

Numerical Approaches for the Quadratic Eigenvalue Problem on Large Structural Acoustic Systems

Garth M. Reese
Timothy F. Walsh
Christopher G. Baker
Andrea Ames

Sandia National Laboratories

outline

- Problem Definitions
- Solution Approaches
 - modal projection (with variants)
 - Iterative solution of full system
 - others
- Numerical Tradeoffs
 - simple piston
 - cylindrical cavity
- Extensions
- Summary

problem definition

The quadratic eigenvalue problem is important for many systems including tightly coupled structural acoustics.

$$\left(\begin{bmatrix} k_s & 0 \\ 0 & k_a \end{bmatrix} + \lambda \begin{bmatrix} c_s & L \\ L^T & c_a \end{bmatrix} + \lambda^2 \begin{bmatrix} m_s & 0 \\ 0 & m_a \end{bmatrix} \right) \begin{bmatrix} u \\ \psi \end{bmatrix} = 0 \quad (1)$$

where subscripts “*s*” and “*a*” represent the structural and acoustic regions respectively and *L* is a coupling matrix. Here “*u*” represents the structural dofs and ψ is the acoustic response. Damping matrices, c_s and c_a , are associated with energy loss such as radiation.

QEVP linearization

Equation (1) is linearized for solution as a generalized, linear eigen problem of order $2N$. We use one of these two linearizations:

$$\left(\begin{bmatrix} M & 0 \\ 0 & K \end{bmatrix} - \lambda \begin{bmatrix} 0 & M \\ -M & -C \end{bmatrix} \right) \begin{bmatrix} \dot{\varphi} \\ \varphi \end{bmatrix} = 0$$

or

$$\left(\begin{bmatrix} 0 & I \\ -K & -C \end{bmatrix} - \lambda \begin{bmatrix} I & 0 \\ 0 & M \end{bmatrix} \right) \begin{bmatrix} \dot{\varphi} \\ \varphi \end{bmatrix} = 0$$

The first provides a simple LHS with solves of standard, uncoupled matrices. The second is more forgiving of singular K . Note: K here includes both the structural and acoustic components.

Solution Approaches

- Linearization of Solution
 - Modal Projection
 - Iterative Solution on full system
- Recasting as generalized eigenvalue problem
 - limited to zero energy loss

Projection Approach

In projection approaches, a standard modal analysis is performed omitting the damping/coupling matrix. Eigenvectors from that problem are used to project the full problem to a small, dense system. Left and right eigenmodes of that system are projected back to physical space.

solve,

$$(K - \lambda'M)\Phi = 0$$

truncate modes and generate:

$$\bar{K} = \Phi^T K \Phi$$

$$\bar{M} = \Phi^T M \Phi$$

$$\bar{C} = \Phi^T C \Phi$$

These small matrices are linearized and a dense system solve is performed (as with dggev).

Projection Solution

$$\left(\begin{bmatrix} 0 & \bar{I} \\ -\bar{K} & -\bar{C} \end{bmatrix} - \lambda \begin{bmatrix} \bar{I} & 0 \\ 0 & \bar{M} \end{bmatrix} \right) \begin{bmatrix} \dot{\bar{\varphi}} \\ \bar{\varphi} \end{bmatrix} = 0$$

The system is not symmetric, so the left eigenvalues must also be determined. Eigenvalues are unchanged, but vectors require projection out to the physical space,

