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Introduction

Many authors have reported the benefits of using higher-order, exact charge conservation
schemes for electromagnetic particle-in-cell (EM-PIC) simulations of laser-plasma interactions.
With no complex boundary conditions or internal geometry to deal with, the implementation of
higher-order schemes is relatively straightforward.[1] In contrast, most current EM-PIC
simulations of high-power devices use the exact, first-order charge-conserving scheme.[2] This is
usually adequate to self-consistently model the interaction of high-energy electrons with the
electromagnetic field in vacuum. Provided that boundary conditions are handled well, simulations
can accurately model the “ideal” behavior of a device, and agree well with experiment early in the
power pulse. However, real devices often exhibit degraded performance later in time, attributed to
the effects of cold, dense plasmas formed at electrode surfaces.[3] To have true predictive
capability of real device behavior, these effects must be modeled. However, the Debye length of
these electrode plasmas is of order microns or less. To simulate an entire device with such
plasmas requires operating at Ax/Ap, >> 1. The first-order scheme simply cannot handle this
problem adequately. To address this, we have developed a second-order, exact charge-
conservation scheme that handles boundaries, implemented in the 3-D EM-PIC code
QUICKSILVER.[4] The algorithm handles complex conductor geometries and standard external
boundaries, on non-uniform grids, in either Cartesian, cylindrical or spherical coordinates.

Second-order algorithm in vacuum

We first describe the baseline particle weighting used for vacuum cells, starting with the 1-D case.
Fig. 1 illustrates our nomenclature for the standard interleaved grid, with charge density defined

at the “full-grid points”, at the center of “half-grid cells”, and current density at the normal faces
of the half-grid cells. In Fig. 1, we have a single particle with charge q, moving from the initial

location x” to the final location x!, within a single half-grid cell. In everything that follows, if a
particle crosses a half-grid cell boundary in the timestep, we break up the particle path into
segments confined to a single half-grid cell, and use the algorithm for each segment. The current
pulse, J = q(x1 - XO)/(AtAV), is scattered to the two half-grid cell boundaries using linear

weighting from the centroid of the particle path, (x0 + xl)/2. Defining the half-grid weight factors,
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for time levels n = 0,1. the current density at the cell boundaries are
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For notational simplicity, we omit factors of q, At and cell area in Eq. 2. To satisfy the discretized
version of charge conservation on the grid, it is straightforward to show that the particle charge

must be allocated to the three cells i+a, a = [-1,0,1],using charge weights Wza :
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Having defined the charge weights, it is useful and instructive to rewrite Eq. 2 as
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Figure 1. 1-D grid geometry and current density allocation for a single particle.
In three dimensions, each particle contributes charge to 27 cells,
n _ .n n _n
Pita,j+pk+y = WxaWypWay- (5

The transverse weighting of the current density depends on the path taken from the initial to the
final location. Computing these weights is trivial for the six “rectangular” paths in which each
coordinate is traversed with the others held fixed, e.g. first x" to x!, then y0 to yl, and finally 2% to
z!. However, the natural and physical choice is the straight line path between x° and x'. To derive
the transverse weights for this path, subdivide it into N segments, use any of the six rectangular
paths for the N segments, and then let N — oo . The result is identical to simply averaging over the
six full rectangular paths. For J, we have
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Jy and J, are similarly defined. An important property of defining J using Eqgs. 6 and 7 is that
charge is automatically conserved if the charge weights are modified from Eq. 3, provided that

WEO =1- Wz_ - Wz +, with analogous constraints on the y and z weights.



Modification for bounded geometry

In QUICKSILVER, all surfaces on which particles are created or killed are coincident with faces
of full-grid cells. With the first-order scheme, when a particle is at the surface of a kill cell, it
contributes no charge to the interior vacuum grid points. Thus charge is conserved at interior
points when the particle is removed from the system. This is not true with the second-order
scheme; killing the particle leaves up to 1/8 of the particle charge at interior points. Similarly, if a
particle is created at a conductor surface, charge is allocated to interior grid points, without
charge-conserving modification to the electric field. The larger transverse stencil also leads to
major complications for particle creation and particle/surface interaction models.

