading. Since temperature magnitude 
changes as the distribution shifts vertically over the [–Δ– , +Δ+] range in Figure 7, the width of the 
distribution would change as well, violating the strict superposition conditions. However, this 
non-invariance effect is not large enough to be material to the validation conclusions here. If the 
non-invariance effect is significant and therefore important to capture, a Monte Carlo procedure 
like that demonstrated in [22] can be employed.  



 
Figure 7:  Uncertainty of TC reading error is governed by probabilistic 

uncertainty (PDF) and potential systematic shifts in the PDF. 
Aggregate uncertainty interval shown at right is given by shifting either 
PDF or its interval representation shown, through the uncertainty range 
[–Δ– , +Δ+] of the potential error of Sandia meas. system relative to TC 
manuf. meas. system (that manuf. supplied PDF is referenced to). 

 
Thus, the region within which the true temperature is expected to lie (at the 95% 
probability level) is given by the large error bar at right in Figure 7. The lower and upper 
extremes of the large error bar are formed by simply adding the respective extremes of 
the PDF and interval source uncertainties: [L,U] = [(-Δ– + -2σ), (Δ+ + 2σ)].   
 
For the present case we get [L,U] = [(-0.25% + -0.75%), (0.25% + 0.75%)] of °C reading 
= [-1%, 1%] of °C reading. This uncertainty range can also be expressed conventionally 
as ± 1% of °C reading. Consulting Table 3 for °C reading for Experiments 6 and 7, ± 1% 
yields the numerically rounded [–11K, +11K] error bars in Figure 6 (analogous to the 
large error bar in Figure 7). 
 
Usually, a third—and dominant—source of temperature indication error exists, due to TC 
attachment effects. That is, the TC bead is not usually at the same temperature as the 
surface it is attached to because of contact resistance effects and heat transfer to or from 
the bead. See [23] for a detailed presentation of the issues, and quantification of the 
effects via finite-element modeling. Since it is really the surface temperature that is 
desired from the measurement, and not actually the bead temperature, any difference 
between the two is usually considered to be an error in the measurement. Such error has 
been indicated in Sandia investigations (e.g. [17], [21]) to be as much of 6% of °C 
reading under certain conditions. Such temperature differences or lags are not considered 



in the present activity because steady-state temperature is the quantity of interest. For this 
quantity, positive and negative temperature lags are presumed to cancel out in the 
calculation of mean temperature as the instantaneous temperature oscillates noisily about 
the steady-state mean. Depending on the actual oscillation history, non-symmetric time-
weighting of positive and negative lags could lead to non-complete cancellation, but any 
such effect is likely to be small to negligible. It seems reasonable to assume here that any 
such effects are small enough to be covered by the significant margin of conservatism in 
the assigned 0.25% uncertainty discussed previously.   
 
Another source of validation uncertainty in the indicated experimental steady-state 
temperature is represented by the [–66K, +66K] error bars labeled “Emis. uncer.” in 
Figure 6. It is evident that these are dominant uncertainties in the individual experiments.  
These arise from an uncertain input to the experiments (calorimeter and enclosure 
emissivity) as opposed to the aforementioned uncertainties in the measurement and 
processing of the experimental output (temperature).  
 
By far, emissivity of the calorimeter exterior and enclosure interior is thought to be the 
factor that yields the highest sensitivity of calorimeter steady-state temperature to 
experimental input-factor uncertainty. As previously explained, Simulation 6 at є= 0.96 
is a perturbation from Sim. 2 at єnominal = 0.86, all other simulation parameters being the 
same. From Sim. 6 and Sim. 2 results, a first-order finite-difference approximation to 
d(cone_local-steady-state-temp.)/dє at every point on the cone surface can be formed. 
Then the linear projection equation ΔT  [d(cone_local-steady-state-temp.)/dє] • Δє can 
be used to estimate the steady-state temperature change ΔT from Sim. 2 steady-state 
temperature at a given point on the calorimeter surface, for any value of emissivity 
єdifferent from єnominal (where Δєє– єnominal).  
 
