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ABSTRACT: Finite element simulation of fracture requires a cohesive zone law that
defines traction-separation relation. Our recent work has enabled molecular dynamics
simulations to be used to derive a general cohesive zone law for the fracture between two
brittle materials under any mix-mode loading conditions. Here we apply our method to
explore the effects of elastic constants of the two materials on the cohesive properties. A
comparison and discussion of our results will be provided.

1. INTRODUCTION

Modern approaches to the modeling and simulation of fracture are typically based upon a
cohesive zone law that defines the relation between traction and crack opening
displacement [1]. Because experimental measurement of traction and crack opening at the
crack tip is difficult, specific cohesive zone laws are often assumed rather than predicted.
Recent advances in atomistic simulation methods have stimulated interests to derive the
cohesive zone law from physics-based models [2,3]. We recently developed a molecular
dynamics (MD) model of fracture between two brittle materials under any combinations
of far field tensile (mode I) and shear (mode II) strains, and derived directly analytical
functions relating local traction, local displacement, and local loading mode mixity [4].
This new approach has also been used to show some noticeable changes of the work of
separation due to the change of elastic constant mismatch between the two materials
especially at the near-shear loading condition [5]. However, it is not clear if this was
caused by elastic constant mismatch alone or combination of elastic constant mismatch
and the magnitude of the elastic constants. Here we perform additional simulations to
elucidate this question.

2. METHODS

Our MD model is based on pairwise interatomic potentials for body-centered-cubic (bcc)
materials. For an A-B binary system containing an A/B interface, three pair potential
functions are needed respectively for A-A, B-B, and A-B interactions. Previous work [5]
has developed five pair potential functions ¢4(r), du(1), ..., dc(r) that have the same lattice
constant and cohesive energy but different elastic constants. Here we assemble from
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these five pair functions four sets of potentials P1, P2, P3, and P4 for the binary A-B
system. The correspondence of the A-A, B-B, and A-B interactions to the ¢, - ¢.
functions are shown in Table 1 for potentials P1 — P4. The corresponding lattice constant,
cohesive energy, elastic properties, and work of adhesion [5] are also shown. Note that
potentials P1 and P2 have been used in the previous work [5] whereas potentials P3 and
P4 are new additions.

Table 1: Lattice constant a (A ), cohesive energy E. (eV/atom), elastic constants
Ci1, C12, and Cyy (eV/A3), Young’s and shear moduli E and G (GPa), Poisson’s ratio
v, and work of adhesion woa (J/m?), predicted by potentials P1 — P4

pair | function a E. Cii | Cia | Cyg E G v woa
A-A da 3.162 | -4.45 | 3.25 | 1.15 | 1.15 | 444 | 177 | 0.25 | 5.968
Pl | B-B da 3.162 | -4.45 | 3.25 | 1.15 | 1.15 | 444 | 177 | 0.25 | 5.968
A-B da 3.162 | -1.78 | 1.26 | 0.48 | 0.48 | 177 | 71 | 0.25 | 2.336
A-A oy 3.162 | -4.45 | 3.41 | 1.21 | 1.21 | 466 | 186 | 0.25 | 5.968
P2 | B-B e 3.162 | -4.45 | 1.64 | 0.57 | 0.57 | 222 | 89 | 0.25 | 6.032
A-B de 3.162 | -1.78 | 0.46 | 0.33 | 0.33 | 72 | 28 | 0.30 | 2.400
A-A da 3.162 | -4.45 | 3.25 | 1.15 | 1.15 | 444 | 177 | 0.25 | 5.968
P3| B-B da 3.162 | -4.45 | 3.25 | 1.15 | 1.15 | 444 | 177 | 0.25 | 5.968
A-B de 3.162 | -1.78 | 0.46 | 0.33 | 0.33 | 72 | 28 | 0.30 | 2.400
A-A e 3.162 | -4.45 | 1.64 | 0.57 | 0.57 | 222 | 89 | 0.25 | 6.032
P4 | B-B e 3.162 | -4.45 | 1.64 | 0.57 | 0.57 | 222 | 89 | 0.25 | 6.032
A-B de 3.162 | -1.78 | 0.46 | 0.33 | 0.33 | 72 | 28 | 0.30 | 2.400

The geometry of the system used in our MD simulations of crack propagation is shown in
Fig. 1. The crystal contains 253 unit cells in the x- [100] direction, 206 unit cells in the y-
[010] direction, and 10 unit cells in z- [001] direction, for a total of 1,042,360 atoms.
Periodic boundary conditions were used in both x- and z- directions, and non-periodic
boundary conditions were applied in the y- direction. As shown in Fig. 1, the top half of
the crystal is composed of atoms A that fall into regions marked as 1 and 3, and the
bottom half of the crystal is composed of atoms B that fall into regions marked as 2 and
4. Atoms that are marked black color are boundary atoms through which tensile and shear
loads were applied.