The approach we have taken to deal with boundaries is to modify the particle weighting near kill
cells, smoothly transitioning from second to first order as particles move down to any kill surface.
We define the half-grid cell’s type, based on the kill status of the eight full-grid cells intersecting
it. There are eight types: 0 = vacuum, 1-3 = flat surfaces, 4-6 = edges, and 7 = “other”. Some

examples are shown in Fig. 2 (slanted surfaces are implemented with a 3-D extension of Ref. 5).
In a non-vacuum cell, we first compute the fraction of the second-order scheme to use, fQ. For flat

surfaces, fg is easily computed from the height above the surface. For edges, we compute f(, by

bilinear interpolation from values at the corners of the quadrant of the half-grid cell in which the
particle is located. For conformal conductors, fQ =] at corners in vacuum, zero otherwise.

Slanted surfaces and slanted/conformal corners are treated as edges, using f = -1 for the corner
beneath the surface, as shown in Fig. 2d. For the other type, we must interpolate f from values at
the corners of an octant of the half-grid cell. The corner values of f(, for edges and other types are

all pre-computed at t = 0. Since they have at most three states, they are all packed into bit-fields of
a single integer, along with the half-grid cell type.
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Figure 2. Examples of some half-grid cell types: (a) Flat surface, (b) and (c) are the two types
of edge with conformal conductors, and (d) slanted surface.

The modified charge density weights for a non-vacuum cell are a linear combination of fq times
the second-order weights using Eq. 5, and (1-f) times the standard first-order weights at the eight
corners of the full-grid cell in which the particle is located. The current density is computed from
the modified charge weights using Eqgs. 6 and 7. This scheme results in allocation of p beneath the
surface, but it is small enough that we do not bother to correct this; for a uniform grid, the worst
case is 1/54 of a particle’s charge beneath a flat surface. There are other details that the algorithm
must handle to conserve charge. First, particle trajectories must be truncated at the surface of all
conductors and all exterior boundaries. Second, mirror (PMC) boundaries require special
handling. No transition to first-order weighting is needed, but J and p values accumulated behind
the boundary must be mapped back to interior points.



Finally, we discuss the interpolation of electromagnetic fields to the particle. For the first-order
scheme, it is customary to first interpolate E and B from their staggered locations on the Yee grid
to the full-grid cell corners. The interpolation of all components of E and B to the particle can
then done with a single set of weights. When Ax/Ap,>> 1, unstable electrostatic fluctuations

cause unacceptable numerical heating. However, if E is interpolated directly from the Yee grid,
using exactly the same weighting scheme with which J is laid down on the grid, energy
conservation is excellent. This is the electromagnetic analog of well-known, energy-conserving
electrostatic algorithms.[6] For the first-order scheme, this means using NGP weighting of E in
the longitudinal direction, which may be excessively crude. However, for the second-order
scheme, we have continuous, piecewise-linear interpolation of E in the longitudinal direction.

Results and Future Plans

Charge conservation has been verified in a wide variety of systems, some with very complex
conductor geometry. The algorithm has also proved to be very useful for simulations involving
plasma formation by ionization of a background gas: the second-order scheme successfully
handles plasma densities at which the first-order scheme fails. The algorithm shows great promise
for the dense electrode plasma problem. We have studied 1-D expansion of a collisionless plasma
slab into vacuum, using cell size and timestep characteristic of our large production simulations,
Ax =0.5 mm and At = 0.5 ps. For plasma parameters n = 10! cm™, T, =1 eV, we have Ax/Ap, =
2130, At = 0.89. The plasma expansion is in good agreement with a multi-fluid simulation,
and conserves total energy to within 5% over 200,000 timesteps. To actually use this capability,
we are developing a new plasma emission model. We load electron/ion pairs near the surface to
maintain a user-defined plasma density, 1 - 2 orders of magnitude higher than a standard space-
charge-limited (SCL) emission algorithm [5] would generate. The code will then self-consistently
extract the SCL current from this plasma. Finally, we note that particle collision models must also
be developed to correctly treat plasma expansion across a magnetic field.

Acknowledgements

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
company, for the United States Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94-AL85000.

References

1. T. Zh. Esirkepov, Comput. Phys. Comm. 135, 144 (2001).

J. Villasenor, O. Buneman, Comput. Phys. Comm., 69, 306 (1992).
M. E. Cuneo, IEEE Trans. Dielectr. Elect. Insul., 6, 469 (1999).

J. P. Quintenz, D. B. Seidel, et al., Laser Part. Beams 12, 283 (1994).
T. D. Pointon, J. Comput. Phys., 96, 143 (1991).

A

C. K. Birdsall, A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New
York, 1985), Ch. 10.



	Second-Order, Exact Charge Conservation for Electromagnetic Particle-in-Cell Simulation in Complex Geometry
	Introduction
	Second-order algorithm in vacuum
	Modification for bounded geometry
	Results and Future Plans
	Acknowledgements
	References