The uncertainty range for emissivity of the calorimeter exterior surface and the enclosure 
interior surfaces (walls, roof, and floor) is indicated to be є = 0.76 to 0.96 as established 
earlier. The upward ΔT perturbation at TC5, corresponding to the upper-bound 
perturbation є = 0.96 from єnominal = 0.86, is given directly by subtracting the central 
estimate for Sim. 2 steady-state temperature in Table 5 from the central estimate for Sim. 
6 steady-state temperature. The result is ΔT = +33K. From the fact that a downward 
uncertainty perturbation є = 0.76 from the nominal value 0.86 is the same magnitude as 
the upward perturbation from 0.86 to 0.96, the downward temperature perturbation is 
−33K by linearity of the projection equation. Therefore, the full uncertainty range of 
temperature at TC5 due to an emissive uncertainty [0.76, 0.96] is projected to be 66K, 
given by the uncertainty interval [−33K, +33K]. 
 
Indeed, in the next section this interval [−33K, +33K] is an element of the prediction 
uncertainty for steady-state temperature at TC5 (see Fig. 8). Furthermore, since the 
validation framework applied here assesses how closely the experimental and modeled 
systems transform experimental inputs to output results, an objective assessment would 
map any uncertainty of the experimental inputs through the modeled and physical 
systems, and then compare how output results differ. However, unlike the modeling case, 
in the physical case we do not have empirical quantification of how the physical system 



outputs of calorimeter TC temperatures vary as the Pyromark emissivity varies over its 
uncertainty range. This experimental knowledge deficit, and the fact that the 
experimental output results correspond to a specific but unknown input emissivity 
(although it almost certainly lies within the uncertainty range discussed), have several 
important implications for model validation and model validation methodology (see [11], 
[12]).  
 
Accordingly, the present circumstances that the uncertain input of interest is non-
traveling (see Footnote 4) and is predominantly systematic over the two experiments, 
dictate a somewhat non-intuitive treatment (“data-conditioning” of the experimental data 
with respect to the uncertain emissivity) to minimize the chances of committing a “Type 
X” model validation error.8 Here the uncertainty added to the experimental results turns 
out to be [−66K, +66K] as shown in Figure 6. This is twice the uncertainty [−33K, +33K] 
added to the prediction results in Fig. 8.9  
 
Finally, we address the test-to-test variability of the experimental results. Consider the 
uncertainty in Figure 6 associated with the nominal point results of the two experiments, 
6 and 7.  First note that the measurement and emissivity-related uncertainties are 
completely correlated. That is, since the same TC and data acquisition system and 
channel was used for TC5 in the two experiments, any associated bias errors in reading 

                                                 
8 The model validation methodology employed here is skewed toward preventing a “Type X” 
model validation error ([11]) of an incorrect conclusion of ‘no significant model bias’ when in 
fact significant bias does exist but is hidden by systematic uncertainty in non-traveling input 
factors in the experiments. The drawback is that the framework likely exaggerates the uncertainty 
“resolution level” within which it can be established that the model emulates the real system. 
(The tradeoff here is analogous to the situation in statistical hypothesis testing, where the more 
one chooses to skew (decrease) the odds of incorrectly rejecting a true hypothesis (Type I error), 
the more likely it is that a Type II error will be committed of incorrectly accepting a false 
hypothesis. As in hypothesis testing, the presence of uncertainty forces one into a position of 
having to make a choice of which undesirable outcome is the least undesirable.) Thus, the 
methodology here favors incurring a “Type Y” error of exaggerating the range of possible model 
bias relative to what it is likely to actually be, and accepts this tradeoff in preference to incurring 
a Type X error of underestimating the model bias. This choice is argued in [11] to best support 
the objectives of Best Estimate + Uncertainty extrapolative predictions with the model.  
9 This factor of two arises when the model is used as an approximation for the experimental 
change (slope) in TC5 temperature versus change in the input factor (here emissivity). This is just 
a nominal estimate for what the data conditioning factor actually should be. The factor is formally 
two times the ratio r of experimental slope to modeled slope. Thus, the factor is two when r = 1, 
i.e., under the nominal approximation of equal experimental and modeled slopes. However, the 
sensitivity of validation conclusions to uncertainty in r should be investigated as part of the 
validation procedure. It is determined that the actual ratio of experimental to modeled slopes can 
be up to r = 1.5 (for a factor of 3) before the experimental uncertainty bar in Fig. 8 extends 
outside the range of prediction uncertainty and changes the validation conclusions arrived at later. 
The actual experimental slope is expected to be well within this allowable 50% difference from 
the modeled slope. 

