

Using Simulation and Analysis to Explore Enterprise Logistic Systems Vulnerabilities

Sandia National Laboratories

Kimberly M. Welch
Rachel M. Skocypec

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Presentation Outline

- Supply Chain Vulnerability
- Enterprise Modeling Capabilities
- Notional Analysis Example

Motivation

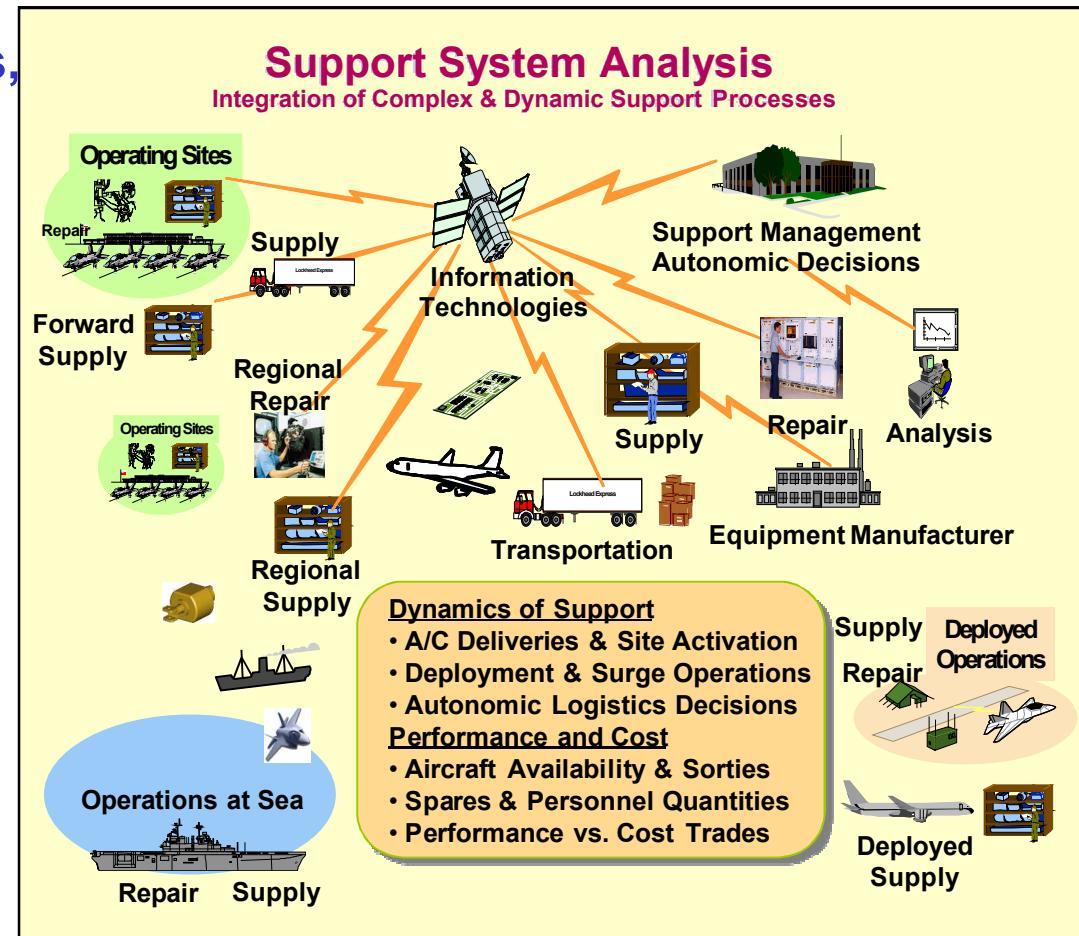
- The international Cargo Security Council reports that cargo theft costs Americans \$60 billion per year¹
- Thefts in the United States range from \$5M container thefts in Norfolk, VA to \$600M worth of stolen goods in Los Angeles in 2000²
- Military logistic tails in war are a risk to personnel and divert major assets from fighting

Source: [1] "Cargo Security: A Partnership to Secure the Transportation Industry", Lt. Colonel David B. Binder, Florida Department of Transportation Motor Carrier Compliance Office.
[2] "Supply Chain Vulnerability", Dick McCormick, Pinkertons.

Supply Chain Vulnerability

- A study by the Cranfield School of Management[1] defines the following:
 - Modern supply chains are not simply linear chains or processes; they are complex networks
 - Resilience is ‘the ability of a system to return to its original state or move to a new, more desirable state after being disturbed’
- Supply chain vulnerability involves a complex network of systems that must adapt to adverse conditions that arise from risks both within and outside the enterprise system

Source: [1] “Building the Resilient Supply Chain”, Martin Christopher and Helen Peck, Cranfield School of Management.


