
An Extensible Operating System Design for Large-Scale Parallel
Machines

Rolf Riesen Kurt Ferreira

Sandia National Laboratories∗

{rolf,kbferre}@sandia.gov

Abstract
Running untrusted user-level code inside an operating sys-
tem kernel has been studied in the 1990’s but has not really
caught on. We believe the time has come to resurrect kernel
extensions for operating systems that run on highly-parallel
clusters and supercomputers. The reason is that the usage
model for these machines differs significantly from a desk-
top machine or a server. In addition, vendors are starting to
add features, such as floating-point accelerators, multicore
processors, and reconfigurable compute elements. An oper-
ating system for such machines must be adaptable to the re-
quirements of specific applications and provide abstractions
to access next-generation hardware features, without sacri-
ficing performance or scalability.

1. Introduction
Large-scale, high-performance clusters and supercomputers
used for scientific parallel computing require specialized op-
erating systems (Brightwell et al. 2003). Usually, these ma-
chines run a single, parallel application that is spread across
many or all the nodes of a system. Each process that is part
of that application is assigned to a CPU (core) and “owns” it
for the duration of the run. That means that during that run,
no other processes that are not part of that application will be
assigned to these CPUs. Multiple applicationsspace-sharea
parallel machine.

OS-noise has been identified as a major culprit that in-
hibits scalability (Petrini et al. 2003; Ferreira et al. 2008).
Parallel applications exchange messages and often need to
wait for the data before they can proceed. If one of the pro-
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cesses is delayed because the local operating system is busy
running other processes or doing housekeeping tasks, it will
delay the entire application. As parallelism increases, the
likelihood that any one operating system instance is not cur-
rently running the parallel application process, increases as
well. That means the parallel application is slowed down as
it is run on more nodes and resources are wasted as hundreds
or thousands of nodes wait for the straggler.

All the resources of a node: CPUs, network interfaces,
and memory, are allocated to processes of the same appli-
cation. While memory protection between processes is still
useful for debugging, it is no longer strictly necessary. In
fact, it might be performance beneficial to let processes run-
ning on multiple cores freely share the memory of a single
node (Brightwell et al. 2008). Policies for process control
should also be determined by the application itself. There-
fore, within a node, less protection is needed than what typ-
ical operating systems provide.

However, some protection mechanism still need to be en-
forced by the operating system. For example, the applica-
tion should have full control over the network interface (OS
bypass) so it can be managed as efficiently as possible, but
trusted header information, such as the source node ID and
process ID of a message, must be under operating system
control. In other words, the operating system should let an
application manage the nodes that have been allocated to it,
while still protecting the resources of the machine that be-
long to other applications.

Many clusters, especially the larger ones, and most super-
computers employ a parallel file system whose storage de-
vices are external to the machine or attached to dedicated I/O
nodes. Compute nodes do not have local disks. Most other
peripherals that are supported by desktop operating systems
are missing as well. In fact, the main peripheral accessible to
the application is a high-speed network interface sometimes
directly attached to the memory bus. All I/O operations, re-
mote memory access, and explicit message passing are han-
dled by that one device.

This architecture limits the number of devices an oper-
ating system must support. Furthermore, many modern net-
work interfaces are intelligent and interact with the appli-

SAND2009-0245 C
SAND2009-0245C



cation directly. Copying data through the operating system
would have disastrous effects on network performance.

Because of these characteristics, parallel applications
running at large scale have very specific demands of an oper-
ating system. In addition, the hardware to build clusters and
supercomputers is changing and requires adaptation from
the application and the operating system. The operating sys-
tem is expected to match an application to the hardware it
runs on as efficiently as possible.

Some of the new hardware features that require applica-
tions and operating systems to adapt are here already. One
example is the use of multicore processors. Other features
are not in production use yet, but are being discussed as po-
tential performance booster for next-generation systems.Ex-
amples include attaching graphic processing units (GPUs)
or other specialized processors, such as IBM’s cell architec-
ture, to general purpose CPUs to accelerate floating-point in-
tensive calculations. More exotic devices, for example Field
Programmable Gate Arrays (FPGAs) that can be reconfig-
ured on the fly for a specific application need, or Processor
in Memory (PIM) devices that could help alleviate memory
bus throughput demands, are on the horizon.

An operating system must provide abstractions that unify
several of these technologies and make them accessible to
portable applications. Such applications cannot be re-written
for every possible new feature a vendor offers. Rather, it is
the operating system’s role to manage the new resource, and
make them available to the application.

A look at the list atwww.top500.org reveals that the
number of processors built into the five-hundred fastest
systems in the world, is increasing every year. With a
higher component count the likelihood of a hardware fail-
ure increases. This reduces the Meantime Between Failures
(MTBF) for large scale applications.

A similar argument can be made for the software side.
The likelihood that a subtle timing bug is triggered increases
with the number of code instances running. A small op-
erating system kernel is easier to debug, test, and reason
about than a multi-million line, full-featured operating sys-
tem. Furthermore, it is easier to restart or migrate a small
operating system in case of a hardware failure or an early
warning.