 



vs. true temperature are essentially the same in the two experiments. The same is true of 
the uncertainty due to emissivity in the experiments. Although the emissivity in the 
experiments is unknown to within a relatively large range of 0.76 to 0.96, it is reasonable 
to postulate the experiment-to-experiment differences in emissivity are small 
comparatively. Hence, the associated uncertainty in experiment 6 and 7 results is closely 
correlated (systematic over the two experiments).  
 
Conversely, the ± 5K graphical uncertainties associated with the steady-state temperature 
averaging windows for the two experiments can be considered to be independent and 
uncorrelated among the two experiments. This dictates that this source of uncertainty, for 
the purposes of characterizing experiment-to-experiment variability, be treated differently 
than the ones above.  
 
First, however, consider the instructional case of only one experiment (either 6 or 7). The 
aggregate uncertainty for the single experiment would be constructed as follows. The 
[–11K, +11K] measurement uncertainty in Figure 6 can be conceived as being subject to 
vertical shifting over the range [–66K, +66K] due to the emissive uncertainty. Such 
shifting is already familiar from the previous discussion pertaining to Figure 7. In the 
way that the uncertainty ranges are added or superposed in accordance with the 
assumptions in Footnote 7, the results here would yield [(-11K + -66K), (11K + 66K)] = 
[-77K, +77K]. This uncertainty bar about the nominal measured temperature would in 
turn be subject to vertical shifting of ± 5K associated with the steady-state temperature 
graphical processing uncertainty. An aggregate uncertainty of [-82K, +82K] would result. 
This would be the case for either Experiment 6 or 7 alone. 
 
Now consider Experiments 6 and 7 together. With reference to Figure 6, the nominal 
results are respectively 1394 K and 1412 K. The 18 K difference between these results 
cannot be explained by the ± 5K uncorrelated processing uncertainties in each result. 
(Recall that the other uncertainties are effectively correlated or systematic between the 
two experiments, so cannot explain or contribute to any relative differences in the two 
experimental results.) Therefore, some other explanation lies behind the experimental 
differences. Certainly, things varied between the two experiments that we could not 
characterize or explicitly treat in this project due to practical limitations.10  
 

                                                 
10 If we had quantified the input variabilities and could afford to propagate them to the simulation 
output, just as the experimental system propagated them to the experimental output, then we 
would have approximately offsetting effects in the validation comparisons to come later. Instead, 
neglectance of experimental input variabilities on the simulation side may show up as an under-
represented uncertainty band in the validation comparison against the aggregate experimental 
uncertainty. Any consequent “uncertainty shortfall” might then be mapped into selected 
parameters of the model to add a physical variability effect to it.  This so-called “model 
conditioning” ([9] - [12]) arguably supports an objective of Best Estimate + Uncertainty modeling 
for extrapolative prediction. It will be established later that no such model conditioning is 
indicated to be necessary in the present activity. Indeed, the model-intrinsic uncertainties of Table 
1 will be seen to bound the experiment-to-experiment variability in the physical results.  
 



In any case, we can reasonably posit that if many other repeat experiments were run, the 
results would vary according to a Normal distribution, as is often the case with complex 
experimental systems. We can get estimates of what the mean and variance of the Normal 
distribution would be by calculating these from the 1394 K and 1412 K nominal 
experimental results. The mean of these is 1403 K as denoted in the figure. The standard 
deviation S, times two, is 2S = 25 K. It must be kept in mind that this two-sigma 
magnitude of 25 K only nominally corresponds to 95% included probability in the 
postulated normal distribution of experiment-to-experiment steady-state temperature at 
TC5.11  
 
The nominal treatment also ignores the ± 5K graphical processing uncertainties in the 
two steady-state temperatures. Because this uncertainty is uncorrelated over the two 
experiments, a worst-case (largest variance) treatment of this uncertainty involves 
decreasing the lower nominal result, 1394 K, by the maximum possibility over the 
applicable ± 5K uncertainty range; and increasing the upper nominal result, 1412 K, by 
the maximum possibility over its independent ± 5K uncertainty range. This yields 
adjusted results of 1394K –5K = 1389 K, and 1412K + 5K = 1417 K. The accompanying 
two-sigma magnitude is S_high = 39.1. This compares to the two-sigma value of 25 
obtained in the previous paragraph when the uncorrelated ± 5K window processing 
uncertainties were not accounted for. A rounded value of 39 (shown in Figure 6) is used 
in the following. 
 
