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Vacancy diffusion is the most important microscopic mechanism for mass-transport in 
solids. While vacancy diffusion in fcc metals is relatively well understood from a micro-
scopic perspective, the same does not hold true for bcc metals. We present first-principles 
simulations using the AM05 density functional of vacancy diffusion in Mo. The calculated 
self-diffusion coefficient is in quantitative agreement with available experimental data. 
We also discuss the excellent performance of AM05 for lattice constants and bulk moduli. 

Introduction 

Solids are never perfect, and the importance of defects like vacancies, interstitials, 
and dislocations to the properties of materials can hardly be overstated. Mass transport in 
solids is dominated by vacancy motion, radiation creates vacancies that can nucleate and 
grow voids, and the motion of dislocations is important for material strenght. There are 
thus ample reasons to from a microscopic perspective understand, and ultimately be able 
to predict, properties of defects in solids, for example vacancies. 

Early work applying density functional theory [1] (DFT) to study transition metal 
vacancies [2] used the LDA exchange correlation functional, was computationally 
restricted to relatively small unit cells, and structural relaxation was beyond reach. In 
retrospect somewhat surprisingly, these pioneering calculations came out in very good 
agreement with experimental data for the vacancy formation energy. However, it turned 
out to be difficult to improve upon them. For example, when using larger super cells and 
including structural relaxation, the calculated vacancy formation energies were lowered, 
away from experimental data. In addition, although generalized gradient exchange-
correlation functionals like Perdew-Wang-91 (PW91) [3] and Perdew Burke, Ernzerhof 
(PBE) [4] improve upon LDA for lattice constants and cohesive energies, they lower 
vacancy formation energies even further, worsening the DFT calculations. 

We solved this paradox in references [5] and [6] by post-processing the DFT 
calculations. The confusion regarding DFT calculations of vacancy formation energies 
was due to different intrinsic surface error of LDA and PW91. By correcting for it [6], we 
were able to reconcile the different results and quantify the contributions from structural 
relaxation, large super cells, and exchange-correlation functional [6]. The post-processing 
correction method, however, has limitations and most importantly, it cannot be used to 
correct molecular dynamics (MD) calculations. For MD to work in the context of 

                                                

1
 trmatts@sandia.gov 

SAND2009-3883C



Proceedings for the Joint U.S. Russia Conference on Advances 
 in Materials Science 

Mattsson, T. R., Sandberg, N., Armiento, R., and Mattsson, A.E.  

 

2 

vacancies, the surface intrinsic error correction has to be incorporated into the exchange-
correlation (xc) functional itself [7]. 

In this paper, we have studied vacancy formation and diffusion in Mo as an example 
of a bcc metal with strongly non-Arrhenius behavior for self-diffusion. We find that DFT 
based MD simulations reach quantitative agreement with available experimental data on 
the self-diffusion coefficient. 

Method 

Density Functional Theory 

Density functional theory [1] is a formally exact reformulation of the Schrödinger 
equation. In DFT, the fundamental property is the density of electrons in three-
dimensional real space, (x,y,z), regardless of how many electrons are in the system. In 

contrast, for N electrons, the Schrödinger equation is 3N dimensional. For systems with 
many electrons, DFT is decidedly faster. The key term in the Kohn-Sham equations is the 
approximation of the many-body interaction, the so-called exchange-correlation 
functional. The first approximation, the local density approximation (LDA) was put 
forward already in the pioneering work [1]. LDA works excellently for many systems, in 
particular metals, but rather poorly for molecules. Functionals taking the gradient of the 
density in to account were developed later by many: Becke, Lee, Yang, and Parr (BLYP) 
[8], PW91 [3], PBE [4], and revised PBE (RPBE) [9]. Gradient corrected functionals 
improved significantly upon LDA for molecular systems. However, only PW91 and PBE 
are widely used for solid-state problems. At the time, PW91 and PBE were considered 
equivalent, and are often referred as the generalized gradient approximation (GGA). Only 
recently was it discovered that PW91 and PBE can, and do, yield different results [10]. 

As computers became faster and codes more efficient, it became possible to apply 
DFT also to solid-state problems that require several tens of atoms in the super-cell: 
surfaces, defects, interfaces, and alloys. As this development accelerated, there were only 
two xc-functionals available: LDA or GGA (PW91/PBE). This changed in 2005. 

The AM05 functional 

Development of an exchange-correlation functional based on a surface model system 
was discussed by Kohn and Mattsson [11]. The approach was later formalized and 
generalized in the subsystem functional scheme [12] and implemented in the AM05 
functional [7]. AM05 involves two model systems: the uniform electron gas is used in 
regions that are locally bulk-like and a surface functional (derived from the Airy gas [11] 
and jellium surfaces) for regions that are locally surface-like. By including two different 
exact reference systems, AM05 constitutes a systematic improvement over LDA. In the 
first paper, it was demonstrated that AM05 gives lattice constants and bulk moduli to 
high accuracy for Al (simple metal), Pt (transition metal) and Si (semi conductor) [7]. 
More recently, by comparing results for 20 solids (Al, Ag, Pd, Rh, Cu, GaAs, GaP, Na, 
NaF, NaCl, MgO, SiC, Si, C, GaN, BN, BP, Li, LiF, and LiCl), it was confirmed that 
AM05 yields lattice constants that on average are significantly better than LDA, PBE, 
RPBE, and BLYP [13], mean absolute errors are shown in Figure 1. The functional 
employed in this work, AM05, performs on average as well as computationally 
significantly more expensive hybrids. 
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Figure 1. Mean absolute errors for lattice constant and bulk modulus for 20 solids with 
seven functionals: PBE0 and HSE06 [14] and AM05, PBE, LDA, RPBE, and BLYP [13]. 