An earlier HotOS paper (Hunt et al. 2005) listed the chal-
lenges for next-generation systems as: dependability, secu-
rity, system configuration, extension, and multi-processor
programming. While that paper was written in the context
of desktop operating systems, many of the points the au-
thors make also apply to operating systems for high-end
parallel computing. In particular, system configuration and
multi-processor programming are areas that need to be ad-
dressed. We think that kernel extensions allow us to write
small, simple, and scalable operating systems with the flex-
ibility to adapt to the demands of future architectures and
applications.

For these reasons we believe the time has come to revisit
extensible operating systems and apply some of the tech-
niques and lessons learned in the 1990’s to high-end, paral-
lel computing. We envision a very small kernel that provides
base services and can be extended by the runtime system of
the machine or by the application itself. Some of these exten-
sions adapt the kernel to a given machine and are probably
inserted during boot time by a trusted entity. Less trusted ex-
tensions can be inserted by the applications. These are only
needed while the application is running and are meant to pro-
vide a better impedance match between the application and
the underlying operating system and hardware.

We will explain our design ideas in the next section and
discuss in Section 3 why we think these ideas are beneficial
to high-end parallel computing platforms. We will look at
related work and provide a summary at the end of the paper.

2. Nimble
Work on a kernel called Kitten that builds on our experiences
with lightweight kernels (Wheat et al. 1994; Maccabe et al.
2004; Riesen et al. 2008) for massively parallel machines
is currently under way. The goal of the Kitten project is to
efficiently use the multicore resources that have begun to ap-
pear in modern parallel machines. In this section we describe
Nimble, an extension infrastructure for a lightweight kernels
such as Kitten.

2.1 Extensibility

Core operating system tasks, such as initializing devices,and
simple process and memory management, will be provided
by the lightweight kernel. In contrast to a full-features desk-
top or server operating system, lightweight kernels provide
only rudimentary services. There is a single, or at most a
couple, of processes running on each CPU core and there is
no support for demand paging, kernel-level threads, TCP/IP,
dynamic libraries and many other amenities that desktop
users expect but limit performance and scalability.

Nevertheless, some applications may be willing to make
performance and scalability sacrifices for a given feature.At
other times in may not be practical to rewrite as service or a
library on which an application depends. Additionally, pro-
viding just one more feature may not compromise perfor-
mance or scalability, while making all of the available will
cripple the operating system and the machine it runs on.

Therefore, we propose to use kernel extensions to cus-
tomize the operating system to the specific hardware it is
running on and adapt it to the currently running application.
There are two types of extensions.Trustedkernel extensions
have direct access to the hardware and are used by the system
administrator and the runtime system to adapt the kernel to
the hardware. This is typically done at boot time and is akin
to loadable kernel modules that Linux provides.

Application-insertedkernel extensions are generally not
trusted and do not have direct access to hardware or other



privileged resources. However, remember that most of the
node resources have been allocated to the application al-
ready. The kernel must enforce access policies to resources
outside the node, but most of the node resources are man-
aged by the application itself. This is typically done through
a library that inserts a kernel extension on behalf of the ap-
plication.

For example, an application-inserted kernel extension
can augment the basic process scheduler present in the
lightweight kernel to allow for active messages to force a
context switch to a user-level handler as soon as they arrive.
An application that consists of a single process per CPU core
could run with an infinite time quantum.

An application could use kernel extensions to dedicate a
CPU core to handle message-passing traffic from the net-
work interface and run compute-intensive processes on the
other cores. An application that is not communication inten-
sive may use an interrupt-driven kernel extension to handle
network interface requests, and use all CPU cores for com-
putation.

Latency-sensitive operations, such as remote memory ac-
cesses or collective message-passing operations, could ben-
efit from a kernel extension that handles some network re-
quests in the kernel on behalf of the application instead of
incurring a full context switch to run a user-level handler.

Instead of the kernel providing a slew of mechanisms, it
provides only basic services and the ability to insert exten-
sions that provide new mechanisms and set policy on behalf
of the application.

2.2 Implementation

In the 1990’s several methods to extend kernels were inves-
tigated. One that has not had very much attention is interpre-
tation. An interpreter is relatively easy to write and it is easy
to shield other parts of the kernel from code that is inter-
preted. For code from a trusted source, Nimble will disable
access and privilege checks in the interpreter. This will yield
a small performance advantage, but more importantly, it will
allow trusted extensions to access and manipulate protected
resources.

Another reason we are considering an interpreter is that
we expect most extensions to be small, simple, and to only
run for brief moments. For example, a process scheduler that
needs to pick the next process to run from a pool of less than
a handful, does not require a lot of instructions. The code to
do the actual context switch is written in C, already residesin
the lightweight kernel, and can be called by the interpreter.
Code to initiate a data transfer through the network interface
already exists as well. A kernel extension makes a single
subroutine call to start the data transfer.