The effect of the correlation treatment is very significant here. If the ± 5K uncertainties 
were perfectly correlated among the two experiments, then these would constitute a 
systematic uncertainty over the two experiments. Then, consistent with Figure 7, the 
aggregate uncertainty from these two factors (graphical processing and experiment-to-
experiment variability) would be to shift the (two-sigma = 25K) normal distribution over 
a ± 5K range. The result would be [(-5K + -25K), (5K + 25K)] = [-30K, +30K] by the 
linear superposition approximation (Footnote 7).  
 
Instead, if the ± 5K graphical processing uncertainties are treated as independent and 
uncorrelated over the two experiments, the result is [-2S_high, +2S_high] = [-39K, 
+39K] as already determined. Therefore, the added effect of the uncorrelated ±5K 

                                                 
11 The actual standard deviation of a large number of experimental repeats could be very different 
from the S = 25K/2 calculated from just the two experiments. The small-sample uncertainty in the 
standard deviation value, and also in the mean value, is not accounted for in this paper. Hence, we 
cannot state with reasonable statistical confidence that the mean±2S = 1403K ±25K defines an 
interval that encompasses 95% of the postulated normal distribution for experiment-to-
experiment steady-state temperature variability. We can only state that this interval gives a 
nominal quantification of the physical variability. In fact, if the small-sample uncertainty on the 
apparent experimental variability is taken into account, this “uncertainty on the variability” or 
“epistemic uncertainty on the aleatory uncertainty” is large enough that it can potentially overturn 
our validation affirmations at some of the eight TC locations. Nonetheless, within the sampling 
uncertainty, it is also possible that an even stronger affirmation of model validity could occur, 
depending on the direction of the actual errors in the calculated values  =1403K and S = 25K/2.  
 



processing uncertainties is a ±14K increment to the standing ±2S = ±25.0 nominal 
uncertainty from experimental variability. The ±14K is nearly three times the added 
effect if the ± 5K processing uncertainties are treated as perfectly correlated (systematic) 
over the two experiments. 
 
To close out this section, we combine the experimental measurement and emissivity-
related interval uncertainties with the normal PDF for experiment-to-experiment 
variability (mean 1403K and standard deviation S_high = 39K/2). Following the 
paradigm of Figure 7, the [–11K, +11K] measurement uncertainty (interval) is 
superposed/added with the PDF uncertainty to get: [(-11K + -39K), (11K + 39K)] = 
[-50K, +50K]. The interval uncertainty [–66K, +66K] due to uncertain emissivity is 
combined in by further superposition to get: [(-66K + -50K), (66K +50K)] = [-116K, 
+116K]. By using the numbers from each term with more decimal-place precision, we get 
the more accurate result [-117K, +117K] depicted by the uncertainty bar labeled 
‘Aggregate experimental uncertainty’ in Figure 6.  
 
Analogous quantities and results to those presented in Figure 6 for TC5 are presented in 
[3] for the other TCs. 
 
Uncertainty Processing of Simulation Results for Model Validation Comparisons 
        Figure 8 shows FUEGO simulation results at TC5 location for Simulations 1 – 5. 
These were all run with the nominal value of emissivity, єnominal = 0.86. The range of 
aggregate experimental uncertainty from Fig. 6 is plotted in Figure 8 to lend a sense of 
scale and location relative to the simulation uncertainty. The central-estimate values of 
steady-state temperature from Table 5 are printed in the figure beside the plotted filled 
dots. The maximum and minimum reasonable steady-state temperature bounds from 
Table 5 are also plotted in Figure 8, as unfilled diamond symbols. 
  
The nominal steady-state temperature values indicate that the BVG turbulence model 
yields greater object heating than the TFNS model—all other simulation parameters 
being equal. This agrees with expectations. 
 