Methods and Tools for Supply Chain Vulnerability

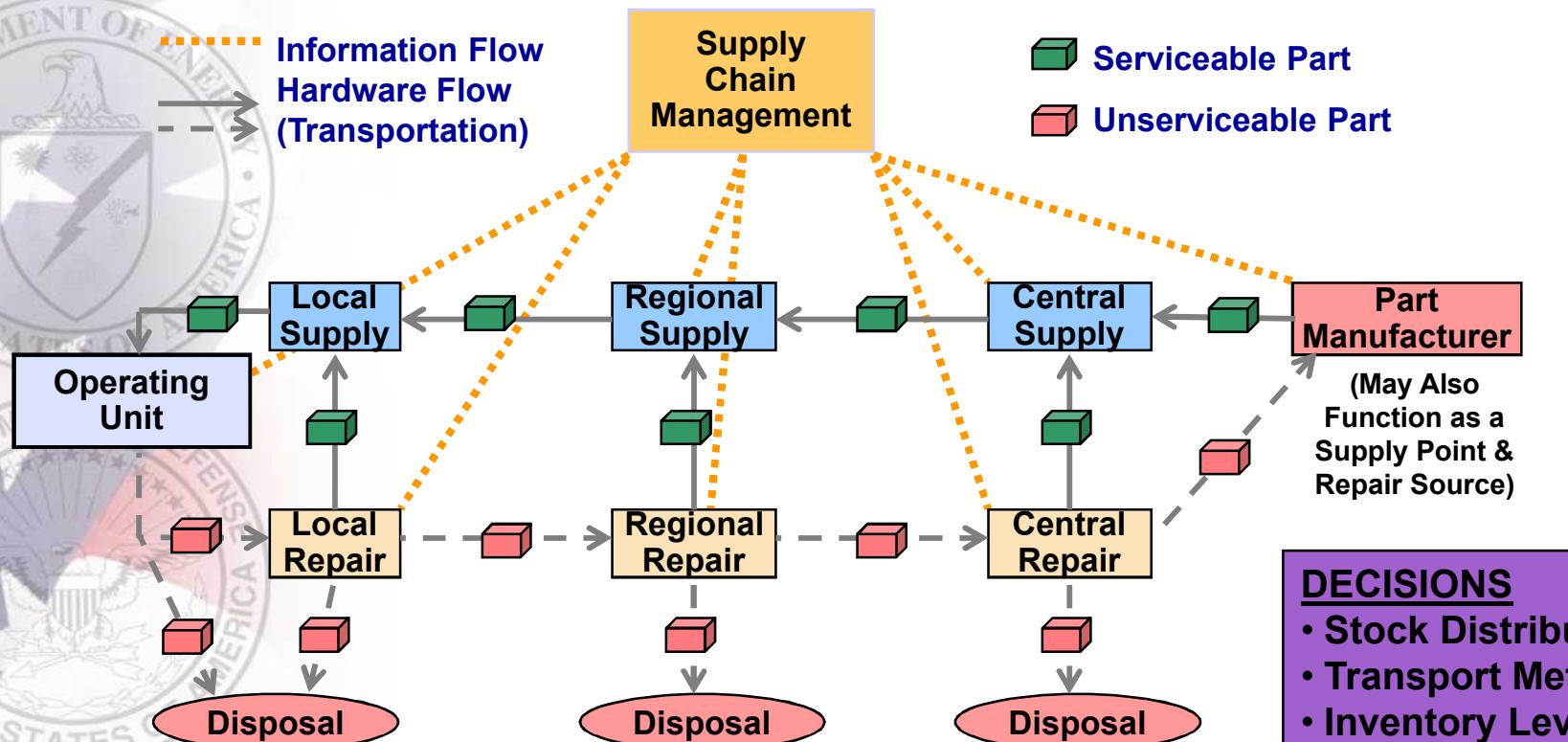
- **Mapping tools are used on supply chain network representations to identify key characteristics**
 - Pinch points and Critical Paths
 - Risk areas that could be caused by long lead times, single source supply, low visibility, and other issues
- **Principals of management**
 - Risk awareness of supplier
 - Supply chain collaboration
- **Current tools lack the capability to measure impact of solutions or strategies on enterprise level metrics**

Supply Chain Vulnerability assessment should include the impact on the overall enterprise

Enterprise Modeling Capabilities

- Sandia has developed logistics modeling, analysis, and decision support tools
- Provides *integrated* modeling of supply chain and repair chain activities for a worldwide support system:
 - Demand generation
 - Field Level maintenance tasks
 - Part storage and inventory management
 - Support equipment and personnel usage
 - Unit repair activities and production at OEMs
 - Transportation, surge, and deployment

