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Summary

Dispersion and attenuation relations are derived for both
the continuous and discrete velocity-memory-stress
systems governing 3D anelastic wave propagation in a
standard linear solid. Phase speed and attenuation factor
curves extracted from these relations enable optimal
selection of spatial and temporal gridding intervals to
achieve finite-difference algorithm efficiency, while
simultaneously minimizing numerical inaccuracy.

Introduction

Seismic wave propagation within an anelastic medium is
governed by a set of nine, coupled, integro-differential
equations called the velocity-stress system. Stress and strain
tensor components are related via a temporal convolution
integral. However, assumption of the standard linear solid
(SLS) rheology enables conversion of these equations to a
coupled partial differential system, albeit at the cost of
introducing additional dependent variables called memory
variables. This partial differential system is referred to as
the velocity-memory-stress (VMS) system. A recent
summary article by Moczo et al. (2007) gives a rigorous
development of the VMS system (including a
comprehensive list of references) and describes time-
domain finite-difference (FD) solution methods.

We have developed a three-dimensional (3D) explicit,
time-domain, FD solution of the isotropic anelastic VMS
system, using centered FD operators on staggered temporal
and spatial grids. Discretization of the VMS differential
equations introduces numerical dispersion and attenuation
which must be distinguished from their intrinsic
counterparts associated with the underlying anelastic
continuum.  Accordingly, we have derived a discrete
dispersion/attenuation relation for the 3D VMS difference
system, applicable to staggered FD operators with arbitrary
temporal and spatial orders. Moreover, the SLS may be
represented by an arbitrary number of attenuation
mechanisms. The relation applies to either compressional
(P) or shear (S) propagation, and reduces to the well-known
isotropic elastic expression when the SLS material
attenuation vanishes.

Anelastic VMS System
Constitutive equations relating the stress tensor components

gy to the displacement vector components u; for a linear,
time-invariant, local, and isotropic anelastic medium are

ou ou; Ou

k
o, = (z//P —2l//5)* ox, 5!/ tyg * aT+_ , (1)

where the asterisk denotes temporal convolution, J; is the
Kronecker delta symbol, and repeated subscripts imply
summation. The two convolutional kernels wp and wy are
called rate-of-relaxation functions (SI unit: P/s) and
characterize anelastic P and S deformation, respectively.
These functions must be causal, may include distributions
(i.e., the temporal Dirac delta function J(f) and/or its
derivatives), and are necessarily minimum-phase.

For an SLS, the rate-of-relaxation functions are a linear
combination of the Dirac delta function with a set of one-
sided decaying exponentials:
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where H(f) is the Heaviside unit step function. Each
function has R attenuation mechanisms, characterized by an
amplitude scalar ¢” (dimensionless) and a decay rate "
(radians/s). Superscript 7 is merely an index, and should
not be interpreted as an exponent. Mp,g are the infinite-
frequency anelastic moduli:

MP=/1+2/J, MS:/ua

where 4 and u may be termed infinite-frequency Lamé
coefficients. In general, all anelastic medium parameters
may vary with spatial position x.

The anelastic VMS system consists of the 9+6R coupled,
first-order, inhomogeneous, partial differential equations
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where v; are velocity vector components, o; are stress
tensor components, and rf are symmetric memory tensor
components (SI unit: P/s) Equations (3a) are Cauchy’s
linearized equations of motion, representing conservation
of mass and linear momentum for a continuum (p is mass
density). Equations (3c) are time-differentiated constitutive
relations obtained by combining (1) and (2), and adopting a
suitable definition for the memory variables. As indicated
in (3b), these memory variables are coupled to gradients of
the velocity vector components. Finally, inhomogeneous
terms in the VMS system represent various body sources of
seismic waves: fi(x,?) is the force density vector and m;(x,?)
is the moment density tensor. Note that the moment
density tensor is split into symmetric and anti-symmetric
parts, indicated by superscripts “s” and “a” respectively.

For FD solution, the dependent variables in (3) are stored
on uniformly-spaced, staggered, spatial and temporal grids
(Figures 1 and 2). The primary advantage of staggered
storage schemes over alternative non-staggered approaches
pertains to greater accuracy in numerical differentiation and
interpolation. Enhanced accuracy leads, in turn, to reduced
numerical dispersion/attenuation in the FD solution. All
partial derivatives in (3) are numerically approximated with
centered, staggered, FD operators with M-order accuracy in
time and N-order accuracy in space (where M and N are
even integers). Explicit time-updating formulae for the
9+6R dependent variables are readily derived.

Temporal and spatial FD operator coefficients are
designated a,, (m = 1,2,3,...M/2) and b, (n = 1,2,3,....N/2),
respectively. The memory variable updating expression
derived from (3b) requires a temporal interpolation scheme.
We take the order of this interpolation operator identical to
the temporal FD order, and denote the interpolation
coefficients as ¢, (m =1,2,3,...M/2).