When the emissivity uncertainty is accounted for, the expectations still hold up. For 
instance, consider the TFNS-High simulation (#2) and the BVG-High simulation (#4). 
The emissivity-related [−33K, +33K] uncertainty bars of these two simulations overlap 
some in Fig. 8. However, recall that these uncertainty bars represent correlated or 
systematic uncertainty over the set of simulations. That is, whatever the true value of 
emissivity is, it is the same for all simulations. If the true value (or any value) were input 
to the simulations, it would not yield e.g. a value on the upper portion of the uncertainty 
bar of Sim. 2 and a value on the lower portion of the uncertainty bar of Sim. 4. Rather, 
the results would be correlated such they would both lie at closely the same vertical 
position within each error bar. Therefore, although the error bars of Sim. 2 and Sim. 4 
overlap some, giving the appearance that it is possible to get a temperature realization 
from BVG-High Sim. 4 that is lower than a corresponding realization from TFNS-High 
Sim. 2, this is not really the situation here. 
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Figure 8:  Simulation results and uncertainties at TC5, with range of prediction 
uncertainty compared against range of aggregate experimental 
uncertainty. All temperatures in degrees K.   

 
 
The expected ordering holds even up when the graphical processing uncertainty is 
accounted for. In contrast to the emissivity related uncertainty, the graphical processing 
uncertainties (min and max bounds in Table 5) are uncorrelated across the various 
simulation results, and can significantly shift simulation results relative to each other. For 
example, in the extreme worst combination the graphical uncertainty could allow: a) a 
shift of Sim. 4’s uncertainty bar downward until its midpoint (filled dot) aligns with the 
local lower diamond; and b) a shift of Sim. 2’s uncertainty bar upward until its midpoint 
aligns with the local upper diamond. Even in this worst case the BVG-High Sim. 4 
uncertainty bar remains higher in vertical position than the TFNS-High Sim. 2 bar. This 
implies a higher simulated temperature for BVG-High than for TFNS-High. Recall also 
that this is under a worst-case realization of the uncorrelated graphical uncertainties, and 
that the graphical uncertainty magnitudes are likely highly exaggerated for the simulation 
results, as discussed earlier.   
 
It is otherwise observed that, for a given turbulence model form (TFNS or BVG), the 
prescribed parameter sets for Low, Nominal, and High heating give consecutively hotter 
fires, or at least consecutively greater heating of the calorimeter as indicated at TC5 and 
the other seven TC locations (see [3]).  This ordering is retained at all TC locations under 
all possible realizations of the graphical and emissivity uncertainties.  
 



These results support the proposition that, for the model validation purposes here (and for 
extrapolative predictions in general) it is not necessary to expend simulations at the 
BVG-Low and TFNS-High and Medium parameter sets. These parameter sets (#5, 2, and 
1 respectively) routinely yield results that lie between the heating extremes of parameter 
sets #3 (TFNS-Low) and #4 (BVG-High). 
 
Thus, the effects of the six dominant sources of intrinsic modeling uncertainty in the fire 
dynamics model (Table 1) can be effectively bounded by running FUEGO simulations at 
just the two “extreme” parameter sets #3 and #4. Of course, other simulations have to be 
run to assess the effects of other sources of uncertainty (like uncertain emissivity, 
numerical discretization, etc.) in a given prediction. 
 
We now turn to the model validation objective of our analysis. Ultimately the aggregate 
experimental uncertainty in Figure 8 will be compared against an aggregate simulation 
uncertainty that is appropriate to a validation assessment. The criterion for the model to 
be affirmed is that the model predictions, with uncertainties properly accounted for, yield 
an uncertainty band that encompasses the aggregate experimental uncertainty.  
 
Otherwise, the processed experimental uncertainty, as presumably the best empirical 
evidence of where “reality” lies and where the next experimental result(s) would occur, 
lies outside the range predicted by the modeling. Thus, the predictions would fall short of 
spanning and capturing the empirical evidence—whether through improper model form 
or via misrepresented parameter uncertainties, or both. In any case, it could not be 
asserted that the model was fully ‘valid’. Again, this is the criterion of the present 
validation framework, but other validation criteria and frameworks are actively being 
discussed in the literature. No over-riding consensus has emerged yet, but the current 
framework arguably directly supports a goal of Best Estimate + Uncertainty extrapolative 
prediction. See [10] for further discussion.  
 
