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problem definition
The quadratic eigenvalue problem is important for many
systems including tightly coupled structural acoustics.
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where subscripts “s” and “a” represent the structural
and acoustic regions respectively and L is a coupling
matrix. Here “u” represents the structural dofs and ψ
is the acoustic response. Damping matrices, cs and ca,
are associated with energy loss such as radiation.

(1)



QEVP linearization

Equation (1) is linearized for solution as a generalized, linear eigen problem of order
2N. We use one of these two linearizations:
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or

The first provides a simple LHS with solves of standard, uncoupled
matrices. The second is more forgiving of singular K. Note: K here
includes both the structural and acoustic components.



Solution Approaches

• Linearization of Solution
– Modal Projection
– Iterative Solution on full system

• Recasting as generalized eigenvalue problem
– limited to zero energy loss



Projection Approach
In projection approaches, a standard modal analysis is performed omitting the
damping/coupling matrix. Eigenvectors from that problem are used to project the full
problem to a small, dense system. Left and right eigenmodes of that system are
projected back to physical space.
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These small matrices are linearized and a dense system solve is
performed (as with dggev).



Projection Solution
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The system is not symmetric, so the left eigenvalues must also be
determined. Eigenvalues are unchanged, but vectors require
projection out to the physical space,
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The method is straightforward, and easy to implement. For large
systems, the computational complexity is in solution of the uncoupled
eigenmodes used as a basis. Modal truncation introduces the most
significant issue.



Iterative Solution of Full System
• ARPACK, ANASAZI and other software packages

provide solution of nonsymmetric generalized
eigenvalue problems, provided that sparse linear
solvers are available.

• For large linear systems, Salinas uses parallel
domain decomposition solvers such as FETI and
GDSW.

• Some linearizations allow us to solve two symmetric
systems of order N.

• Advantage: no modal truncation.



Numerical Comparisions

• Models
– small piston
– large piston
– cavity

• Evaluations
– modal convergence
– solution times

Large Piston

10k Hex elements. 10x10x100
Small Piston

80 Hex elements. 2x2x20

cylindrical cavity

acoustic: 40k

structural: 67k

All tet4. Air/soil



Piston Model

• Structural and acoustic sections of a beam.
• Fictitious materials chosen for high coupling.
• Closed form solutions are available.†

Kinsler, Frey and Sanders, “Fundamentals of Acoustics”, 3rd edition,
John Wiley & Sons, NY, 1982.
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Small Piston
modal convergence



Large Piston
modal Convergence



Cavity Model
Modal Convergence

very weak coupling of
structure and acoustics



Cavity Model (heavy fluid)
Modal Convergence

stronger coupling of
structure and acoustics

Garth Reese:

figure to be
updated for
more modes.



Full Solution Times
computing lowest 10 system modes
Model Method Basis Time

projection 96 modes 7

Projection 10 modes <1

iteration full 1

projection 96 modes 92

Projection 10 modes 44

iteration full 36

projection 96 modes 316

Projection 10 modes 205

iteration full 268

Small Piston

Large Piston

Cavity



Modal Convergence
Sensor Model

Model Details:

1.1 M hex8 elements

95% acoustic mesh

high coupling

Garth Reese:

analysis is underway for
this figure, which will be
of the same form as
previous. If unsuccessful,
the slide will be removed.



Conclusions

• A small number of modes is typically
sufficient of convergence of the modal
projection method. However, this is quite
problem dependent.

• Full iteration is not significantly more
expensive than projection methods, and
avoids the question of modal truncation.

• Both methods depend on scalability of the
linear solver.