$$\varphi = \Phi \bar{\varphi}$$

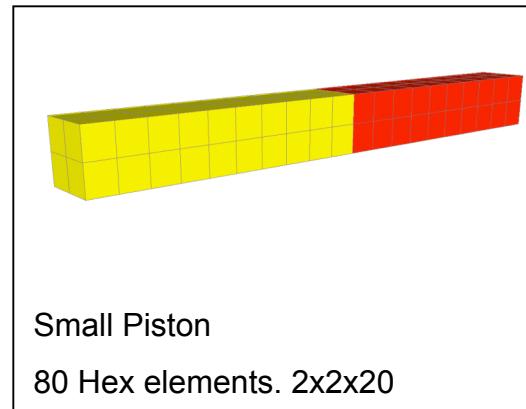
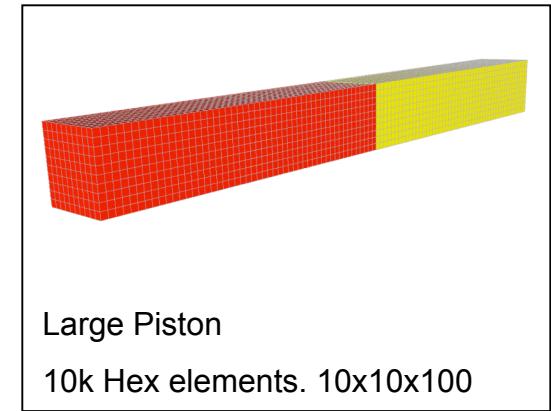
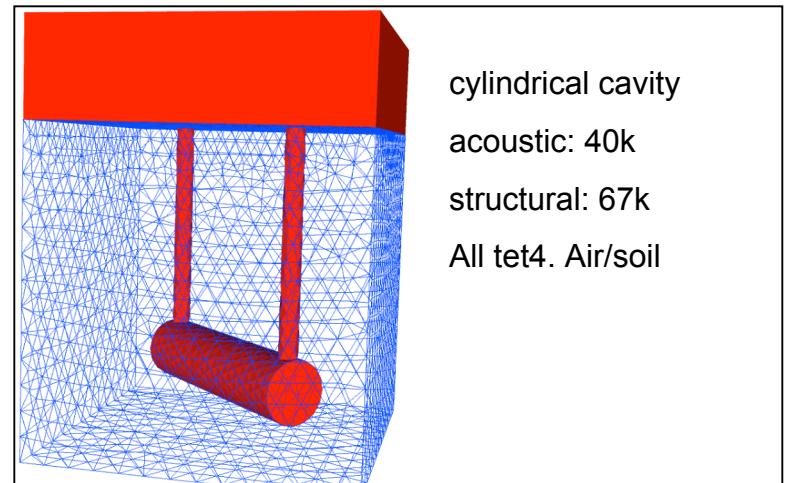
The method is straightforward, and easy to implement. For large systems, the computational complexity is in solution of the uncoupled eigenmodes used as a basis. Modal truncation introduces the most significant issue.

Iterative Solution of Full System

- ARPACK, ANASAZI and other software packages provide solution of nonsymmetric generalized eigenvalue problems, provided that sparse linear solvers are available.
- For large linear systems, Salinas uses parallel domain decomposition solvers such as FETI and GDSW.
- Some linearizations allow us to solve two symmetric systems of order N .
- Advantage: no modal truncation.

Numerical Comparisons

- Models
 - small piston
 - large piston
 - cavity
- Evaluations
 - modal convergence
 - solution times