Code and computational details 

The MD simulations were performed with a massively parallel version of the 
projector augmented wave [15] (PAW) core-potential code VASP 5.1.40 [16] on CRAY-
XT [17] using stringent convergence settings [18]. The PAW implementation in VASP 
5.1 allows use of multiple XC functionals on the same set of core potentials while 
retaining high precision [13]. We used the 6 valence electron Mo PAW PBE core 
function of 08Apr2002. While it has a nominal plane-wave cutoff (ENMAX) of 224.584 
eV, we used 400 eV to converge the pressure to a few percent. The electronic structure is 
minimized to 10

-5
 eV convergence criterium. Real-space projections were not applied. 

Convergence with respect to kpoints was investigated by comparing energies for gamma 
point (0,0,0), mean-value point (1/4,1/4,1/4), and Monkhorst-Pack grids with and 2

3
 and 

4
3
 sampling. The mean-value point has proven to yield results that are significantly 

improved compared to gamma-only calculations. 

The DFT-MD simulations are the most computationally demanding parts of the 
present work, but are necessary for the study of the an-harmonic contributions to the 
formation and migration energies. We use velocity Verlet time-integration with a time-
step of 2.0 fs resulting in about five electronic iterations being required per ionic step at 
2800 K. The simulations are kept in the NVT ensemble with a Nose thermostat (80 fs 
time-constant). The electronic states are distributed according to the finite-temperature 
formulation of DFT [19], the use of which is very important for obtaining accurate 
thermodynamic properties [20]. Structural optimization was used to find the low-
temperature limit of the vacancy formation energy and the migration activation energy in 
128 atom super-cells. The corresponding prefactors for vacancy formation and migration 
where obtained by calculating the force-constant matrix via finite displacements [21], this 
was done in 54 atom unit cells. Static calculations for LDA and PBE were done with 
VASP 4.6. All AM05 calculations were done using VASP 5.1.40. 

Vacancy formation enthalpy and vacancy hopping from MD 

The vacancy formation energy was obtained by comparing thermally averaged 
energies in a system containing a vacancy, with that in a bulk system, using DFT-MD. In 
order to unambiguously locate the vacancy at each time step, we use a model potential 
[22] to quench a copy of each atomic configuration, and associate the empty lattice site 
with the position of the vacancy [23] hereby obtaining a trajectory in time of the vacancy 
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migration. By comparing long model potential simulations in 127, 1023 and 3455 atom 
systems, we conclude that the jump-rate in a 127-atom system is representative of that in 
larger systems to within 5%. 

 Results  

Vacancy formation enthalpy 

The result for vacancy formation enthalpy calculated from long DFT-MD simulations 
is shown in Figure 2. The strong temperature dependence is well described by a quadratic 
form [24]. Figure 2 also demonstrates the importance of including finite electronic 
temperature. 

 

Figure 2. Mo vacancy formation energy as function of temperature [24]. The shaded 
contribution is from the electronic entropy and error bars are 2  statistical uncertainty 

calculated by block-averaging. 

Self diffusion 

Based on the hopping rates obtained in the MD simulations, we estimate the vacancy 
diffusion coefficient. Since the formation energy is known as a function of temperature 
(Figure 2), we use it to find the migration energy as a function of temperature to match 
self-diffusion from room temperature to melting. The calculated self-diffusion is shown 
in Figure 3. The AM05 results are in quantitative agreement with experimental data when 
considering the difficulties involved in accurate calculations of point defects and point-
defect kinetics in transition metals [6]. There is a significant difference between using 
PBE and AM05, confirming the central importance of the exchange-correlation 
functional also for solid-state systems. 
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Figure 2. Calculated Mo self-diffusion rate as a function of temperature [24]; with 
experimental data by Maier, Mehrer, and Rein [25]. Red squares are from the long direct 

MD simulations of hopping, the red line is from vacancy formation energy in Fig 2 
combined with a vacancy migration energy to fit the MD diffusion. 

Conclusions 

We have shown that a quantitative microscopic model of vacancy diffusion in bcc 
metals can be founded on DFT simulations given that the xc-functional is of high fidelity 
and MD simulations are performed close to the melting point. Given the large change in 
vacancy formation energy as a function of temperature as well as the importance of 
including finite temperature treatment of the electronic states, we infer that the use of a 
classical model potential over the entire interval in temperature is an approach that faces 
formidable challenges to correctly describe defects in Mo, and likely other bcc metals. 
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