A crack in the middle of the A/B interface was created by turning off the interactions
between regions 1 and 2. To prevent the crack from being healed during shear
deformation, we initiate atom neighbors at the start of the simulations and do not
redetermine neighbors. During simulations of mode I crack propagation, the system is
uniformly stretched (by moving each atom a distance corresponding to a uniform normal
strain increment) in the y- direction each time step. During simulations of mode II crack
propagation, the upper and lower halves of the vertical layer of boundary atoms (marked
black in Fig. 1) are displaced by a small distance in opposite directions along the x axis
each time step. Numerical approaches are then used to update the atom positions based
upon interatomic potential and Newton’s equations of motion under the condition that the
y coordinates of the top and bottom horizontal layers of boundary atoms and the x



coordinates of the vertical layer of boundary atoms remain fixed. All simulations were
carried out at a constant temperature of 300 K, fixed system dimensions in the x- and z-
directions, and constant strain rate.
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Fig. 1. Geometry of molecular dynamics simulation.

3. RESULTS

3.1. Stress — strain curves and crack propagation dynamics

MD simulations of mode I (tensile) and mode II (shear) crack propagation were carried
out for all four sets of potentials at constant boundary displacement rates AX and AY in
the x- and y- direction (see Fig. 1). The tensile and shear strain rates were defined by
£, = 2AY /Ly and & = 2AX / L, respectively, where Ly is the sample dimension in the
y- direction. The strain rates were chosen for each case so that the crack started to
propagate at the late stage of the simulations. The strain rates used for different runs are
shown in Table 2.

TABLE 2: Shear Ve and normal £, strain rates (unit 10*/s) for different runs.

. / .
Loading Vo' &
Potential P1 | Potential P2 | Potential P3 | Potential P4
Mode I 0.0/1.1 0.0/1.3 0.0/1.1 0.0/1.6
Mode 11 2.0/0.0 1.9/0.0 1. 8/0.0 2.1/0.0




Virial theorem [6] were used to estimate global normal (cy,) and shear (oyy) stresses
applied to the system. To reduce thermal oscillation, values of stress and strain are
averaged over 10 time steps (each time step is 0.001 ps). Results of normal stress vs.
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Fig. 2. Stress and crack length as a function of strain.

normal strain curves obtained from the mode I simulations are shown in Fig. 2(a), and
results of shear stress vs. shear strain curves obtained from the mode II simulations are
shown in Fig. 2(b).

Fig. 2(a) indicates that during the tensile test, the normal stress initially linearly increases,
corresponding to an elastic deformation of the system. The overall tensile elastic modulus
seen from Fig. 2(a) is about 390 GPa for potentials P1 and P3, 270 GPa for potential P2,
and 200 GPa for potential P4. For two equal-sized materials A and B, the overall elastic
modulus can be calculated as M = 2M Mg / (Ma + M5), where M can be tensile (e.g.,
Ci1, E etc.) or shear (e.g., Cas, G) modulus and the subscripts A and B refer to material.
The overall elastic modulus estimated from C;; in Table 1 is about 520 GPa for potentials
P1 and P3, 354 GPa for potential P2, and 262 GPa for potential P4. Note that the data
listed in Table I are obtained at a temperature of 0 K whereas the values estimated from
Fig. 2(a) are at 300 K at the presence of a crack. Nonetheless, the values estimated from
Fig. 2(a) are consistent with those in Table 1. In particular, the values estimated from Fig.
2(a) are seen to be about 75% of the values derived from Table 1 for all the potentials.

After the normal stress reaches the maximum, it starts to decrease towards zero as the
strain further increases, signifying a possible fracture. It can be seen that the maximum
stress is about Gmax = 4.7 GPa for potentials P1 and P3, 4.0 GPa for potential P2, and 3.4
GPa for potential P4. The critical strain at which the maximum stress occurs is about g =
0.0124 for potentials P1 and P3, 0.0157 for potential P2, and 0.0180 for potential P4. The
stored elastic energy prior to the apparent fracture, defined as Ef = Omax'€/2, was
calculated to be 0.030 GJ/m’ for potentials P1 and P3, 0.033 GJ/m’ for potential P2, and
0.031 GJ/m’ for potential P4. Clearly, the system with a high elastic modulus is fractured
at a high stress and a low strain. Because the effects of stress and strain cancel, the stored
energies are about the same for all systems. The similar behavior obtained from potentials
P1 and P3 also showed that the effect of the cross elastic modulus between materials A
and B is minor.