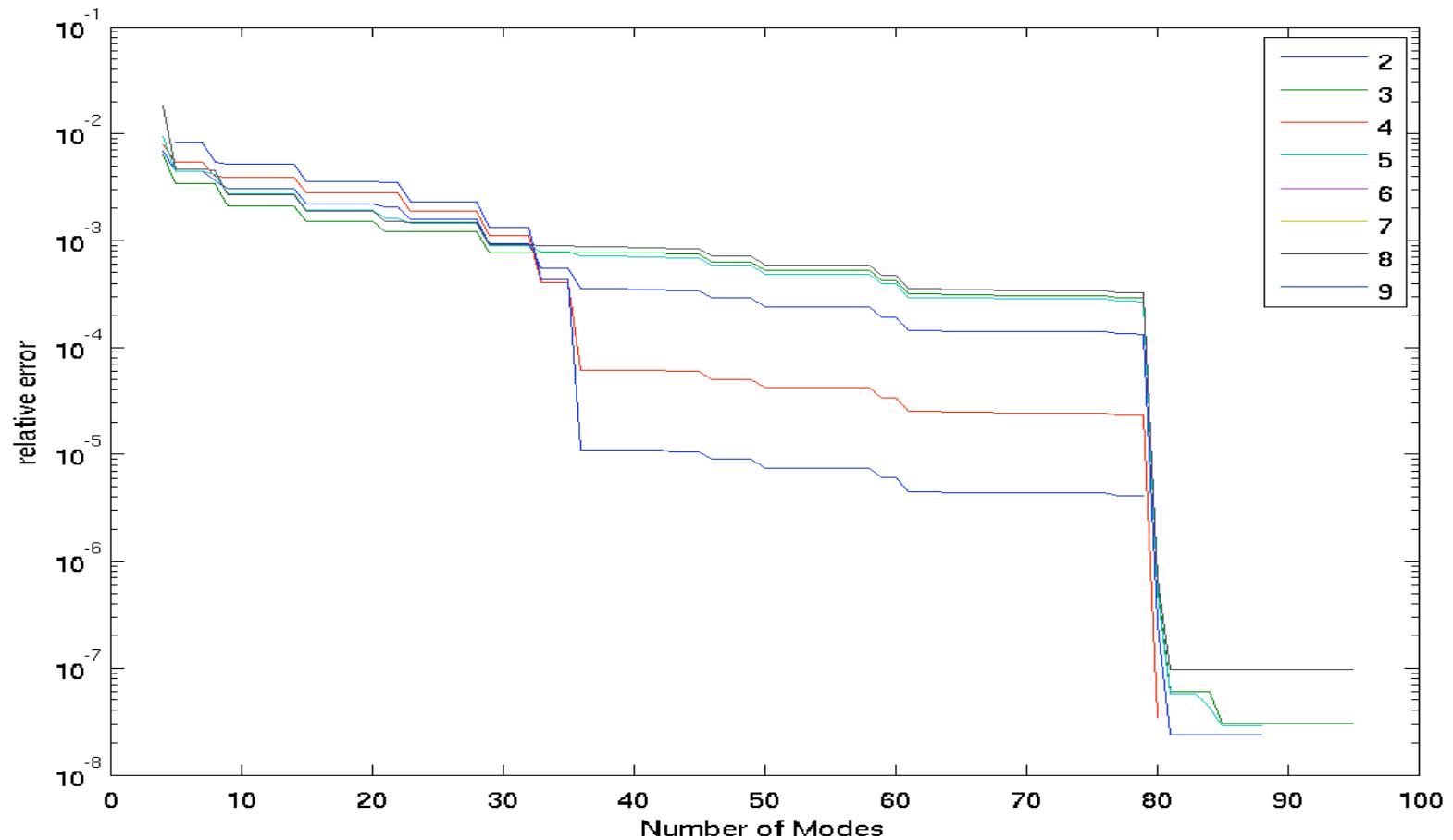


Piston Model

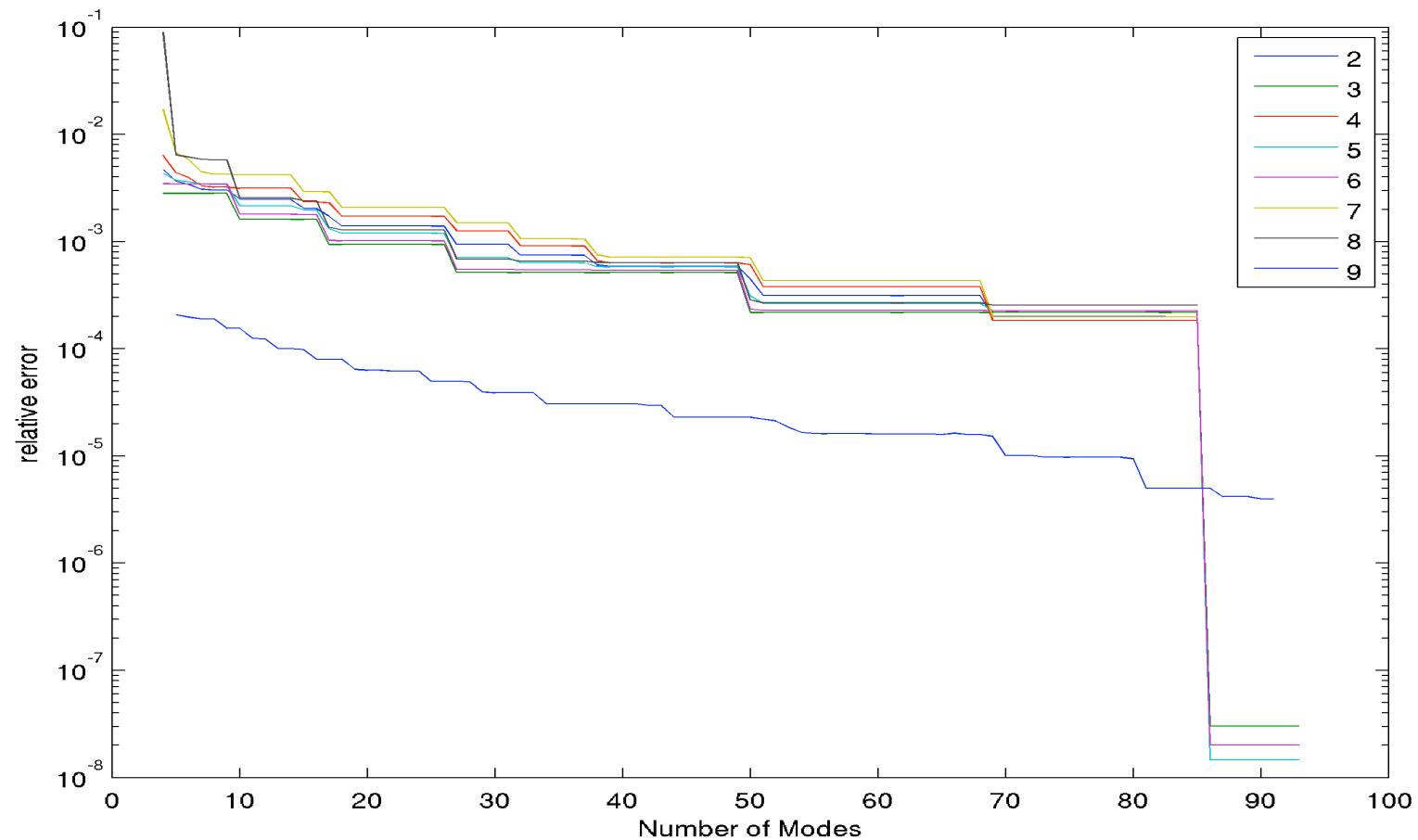
- Structural and acoustic sections of a beam.
- Fictitious materials chosen for high coupling.
- Closed form solutions are available.[†]