In the present framework, the preliminary aggregate prediction uncertainty in Fig. 8—
before accounting for graphical uncertainties—ranges from the low end of the lowest 
uncertainty bar (given by TFNS-Low Sim. 3), to the high end of the highest uncertainty 
bar (from BVG-High Sim. 4). That is, the emissivity uncertainty and the six uncertainties 
in Table 1 have possible combinations or realizations over their joint uncertainty space 
(where these seven factors are justifiably assumed to be independent of each other) that 
can yield model predictions which vary from the low end to the high end of the said 
uncertainty range. This preliminary range of prediction uncertainty is impacted by the 
graphical uncertainties as explained next. 
 
The graphical processing uncertainty for the BVG-High Sim. 4 results is given by the 
min and max bounds in Table 5. The graphical uncertainty allows that Sim. 4’s 
uncertainty bar in Fig. 8 can really lie anywhere within an upward or downward shift 
where its midpoint (filled dot) remains between the upper and lower unfilled diamonds to 
the side of the uncertainty bar. Analogous freedoms are allowed for the Sim. 3 
uncertainty bar to be shifted between the upper and lower diamonds at its side. Recall that 



the graphical uncertainties are not correlated with each other, so the allowable shifting of 
Sim. 4’s uncertainty bar is independent of Sim. 3’s.  
 
At the upper end of the simulated temperature range, treatment of the graphical 
uncertainty for Sim. 4 impacts the validation determination relative to the high end (1520 
K) of the experimental temperature uncertainty range shown in Fig. 8. Analogous 
considerations hold for the graphical uncertainty for Sim. 3 and the validation 
determination at the low end (1286 K) of the experimental uncertainty range. Within the 
graphical uncertainty, the Sim. 4 uncertainty bar could be translated upward, and the Sim. 
3 results could be translated downward, such that validation margins are greater at both 
the upper and lower ends. The opposite extreme possible combination is a downward 
shift in Sim. 4 results and an upward shift in Sim. 3 results, such that validation margins 
decrease at both the upper and lower ends.  
 
A treatment which increases validation margins here, or which tends to create a closer 
comparison when positive margins like those in Fig. 8 do not exist, is said to be non-
conservative.12 This type of treatment could enable the validation criterion to be (falsely) 
met or approached closer, while the actual value of the factor (for no graphical processing 
error) might correspond to a more biased model than the validation assessment leads one 
to believe. Hence, this is one possible way to commit Type X model validation error. 
Type X error can arise from many other sources, such as model discretization 
uncertainties, systematic uncertainties of non-traveling experimental inputs (here, 
emissivity as already discussed), and other sources catalogued in [12].  
 
To guard against the potential for Type X error that the graphical uncertainties pose, the 
framework takes a conservative approach of attempting to eliminate the risk entirely. To 
do this, the most extreme possible combination is invoked of shifting the Sim. 4 
uncertainty bar downward the full allowable amount until its midpoint (filled dot) is 
beside the lower diamond at its side, and shifting the Sim. 3 uncertainty bar upward the 
full amount until its midpoint is beside the upper diamond at its side. This maximally 
decreases the validation margins at both the upper and lower ends of the data range. 
Hence, this likely causes a Type Y model validation error of the framework exaggerating 
the perceived extent of potential model bias. Unfortunately, eliminating the risk of Type 
X validation error comes with a tradeoff of committing a Type Y error. An alternative is 

                                                 
12 Accounting for simulation uncertainty of the intrinsic modeling factors of Table 1 and for the emissivity 
uncertainty have the effect of expanding the prediction uncertainty as well. Yet, this expansion is not 
considered to be non-conservative in the validation formulation. As [12] explains, from a model validation 
perspective (in the context of extrapolative predictions and hierarchical modeling) these factors are 
different in nature from the graphical uncertainty, so are handled differently. The intrinsic modeling factors 
of Table 1 proceed to any new predictions with the (validated) model, so their uncertainty is transported 
inherently to new prediction results. This is not the case with the graphical uncertainties being discussed 
here. New graphical uncertainties/magnitudes will be present in new simulation results. For example, if the 
new simulations are terminated after arriving at a smooth, flat asymptotic steady-state, no graphical 
uncertainty will be present at all. In terms of the emissivity uncertainty, like the uncertainties in Table 1 this 
is an uncertain input to the model, not a (graphical) uncertainty from processing of the outputs of the 
model. Furthermore, the emissivity uncertainty is propagated into both the simulation and experimental 
results. This is not the case with the graphical uncertainties discussed here. They are relevant to only the 
simulation results. 