Continuous Dispersion/Attenuation Relation

We utilize classical von Neumann analysis to derive a
dispersion/attenuation relation for the VMS partial
differential system (3). First, assume a homogeneous
anelastic wholespace without body sources of seismic
waves. Next, Fourier transform the VMS system from time
t to angular frequency w, and eliminate stress tensor and
memory tensor components. Finally, assume the remaining
three velocity vector components are described by a plane
wave progressing in the direction of unit vector n:
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where K(w) is a complex wavenumber to be determined.
The result is 3 x 3 system of homogeneous linear algebraic
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Figure 1. Spatial storage scheme for anelastic wavefield

variables and earth model parameters.
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Figure 2. Temporal storage scheme for anelastic wavefield
variables.

equations for the (transformed) velocity vector components
at the coordinate origin V;(0,w). Nontrivial solutions exist
when the determinant of the coefficient matrix vanishes.
This yields the dispersion/attenuation relation for the
continuous space-time VMS system
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where ¢, is the infinite-frequency phase speed for either P
or S waves:
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The real and imaginary parts of the complex wavenumber
are given by K(w) = [w/c(w)] + ia(w), where c(w) is the
phase speed and a(w) is the attenuation factor. After the
right side of equation (4) is evaluated over the frequency
range of interest, the phase speed and attenuation factor
functions are easily obtained via
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We emphasize that the dispersion/attenuation relation (4)
applies to either 3D P or S waves, and accommodates an
arbitrary number of SLS attenuation mechanisms.
Moreover, as expected, both the phase speed and
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attenuation factor are isotropic (independent of the
propagation direction n). In the case where all SLS
amplitude factors vanish, (4) reduces to the elastic
counterpart K(w) = w/c, where the wavenumber is strictly
real-valued (a vanishes and c is independent of frequency).

Discrete Dispersion/Attenuation Relation

The dispersion/attenuation relation for the discrete VMS
system is obtained by an identical derivational procedure.
We apply a discrete-time Fourier transform (Oppenheim
and Willsky, 1983) from sampled time ¢, to continuous
frequency w to the 9+6R FD updating formulae, yielding
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Note the similarity of this expression to the continuous
dispersion/attenuation relation (4). Frequency-dependent
quantities on the right side depend on the temporal
difference and interpolation operators, and are defined as
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Q(w) — w and Q'(w) — @" as the FD timestep 4, vanishes.
Left side quantities depend on the spatial FD operator via
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and similarly for K,(w) and K.(w). The sine function in this
expression has a complex-valued argument, and thus is
interpreted as sin(z) = [exp(+iz)-exp(-iz)]/2i where z = x+iy
is a complex number.

In the limit as spatial and temporal discretization intervals
vanish, expression (6) approaches the continuous space-
time dispersion/attenuation relation (4). Finally, if the SLS
amplitude scalars vanish, (6) reduces to the discrete elastic
(or acoustic) dispersion relation given by Moczo et al.
(2000) and Aldridge and Haney (2008).

Discrete Phase Speed and Attenuation Factor
Extraction of the frequency-dependent phase speed and

attenuation  factor  functions from the discrete
dispersion/attenuation relation (6) is complicated by the

fact that the complex wavenumber K(w) appears within the
arguments of the sine functions. Nevertheless, in the
special case of a cubic grid (h, = 4, = h, = h), these can be
obtained if plane wave propagation is restricted to one of
the three principal directions illustrated in Figure 3.

r4 r4 r4
Figure 3. Plane wave propagation directions through a 3D

spatial grid. Left: along a coordinate axis. Middle: along a
coordinate-plane diagonal. Right: along a body diagonal.

The discrete dispersion/attenuation relation becomes
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where £, is an effective spatial grid interval defined by
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according to the three principal directions. Next, the
multiple-angle sine functions are expanded in power series
(Gradshetyn and Ryzhik, 1993). We obtain
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where the expansion coefficients B, are linear combinations
of the spatial FD operator coefficients b,. Equation (8) is a
polynomial of order N-1 in sin(K(w)h./2). All coefficients
except the constant term are real-valued. Extraction of the
approximate ROOT of the polynomial enables the complex
wavenumber to be determined via
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where the arcsin function is understood as complex-valued.

Discrete-medium phase speed and attenuation factor are
then obtained via equations (5a,b).
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Numerical Example

Figure 4 displays phase speed, attenuation factor, and
quality factor as functions of frequency (in Hz) for an SLS
with R = 3 attenuation mechanisms. Quality factor is
obtained from phase speed and attenuation factor via

O(w) = l[ 2] ~ c(a))a(a}):| .
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Green/red curves pertain to the continuous/discrete VMS
systems. Plane wave propagation is along the +x-axis, and
FD operator orders are M=2 and N=4 (with conventional
Taylor series coefficients). The timestep /4, equals the
elastic CFL stability limit, but is calculated with the
infinite-frequency anelastic wavespeed. This particular
SLS is optimally designed to yield O(f) ~ 100 over the
bandwidth 5-500 Hz, with phase speed ¢ = 2000 m/s at f'=
100 Hz (Aldridge, 2000). Clearly, algorithm performance
departs from the ideal situation at about f'~ 200 Hz.

The same information is re-plotted in Figure 5 with respect
to the FD sampling parameter s = h/A; = hf /c,(f), where 4
is a wavelength within the discrete grid. s =0.5 corresponds
approximately to f =1000 Hz. Curves are normalized by
dividing by the corresponding continuous space-time
quantity (subscript “c”), implying the horizontal green line
at unity represents ideal algorithm performance. The
vertical blue line corresponds to the conventional “5 grid
intervals per wavelength” rule of thumb for dispersion-free
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numerical wave propagation. Although phase speed is
indeed within +1/2% of the ideal, the attenuation factor and
quality factor deviate by +3.5% and -4%, respectively.

Conclusions and Ongoing Work

We have developed a numerical dispersion/attenuation
relation for the 3D isotropic anelastic VMS system, solved
via O(M,N) FD operators on staggered spatial and temporal
grids. Phase speed and attenuation factor curves extracted
from this relation enable optimal selection of spatial and
temporal grid intervals to achieve algorithmic efficiency,
with minimal numerical dispersion and attenuation.
Additional work entails developing a solution methodology
addressing arbitrary wave propagation directions, high
spatial order FD operators (where extracting roots of a
high-order polynomial are required), group speed, and
understanding the CFL stability condition for the discrete
VMS system. Finally, the derivational methodology
applies to other partial differential systems governing wave
propagation in attenuative media (e.g., electromagnetic or
poroelastic waves).
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