$$Err = \frac{|\lambda - \lambda_{ref}|}{\lambda}$$

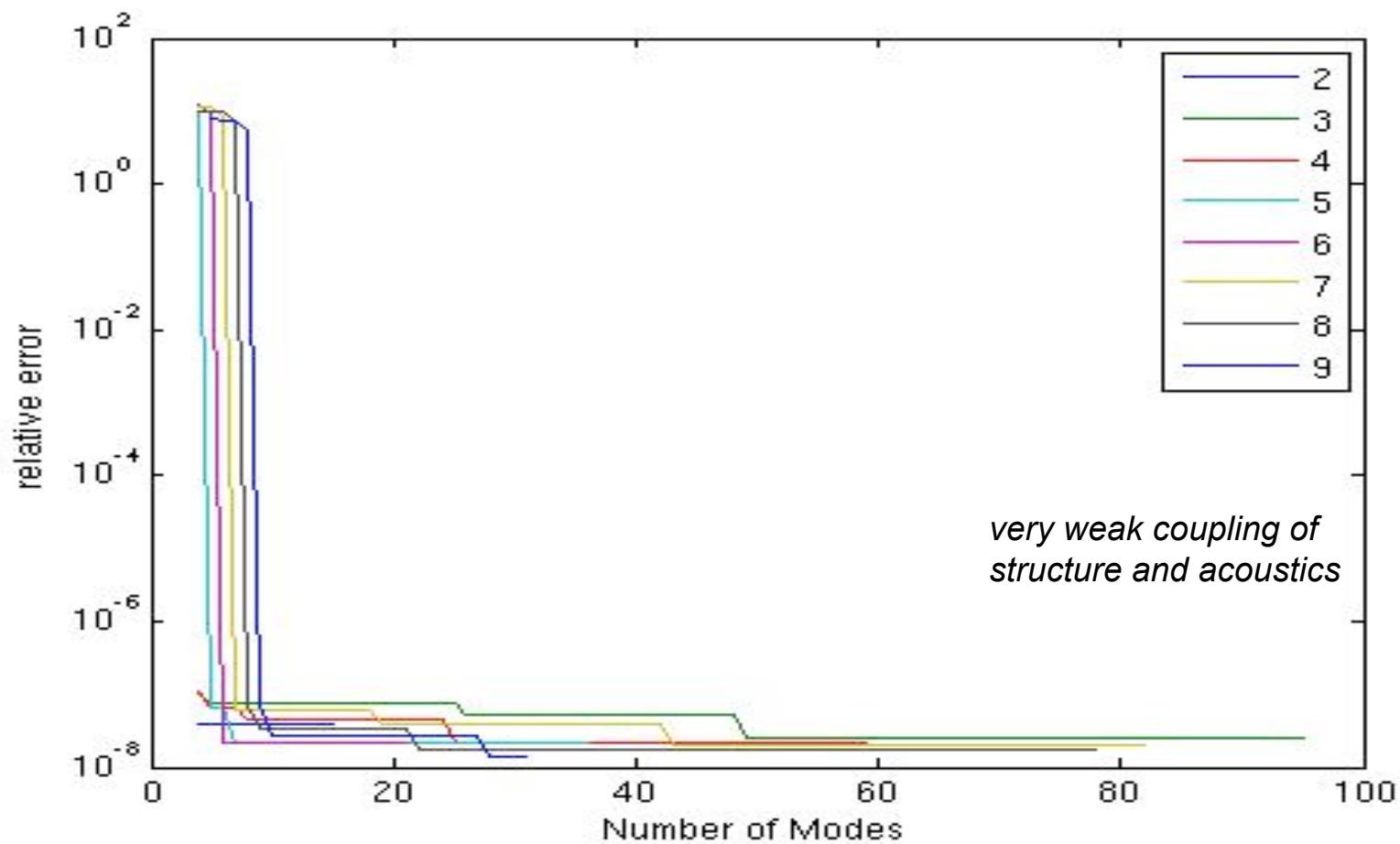
Small Piston modal convergence



Large Piston modal Convergence

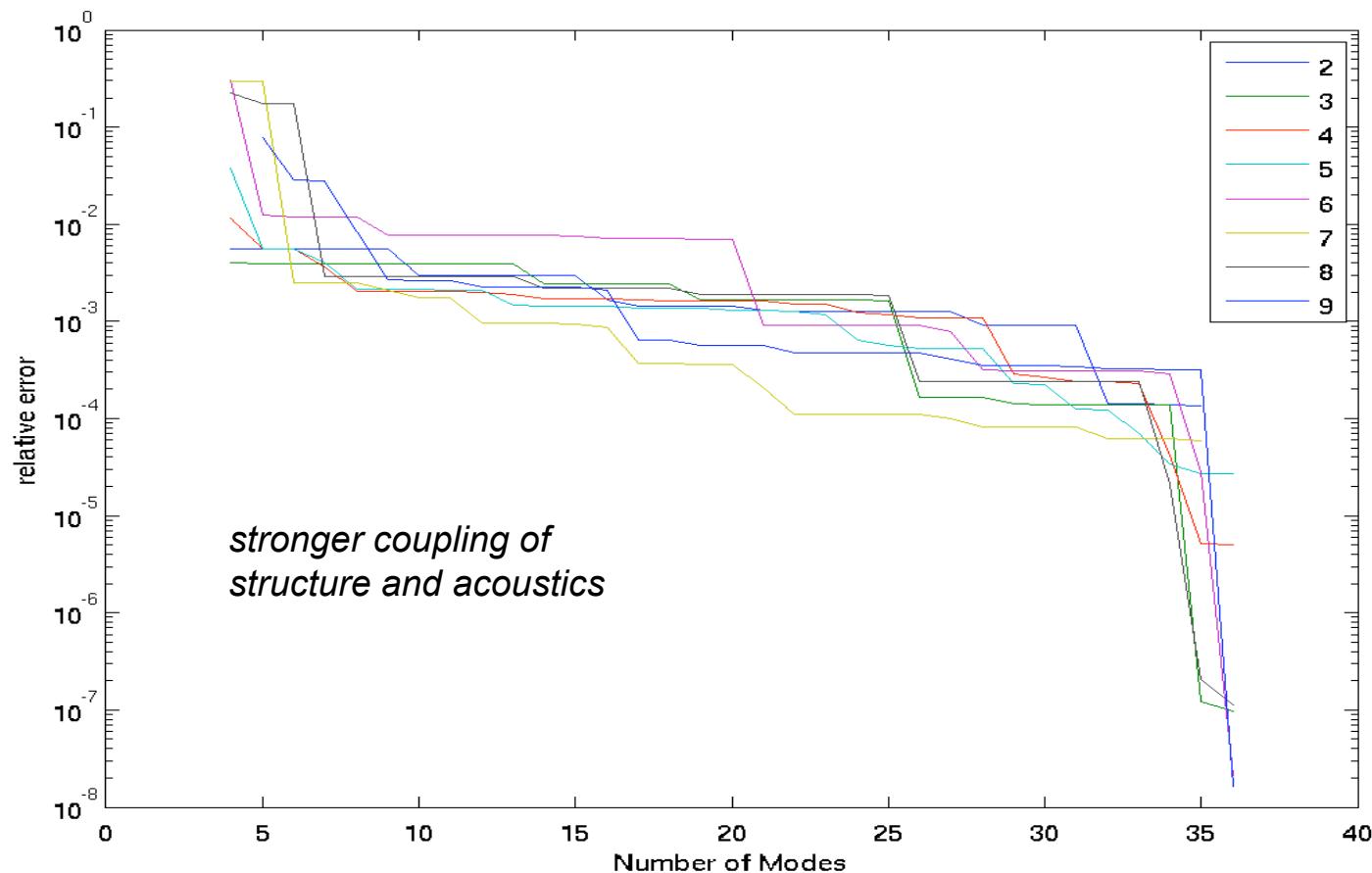


Cavity Model Modal Convergence



Garth Reese:
figure to be
updated for
more modes.

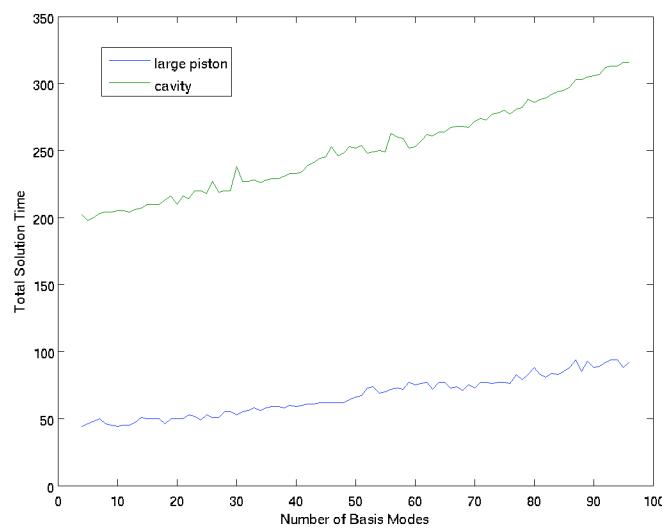
Cavity Model (heavy fluid) Modal Convergence



Full Solution Times

computing lowest 10 system modes

Model	Method	Basis	Time
Small Piston	projection	96 modes	7
	Projection	10 modes	<1
	iteration	full	1
Large Piston	projection	96 modes	92
	Projection	10 modes	44
	iteration	full	36
Cavity	projection	96 modes	316
	Projection	10 modes	205
	iteration	full	268



Modal Convergence Sensor Model

Garth Reese:

analysis is underway for this figure, which will be of the same form as previous. If unsuccessful, the slide will be removed.

Model Details:

1.1 M hex8 elements
95% acoustic mesh
high coupling

Conclusions

- A small number of modes is typically sufficient for convergence of the modal projection method. However, this is quite problem dependent.
- Full iteration is not significantly more expensive than projection methods, and avoids the question of modal truncation.
- Both methods depend on scalability of the linear solver.