Similar trend can be found in Figs. 2(b) for the shear test. The overall shear modulus
estimated from the initial elastic deformation is estimated to be about 123 GPa for
potentials P1 and P3, 86 GPa for P2, and 76 GPa for potential P4. It should be noted our
shear loading is applied through the displacement of the vertical layer of boundary atoms
as shown in Fig. 1. Such an approach can cause stress concentration at the crack tip, and
is necessary in order to isolate out the crack phenomenon from slip phenomenon [4].
While the way in which the stress is introduced does not affect the local traction vs. crack
opening displacement relation, the calculated global shear strain differs from the
conventional definition. Consequently, the estimated shear modulus cannot be directly
compared with the C44 values listed in Table 1. However, the results are consistent as
both Fig. 2(b) and Table 1 show a decreasing order for the shear modulus from potentials
P1/P3, P2 to P4. The maximum fracture shear stress is seen to be about T, = 2.1 GPa for
potentials P1 and P3, 1.5 GPa for potential P2, and 1.2 GPa for potential P4, again
showing a reduction of fracture stress due to a reduction of elastic modulus. We did not
compare the critical strain and store energy due to our special definition of the strain.

To examine correlation between the observed stress vs. strain curves and fracture, crack
length as a function of strain were calculated using the previous approach [5] and the
results are included in Fig. 2 for both tensile and shear tests. It can be seen that crack did
not propagate during the linear elastic deformation stage. When the stress reached the
maximum value, the crack propagation is also seen to begin. A long steady-state crack
propagation period can be found for the tensile case. Approximate steady-state (i.e.,
linear) crack propagation can be found for the shear case.

3.2. Local traction and crack opening displacement

Following the previous approach [5], a large number of local traction vs. crack opening
data points (measured at different locations and times) were obtained during the steady-
state crack propagation of each MD run. These data points were averaged using an
opening displacement bin size of 0.2 A. The average tensile traction vs. crack normal
opening displacement data obtained from the tensile tests, and the average shear traction
vs. crack shear opening displacement data obtained from the shear tests, are shown
respectively in Figs. 3(a) and 3(b) for all potentials. Fig. 3 generally agrees well with the
previous results [4,5], especially it also shows the double peak for the shear case. Unlike
the previous work [5], Fig. 3 allows us to examine the effects of both elastic constant (but
M4 = Mp) and elastic constant mismatch (M, # Mg). Here we focus on the shear case
where the elastic constants are seen to have a more significant effect. Comparison
between the results from potentials P1 and P3 indicates that for systems where the elastic
constants of A and B remain unchanged, a reduction of the cross elastic modulus between
A and B causes a slight reduction of the local traction vs. local opening curves, although
this causes a negligible effect on the global elastic behavior due to the minor interfacial
volume fraction (see Fig. 2). Comparison between results from potentials P3 and P4
indicates that even there is no elastic constant mismatch, a reduction of the local traction
vs. local opening curves occurs by a reduction of elastic modulus of the material. On the
other hand, comparison between results from potentials P1 and P2 does show that elastic
constant mismatch may reduce the local traction vs. local opening curves.
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Fig. 3. Traction as a function of displacement obtained from MD simulations.
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Fracture toughness can be measured by the work of separation defined as follows:
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By integrating Eq. (1), the work of separation was calculated and the results are shown in
Table 3. It can be seen that for the systems simulated, the mode II fracture generally has a
higher toughness than the mode I fracture. Consistent with the elastic constant effects
observed from Fig. 3(b), the work of separation decreases from potential P1, P3, P2, to
P4. The same trend can now be numerically seen for the tensile case, albeit less
significantly.

TABLE 3: Work of separation (J/m®) for different runs.

Loading | Potential P1 | Potential P2 | Potential P3 | Potential P4
Mode I 3.02 2.87 2.92 2.86
Mode II 4.81 3.86 4.13 3.31

4. CONCLUSIONS

Systematic molecular dynamics simulations have been carried out to study the effects of
elastic constants on the cohesive behavior between two brittle materials A and B. The
main conclusions from this study are: (a) materials with a high elastic modulus are
fractured at a high stress but a low strain and the stored elastic energy prior to the fracture
is about the same; (b) elastic constants have a noticeable effect on the local traction vs.
crack opening relation especially for the shear case: the curves may be reduced by either
a reduction of the cross elastic constant between A and B (which has a minor effect on
the global elastic properties), a reduction of the elastic constants of A and B, and an
increase in the elastic constant mismatch between A and B; and (c) for the systems
simulated, the mode II fracture has a high work of separation than the mode I fracture.
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