Links Sustainment System Performance to Readiness



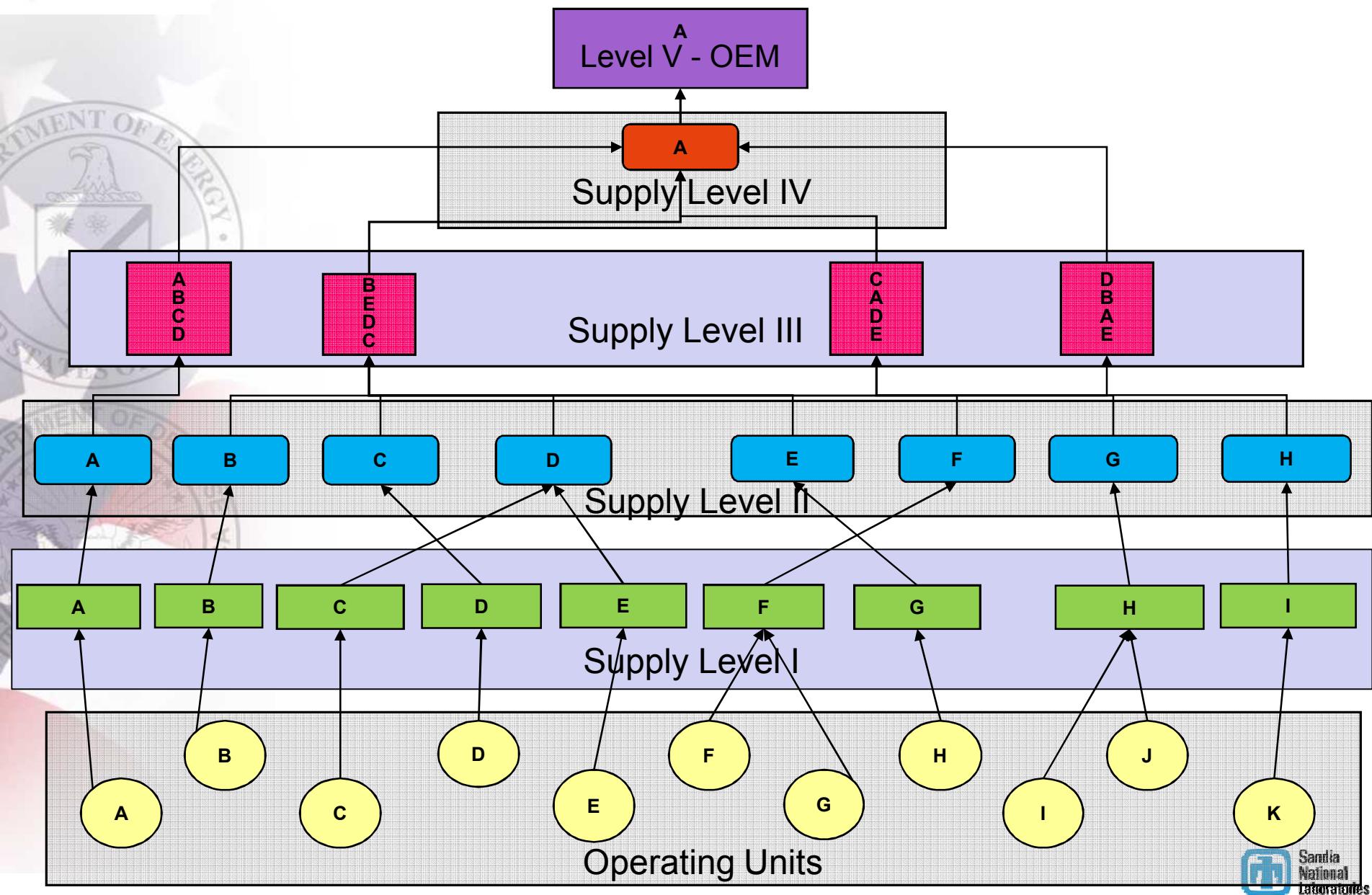
Modeling and Simulation Capabilities

- **Modeling of Supply/Repair Chain Processes**
 - Global operations with arbitrary multi-echelon supply/repair capabilities
 - Integrated supply, repair, manufacturing, and transportation processes
 - System usage schedules (generating demands)
- **Analysis of Dynamic Changes Throughout the Life-cycle**
 - System delivery schedules
 - Transition from “normal” to deployed/surge operations
 - Changes in inventory controls, quantity/location of resources
 - Disruptions in Site operations and Transportation modes
- **Analysis of Support System Performance, Resource Requirements, and Costs**
 - System Availability, Mission Capable Rate
 - Supply fill rates, response times
 - Spares, personnel, support equipment, and transportation requirements
 - Cost indicators (investment and operating costs)