to just simply ignore the graphical processing uncertainties.  However, this incurs a 
substantial risk of Type X error in the validation conclusions.  
 
Hence, the “validation conservative” lower temperature limit of prediction uncertainty is 
obtained as follows. The Sim. 3 uncertainty bar in Fig. 8 is centered on the upper 
diamond to its right, which has a temperature of 1285 K (= ‘max’ value for Sim. 3 in 
Table 5). The temperature at the bottom of this uncertainty bar is therefore 1285 K – 33K 
= 1252K. This temperature is marked by the lower horizontal dashed line in the figure.  
 
The validation-conservative upper temperature limit is obtained by a mirrored procedure. 
The Sim. 4 nominal 1545K result is shifted downward to the lower diamond at its right, 
at 1532K (= ‘min’ value for Sim. 4 in Table 5). The temperature at the top of this 
uncertainty bar is therefore 1532K + 33K = 1565K. This temperature is marked by the 
upper horizontal dashed line in the figure. Accordingly, the final aggregate range of 
prediction uncertainty is 1252K to 1565K.  
   

6.  Analysis and Discussion of Validation Comparisons 
          

Analogous quantities and results to those plotted in Figures 6 - 8 for TC5 can be found in 
[3] for all eight TCs. Speaking to the TC5 results here, there is considerable margin for 
error in the uncertainty estimates and processing of experimental and simulation results 
before the model affirmation would be overturned. The upper and lower simulation 
bounds in Figure 8 are seen to fairly spaciously encompass the range of the aggregate 
experimental uncertainty within which steady-state experimental temperatures are 
provisionally expected to lie. Errors would have to “conspire” (i.e., coordinate in enough 
antagonistic directions and magnitudes) to overcome the existing margin for error of 45K 
(= 1565K – 1520K) at the top. At the bottom, a margin of 34K (= 1286K – 1252K) exists 
against errors that might conspire. The existence of errors is a given. However, it is much 
less likely that they would be sufficiently large and sufficiently conspiring that the net 
result would exceed the indicated margins for error. 
 
At the other seven TC locations the margins for error are even greater at 13 of the 14 
upper and lower ends. In no case does the range of experimental uncertainty extend 
outside the prediction uncertainty. Therefore, a provisional but foreseeably robust 
conclusion of model affirmation is arrived at based on validation analysis and 
comparisons at the eight diversely spaced TCs on the calorimeter.  
 
The word ‘provisional’ here signifies that large error may exist in our quantification of 
experiment-to-experiment variability. Nominal mean and standard-deviation results based 
on only two experimental repeats were used. The uncertainty on these small-sample 
statistics, and also in the assumption itself of normally distributed variability, could result 
in errors in an antagonistic direction and large enough to overturn the nominal 
affirmations at most TC locations. However, note that antagonistic error from this source 
could be partially offset or even completely overwhelmed by the substantial 
conservatisms introduced at several points in our experimental and simulation results 
processing. Moreover, the small-sample errors could go the other way, to more strongly 
affirm the validation conclusions at any and all TC locations. In any case, uncertainty due 



to experiment-to-experiment variability is at least nominally accounted for in our 
validation analysis, results, and conclusions.   
 
