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ABSTRACT: Finite element simulation of fracture requires a cohesive zone law that 
defines traction-separation relation. Our recent work has enabled molecular dynamics 
simulations to be used to derive a general cohesive zone law for the fracture between two 
brittle materials under any mix-mode loading conditions. Here we apply our method to 
explore the effects of elastic constants of the two materials on the cohesive properties. A 
comparison and discussion of our results will be provided.

1. INTRODUCTION

Modern approaches to the modeling and simulation of fracture are typically based upon a 
cohesive zone law that defines the relation between traction and crack opening 
displacement [1]. Because experimental measurement of traction and crack opening at the 
crack tip is difficult, specific cohesive zone laws are often assumed rather than predicted. 
Recent advances in atomistic simulation methods have stimulated interests to derive the 
cohesive zone law from physics-based models [2,3]. We recently developed a molecular 
dynamics (MD) model of fracture between two brittle materials under any combinations 
of far field tensile (mode I) and shear (mode II) strains, and derived directly analytical 
functions relating local traction, local displacement, and local loading mode mixity [4]. 
This new approach has also been used to show some noticeable changes of the work of 
separation due to the change of elastic constant mismatch between the two materials 
especially at the near-shear loading condition [5]. However, it is not clear if this was 
caused by elastic constant mismatch alone or combination of elastic constant mismatch 
and the magnitude of the elastic constants. Here we perform additional simulations to 
elucidate this question.

2. METHODS

Our MD model is based on pairwise interatomic potentials for body-centered-cubic (bcc) 
materials. For an A-B binary system containing an A/B interface, three pair potential 
functions are needed respectively for A-A, B-B, and A-B interactions. Previous work [5] 
has developed five pair potential functions a(r), b(r), …, e(r) that have the same lattice 
constant and cohesive energy but different elastic constants. Here we assemble from 
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these five pair functions four sets of potentials P1, P2, P3, and P4 for the binary A-B 
system. The correspondence of the A-A, B-B, and A-B interactions to the a - e

functions are shown in Table 1 for potentials P1 – P4. The corresponding lattice constant, 
cohesive energy, elastic properties, and work of adhesion [5] are also shown. Note that 
potentials P1 and P2 have been used in the previous work [5] whereas potentials P3 and 
P4 are new additions.

Table 1: Lattice constant a (Å ), cohesive energy Ec (eV/atom), elastic constants 
C11, C12, and C44 (eV/Å3), Young’s and shear moduli E and G (GPa), Poisson’s ratio 
, and work of adhesion woa (J/m2), predicted by potentials P1 – P4

pair function a Ec C11 C12 C44 E G  woa

P1
A-A a 3.162 -4.45 3.25 1.15 1.15 444 177 0.25 5.968

B-B a 3.162 -4.45 3.25 1.15 1.15 444 177 0.25 5.968

A-B d 3.162 -1.78 1.26 0.48 0.48 177 71 0.25 2.336

P2
A-A b 3.162 -4.45 3.41 1.21 1.21 466 186 0.25 5.968

B-B c 3.162 -4.45 1.64 0.57 0.57 222 89 0.25 6.032

A-B e 3.162 -1.78 0.46 0.33 0.33 72 28 0.30 2.400

P3
A-A a 3.162 -4.45 3.25 1.15 1.15 444 177 0.25 5.968

B-B a 3.162 -4.45 3.25 1.15 1.15 444 177 0.25 5.968

A-B e 3.162 -1.78 0.46 0.33 0.33 72 28 0.30 2.400

P4
A-A c 3.162 -4.45 1.64 0.57 0.57 222 89 0.25 6.032

B-B c 3.162 -4.45 1.64 0.57 0.57 222 89 0.25 6.032

A-B e 3.162 -1.78 0.46 0.33 0.33 72 28 0.30 2.400

The geometry of the system used in our MD simulations of crack propagation is shown in 
Fig. 1. The crystal contains 253 unit cells in the x- [100] direction, 206 unit cells in the y-
[010] direction, and 10 unit cells in z- [001] direction, for a total of 1,042,360 atoms. 
Periodic boundary conditions were used in both x- and z- directions, and non-periodic 
boundary conditions were applied in the y- direction. As shown in Fig. 1, the top half of 
the crystal is composed of atoms A that fall into regions marked as 1 and 3, and the 
bottom half of the crystal is composed of atoms B that fall into regions marked as 2 and 
4. Atoms that are marked black color are boundary atoms through which tensile and shear 
loads were applied. 