Multi-Level Supply Chain

Process Flow and Hierarchy Can Vary for Each Part and Operating Location

- DECISIONS**
- Stock Distribution
 - Transport Methods
 - Inventory Levels
 - Source of Repair
 - Repair Capability
 - Manning Levels
 - Support Equipment



Notional Enterprise Experiments

- Two experiments were performed to test the stability of the enterprise supply chains
 - Experiment 1 modeled a robust enterprise
 - No transportation cost or delay time difference between supply levels
 - Expected minimal impact from disruptions
 - Experiment 2 enterprise less robust, but still stable
 - Significant difference in delay time and cost for transportation between supply levels
- Several scenarios were run for each experiment
 - Baseline scenarios served as comparison against other scenarios
 - Scenarios modeled disruptions of one or more sites for a period of time (assumption of 5-8 months recovery) over a 10 year simulation run

Goal: Identify vulnerabilities and analyze the effects of supply chain disruptions on Enterprise performance metrics

Example Enterprise Supply Requisition Chain

Experiment 1 Results

- Scenarios in Experiment 1 had minimal impact on the Enterprise performance

Experiment 1				
Trial	Model	Description	Mission Capable Rate (%)	Total Cost
1	Baseline Scenario	Baseline Model	85.80	\$ 7,396,184
2	Scenario_1	Baseline with Additional Level IV Warehouse Entity	85.77	\$ 7,385,511
3	Scenario_2	Baseline with Additional Level IV Warehouse and Original Level IV Supply Center disrupted	85.78	\$ 7,384,614
4	Scenario_3	Baseline with Level III supply site disrupted for 5 months during 10 year run	85.80	\$ 7,398,183
5	Scenario_4	Baseline with Level III supply site out for 5 months during 10 year run	85.74	\$ 7,438,565
6	Scenario_5	Baseline with Level II supply site out for 3 months during 10 year run	85.80	\$ 7,380,762
7	Scenario_6	Baseline with multiple sites out over 10 years	85.83	\$ 7,355,087

All scenarios show an approximately 85% MCR with similar total costs

Experiment 2 Design

- Two additional scenarios in Experiment 2 attempt to further stress the Enterprise

Experiment 2		
Trial	Model	Description
1	Baseline Scenario	Baseline Model
2	Scenario_1	Baseline with Additional Level IV Warehouse Entity
3	Scenario_2	Baseline with Additional Level IV Warehouse and Original Level IV Supply Center disrupted
4	Scenario_3	Baseline with Level III supply site disrupted for 5 months during 10 year run
5	Scenario_4	Baseline with Level III supply site out for 5 months during 10 year run
6	Scenario_5	Baseline with Level II supply site out for 3 months during 10 year run
7	Scenario_6	Baseline with multiple sites out over 10 years
8	Scenario_7	Baseline with a Level III supply site out for 5 months every 2 years during the 10-year simulation
9	Scenario_8	Multiple sites out (Level IV sites)

Experiment 2 Results

- In this experiment the important metrics include:
 - Average Mission Capable Rate
 - Total transportation costs
 - Average weekly supply delay time (during disruption and normal operations)
- Scenarios 7 and 8 result in significantly larger supply delay times during interruption periods
 - Demonstrates that the supply level III and level IV sites disrupted may be weak points or areas of focus for vulnerability

Experiment 2 Results					
Trial	Model	Average Mission Capable Rate (%)	Total Cost	Average Weekly Supply Delay during Disruption periods	Average Weekly Supply Delay during normal operations
1	Baseline Scenario	83.15	\$ 5,764,354		161.57
2	Scenario_1	83.11	\$ 5,764,071	N/A	239.80
3	Scenario_2	83.14	\$ 5,756,578	304.84	231.68
4	Scenario_3	82.68	\$ 5,760,967	216.05	160.76
5	Scenario_4	83.00	\$ 5,779,048	615.52	219.05
6	Scenario_5	83.29	\$ 5,746,279	199.90	226.48
7	Scenario_6	83.18	\$ 5,728,234	203.47	231.17
8	Scenario_7	82.59	\$ 5,804,698	613.89	185.00
9	Scenario_8	80.58	\$ 5,629,131	1,279.79	238.07

Summary

- **Understanding Supply Chain vulnerabilities is vital in today's world**
 - To be adequately prepared to protect critical assets
 - To mitigate risk in Military Operations
- **Simulation modeling and analysis provides the ability to better comprehend complex enterprise systems and their weaknesses**