Finally, a mitigating factor is pointed out concerning contact resistance between the 
bottom of the steel cone and the thermally massive steel floor it was bolted to. It was not 
practical in this project to model the contact resistance at this interface, so an adiabatic 
boundary condition was applied at the bottom of the cone. This modeling error could be 
substantial, depending on the particular location considered on the calorimeter. The error 
causes higher temperatures to be predicted in the calorimeter than would occur if heat 
transfer from the cone to the steel floor was modeled. It turns out that the experimental 
uncertainty bars at all TC locations are skewed toward the lower ranges of the prediction 
bars. That is, modeling the contact conductance at the interface would shift the predicted 
temperatures downward, especially for the bottom four TCs 1 – 4. This would move 
things in the “right” direction toward better central agreement between the experimental 
and predicted temperatures. Since the corrections would be expected to be only 10’s of 
degrees (not hundreds), there is sufficient margin at the top of the simulation uncertainty 
bars to absorb such corrections and still encompass the experimental data at the upper 
end.   
 
In fact, the lowest upper margin for such a correction is 45K at TC5. All other TCs have a 
significantly larger upper margin. Also note that TC5 is from the upper set of TCs (level 
10 in Fig. 2), where the effect of the correction would be expected to be fairly small. 
Indeed, the margin for correction at TC5 and the other TCs in the top row is considered to 
be far more than adequate. Among the lower set of TCs, the smallest available margin at 
the upper end for correction is 168K at TC1. This seems to be well in excess of what a 
correction would reasonably be expected to yield.  
 
All in all, correcting for what is thought to be by far the largest unaccounted-for source of 
physics modeling error in the validation comparisons would be expected to move things 
in a direction that strengthens the validation conclusions, but not by a magnitude so large 
that it goes too far in this direction and overturns the affirmation at the upper end. 
 
Finally, the issue of calculation verification is considered. As previously explained, 
project constraints required the use of “medium” spatial discretization cell sizes and a 
“medium” number of discrete-ordinate directions for resolving the participating-media 
radiation transport. The solver error-tolerance parameters that control numerical 
resolution in the steady-state FUEGO computations were also set at “medium” levels. 
(See [3] for details of discretization and solver resolution levels.) The medium levels used 
for spatial discretization, radiation transport, and solver computations are representative 
of what are routinely used for production calculation work by Sandia fire analysts. This is 
a pragmatic choice to achieve reasonable calculation run times (a few weeks on a 
thousand processors or less), but is also heuristically supported by comparisons against 
considerably finer resolution levels also tried on other projects (see e.g. [13]).  
 
In any case, if any discretization-related errors happen to be in the “wrong” (antagonistic) 
direction that would work against validation margins, the allowable margins for error are 



10’s of degrees K as already established. This is significant room for error, but 
experience indicates that discretization effects could be this larger or larger. If a 
quantification of discretization-error uncertainty was available from resolution-
refinement studies (e.g. by the methods presented in [14]), then in the validation analysis 
these would be handled like the simulation graphical processing uncertainties were. 
Finally, it is noted that substantial code verification efforts for FUEGO have been 
undertaken ([24]), which counts toward the veracity of the validation conclusions here.  

7.  Conclusions  
 
In view of the arguments just made and the many conservatisms in the validation 
processing, it is reasonable to state that based on the validation results at the eight 
diversely representative TC locations on the calorimeter, FUEGO modeling for wind-
driven fire conditions is nominally affirmed to capture the experimental results here 
(steady-state temperature) according to the pragmatic validation criterion and 
methodology applied.  
 
Furthermore, there is considerable room for errors in the uncertainty estimates and 
processing of experimental and simulation results before this validation conclusion would 
be overturned. Moreover, the errors would have to be sufficiently large in magnitude and 
sufficiently conspiring (combining in antagonistic directions and/or sufficiently avoiding 
cancelation) to exceed the indicated substantial margins for error. The probability of 
these joint events occurring may be very low, and cannot reasonably be expected to be 
high—but could occur. In particular, the greatest concerns are: 1) the error associated 
with using the small-sample (two sample) standard deviation as representative of the 
standard deviation from a large number of repeat fire tests; and 2) error in the calculated 
steady-state results due to under-resolution in the discretized model and computation.  
 
Nevertheless, on balance the analysis supports the validation conclusion provisionally 
arrived at in the present experimental/physical setting. This is a significant result for 
FUEGO and for Sandia’s fire modeling program. The current work also represents a 
significant advancement in model validation methodology. The versatile model validation 
analysis framework demonstrated here handles difficulties associated with representing 
and aggregating aleatory and epistemic uncertainty from multiple correlated and 
uncorrelated source types. 
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