A crack in the middle of the A/B interface was created by turning off the interactions 
between regions 1 and 2. To prevent the crack from being healed during shear 
deformation, we initiate atom neighbors at the start of the simulations and do not 
redetermine neighbors. During simulations of mode I crack propagation, the system is 
uniformly stretched (by moving each atom a distance corresponding to a uniform normal 
strain increment) in the y- direction each time step. During simulations of mode II crack 
propagation, the upper and lower halves of the vertical layer of boundary atoms (marked 
black in Fig. 1) are displaced by a small distance in opposite directions along the x axis 
each time step. Numerical approaches are then used to update the atom positions based 
upon interatomic potential and Newton’s equations of motion under the condition that the 
y coordinates of the top and bottom horizontal layers of boundary atoms and the x 
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coordinates of the vertical layer of boundary atoms remain fixed. All simulations were 
carried out at a constant temperature of 300 K, fixed system dimensions in the x- and z-
directions, and constant strain rate.

3. RESULTS

3.1. Stress – strain curves and crack propagation dynamics

MD simulations of mode I (tensile) and mode II (shear) crack propagation were carried 

out for all four sets of potentials at constant boundary displacement rates X and Y in 
the x- and y- direction (see Fig. 1). The tensile and shear strain rates were defined by 

yyy LY  2 and yxy LX  2 respectively, where Ly is the sample dimension in the 

y- direction. The strain rates were chosen for each case so that the crack started to 
propagate at the late stage of the simulations. The strain rates used for different runs are 
shown in Table 2.

TABLE 2: Shear
xy and normal 

yy strain rates (unit 108/s) for different runs.

Loading xy /
yy 

Potential P1 Potential P2 Potential P3 Potential P4
Mode I 0.0/1.1 0.0/1.3 0.0/1.1 0.0/1.6
Mode II 2.0/0.0 1.9/0.0 1. 8/0.0 2.1/0.0

Fig. 1. Geometry of molecular dynamics simulation.
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Virial theorem [6] were used to estimate global normal (yy) and shear (xy) stresses
applied to the system. To reduce thermal oscillation, values of stress and strain are 
averaged over 10 time steps (each time step is 0.001 ps). Results of normal stress vs. 

normal strain curves obtained from the mode I simulations are shown in Fig. 2(a), and 
results of shear stress vs. shear strain curves obtained from the mode II simulations are
shown in Fig. 2(b).

Fig. 2(a) indicates that during the tensile test, the normal stress initially linearly increases, 
corresponding to an elastic deformation of the system. The overall tensile elastic modulus 
seen from Fig. 2(a) is about 390 GPa for potentials P1 and P3, 270 GPa for potential P2, 
and 200 GPa for potential P4. For two equal-sized materials A and B, the overall elastic
modulus can be calculated as M = 2MAMB / (MA + MB), where M can be tensile (e.g., 
C11, E etc.) or shear (e.g., C44, G) modulus and the subscripts A and B refer to material. 
The overall elastic modulus estimated from C11 in Table 1 is about 520 GPa for potentials
P1 and P3, 354 GPa for potential P2, and 262 GPa for potential P4. Note that the data 
listed in Table I are obtained at a temperature of 0 K whereas the values estimated from 
Fig. 2(a) are at 300 K at the presence of a crack. Nonetheless, the values estimated from 
Fig. 2(a) are consistent with those in Table 1. In particular, the values estimated from Fig. 
2(a) are seen to be about 75% of the values derived from Table 1 for all the potentials.

After the normal stress reaches the maximum, it starts to decrease towards zero as the 
strain further increases, signifying a possible fracture. It can be seen that the maximum 
stress is about max  4.7 GPa for potentials P1 and P3, 4.0 GPa for potential P2, and 3.4 
GPa for potential P4. The critical strain at which the maximum stress occurs is about c 
0.0124 for potentials P1 and P3, 0.0157 for potential P2, and 0.0180 for potential P4. The
stored elastic energy prior to the apparent fracture, defined as Ef = max·c/2, was 
calculated to be 0.030 GJ/m3 for potentials P1 and P3, 0.033 GJ/m3 for potential P2, and 
0.031 GJ/m3 for potential P4. Clearly, the system with a high elastic modulus is fractured 
at a high stress and a low strain. Because the effects of stress and strain cancel, the stored 
energies are about the same for all systems. The similar behavior obtained from potentials 
P1 and P3 also showed that the effect of the cross elastic modulus between materials A 
and B is minor.

Fig. 2. Stress and crack length as a function of strain.
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Similar trend can be found in Figs. 2(b) for the shear test. The overall shear modulus 
estimated from the initial elastic deformation is estimated to be about 123 GPa for 
potentials P1 and P3, 86 GPa for P2, and 76 GPa for potential P4. It should be noted our 
shear loading is applied through the displacement of the vertical layer of boundary atoms 
as shown in Fig. 1. Such an approach can cause stress concentration at the crack tip, and 
is necessary in order to isolate out the crack phenomenon from slip phenomenon [4].
While the way in which the stress is introduced does not affect the local traction vs. crack 
opening displacement relation, the calculated global shear strain differs from the 
conventional definition. Consequently, the estimated shear modulus cannot be directly 
compared with the C44 values listed in Table 1. However, the results are consistent as 
both Fig. 2(b) and Table 1 show a decreasing order for the shear modulus from potentials 
P1/P3, P2 to P4. The maximum fracture shear stress is seen to be about max  2.1 GPa for 
potentials P1 and P3, 1.5 GPa for potential P2, and 1.2 GPa for potential P4, again 
showing a reduction of fracture stress due to a reduction of elastic modulus. We did not 
compare the critical strain and store energy due to our special definition of the strain.

To examine correlation between the observed stress vs. strain curves and fracture, crack 
length as a function of strain were calculated using the previous approach [5] and the 
results are included in Fig. 2 for both tensile and shear tests. It can be seen that crack did
not propagate during the linear elastic deformation stage. When the stress reached the 
maximum value, the crack propagation is also seen to begin. A long steady-state crack 
propagation period can be found for the tensile case. Approximate steady-state (i.e., 
linear) crack propagation can be found for the shear case. 

3.2. Local traction and crack opening displacement

Following the previous approach [5], a large number of local traction vs. crack opening 
data points (measured at different locations and times) were obtained during the steady-
state crack propagation of each MD run. These data points were averaged using an 
opening displacement bin size of 0.2 Å. The average tensile traction vs. crack normal 
opening displacement data obtained from the tensile tests, and the average shear traction 
vs. crack shear opening displacement data obtained from the shear tests, are shown 
respectively in Figs. 3(a) and 3(b) for all potentials. Fig. 3 generally agrees well with the 
previous results [4,5], especially it also shows the double peak for the shear case. Unlike 
the previous work [5], Fig. 3 allows us to examine the effects of both elastic constant (but 
MA = MB) and elastic constant mismatch (MA  MB).  Here we focus on the shear case 
where the elastic constants are seen to have a more significant effect. Comparison
between the results from potentials P1 and P3 indicates that for systems where the elastic 
constants of A and B remain unchanged, a reduction of the cross elastic modulus between 
A and B causes a slight reduction of the local traction vs. local opening curves, although 
this causes a negligible effect on the global elastic behavior due to the minor interfacial 
volume fraction (see Fig. 2). Comparison between results from potentials P3 and P4 
indicates that even there is no elastic constant mismatch, a reduction of the local traction 
vs. local opening curves occurs by a reduction of elastic modulus of the material. On the 
other hand, comparison between results from potentials P1 and P2 does show that elastic 
constant mismatch may reduce the local traction vs. local opening curves.
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Fracture toughness can be measured by the work of separation defined as follows:

     xdydww xyyy  


00

 (1)

By integrating Eq. (1), the work of separation was calculated and the results are shown in 
Table 3. It can be seen that for the systems simulated, the mode II fracture generally has a 
higher toughness than the mode I fracture. Consistent with the elastic constant effects 
observed from Fig. 3(b), the work of separation decreases from potential P1, P3, P2, to 
P4. The same trend can now be numerically seen for the tensile case, albeit less 
significantly. 

TABLE 3: Work of separation (J/m2) for different runs.
Loading Potential P1 Potential P2 Potential P3 Potential P4
Mode I 3.02 2.87 2.92 2.86
Mode II 4.81 3.86 4.13 3.31

4. CONCLUSIONS

Systematic molecular dynamics simulations have been carried out to study the effects of 
elastic constants on the cohesive behavior between two brittle materials A and B. The 
main conclusions from this study are: (a) materials with a high elastic modulus are 
fractured at a high stress but a low strain and the stored elastic energy prior to the fracture 
is about the same; (b) elastic constants have a noticeable effect on the local traction vs. 
crack opening relation especially for the shear case: the curves may be reduced by either 
a reduction of the cross elastic constant between A and B (which has a minor effect on 
the global elastic properties), a reduction of the elastic constants of A and B, and an 
increase in the elastic constant mismatch between A and B; and (c) for the systems 
simulated, the mode II fracture has a high work of separation than the mode I fracture.

Fig. 3. Traction as a function of displacement obtained from MD simulations.
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