Techniques for fast interpretation have been studied for
a long time and are still under investigation for today’s
byte code interpreters. One such technique, called threaded
code (Bell 1973), is one we intend to pursue.

During code insertion the extension is threaded. Each
instruction in the extension is converted to a subroutine call
into the interpreter. This makes interpretation a two-step
process. First, the instructions are examined and translated.
In the second step, during the execution of an extension,
execution proceeds along a thread that consists of various
subroutines the interpreter provides.

When Nimble starts executing an extension, for each
original statement in the extension, control flow will be redi-
rected into the appropriate subroutine inside the interpreter.
The subroutines contain the code that encapsulates the se-
mantics of a given statement in the kernel extension.

The subroutines are written in C and compiled into Nim-
ble. We intend to have two versions of most subroutines. One
that performs access checks and another which does not.

Threaded code reduces the interpretation overhead to one
or two assembly instruction per interpreted statement in the
kernel extension. While many statements will be simple,
such as loading a value, many are more complex and the
overhead of interpretation will be negligible.

There are variations on threaded code. The method we
described above is called subroutine threading. During the
translation step the statements to be interpreted are translated
into a series of CPU “call subroutine” instructions. It can be
argued that this technique is not interpretation, since thecall
instructions are simply executed after the original statements
have been translated. Depending on the CPU architecture,
direct threaded coded may be faster. Direct threaded code is
just a compact list of addresses. The interpreter reads these
addresses and calls the subroutine where these addresses
point to. Either of these techniques are faster than interpret-
ing byte code (Ertl 1993; Klint 1979; Dewar 1975).

Nimble will add mechanisms to the lightweight kernel
to insert and remove extensions, to call them for specific
events, such as interrupts or application traps into the kernel,
allow one extension to call another, and to limit the running
time of an extension.

3. Discussion
Operating system kernel extensions have been extensively
studied in the 1990’s, but have not really caught on in main-
stream desktop operating systems. We believe that one rea-
son for that is that much of the extensibility was aimed at im-
proving operating system performance by avoiding unneces-
sary kernel-to-user-level-transitions by executing usercode
in the kernel.

There are other techniques for that and machines have
gotten fast enough for many tasks that were considered to be
in need of improvement in the 1990’s. We believe that ker-
nel extensions have a place in high-end parallel computing
for several reasons. One is that speed is still of primary con-
cern here and that inefficiencies in the operating system can
severely limit the scalability of a parallel machine. The other
reason is that next-generation supercomputers will employ



technologies – starting with multicore processors to attached
floating-point engines – that will be difficult to exploit in a
general purpose way.

Each application and programming model has its own
specific needs. If a hardware resources and an access policy
can be customized for a specific application, performance
and scalability benefits will follow. In the type of machines
we are considering, this is possible because they are space
shared and whole sets of nodes are allocated to an applica-
tion. Letting the application manage these resources is more
efficient than providing general purpose mechanisms and
policies. We need an operating system that can be used to
manage the machine as a whole (allow for node allocation
for example), but gets out of the way when an application
wants to make use of the resources allocated to it.

Therefore, we want to give each application the oppor-
tunity to set its own resource allocation policy and add the
specific features it needs in an operating system, while not
being burdened by services it does not need and that could
limit performance or scalability. Allowing applications to in-
sert user-level code into the kernel seems an ideal way to
achieve this flexibility.

Allowing user-level code to execute inside a lightweight
kernel makes sense because the usage model and the require-
ments for high-performance parallel computers are quite dif-
ferent from the needs of a desktop user or even a server farm.
Some aspects of embedded computing apply as well, but
these systems, once deployed, are more static in nature than
the application mix run on a parallel computer.

4. Related work
The idea of executing user code, an extension, inside the ker-
nel has seen several incarnations. Sand-boxing, also called
software-based fault isolation (Wahbe et al. 1993), is the idea
of limiting data accesses to a certain segment of main mem-
ory. This is done by inserting code before potentially un-
safe instructions that sets (or checks) the uppern bits of the
address to a value that corresponds to a segment which the
code is allowed to access. For our approach this may be too
limiting, since we do want to make some memory mapped
devices accessible to extensions, while preventing accessto
memory-mapped registers that must be protected.

The SPIN project (Bershad et al. 1994) used a trusted
compiler to generate spindles that get inserted into the ker-
nel. The spindles are digitally signed to ensure that they were
generated by the trusted compiler. The runtime system for
the chosen language and the cryptographic tools to verify
the signatures would need to be available on each node. De-
pending on the source language chosen, this may be a signif-
icant amount of code that is statically linked with the parallel
application.

Interpreters have been studied extensively and some of
them have been embedded in kernels before. The BSD
packet filter is one example (Mogul et al. 1987). Another

is our work of adding a FORTH interpreter to the firmware
of a Myrinet network interface (Wagner et al. 2004). We
used that to improve the performance of collective MPI op-
erations such as broadcast.

Interpreters are often considered to be too slow for sys-
tem services. However, our extensions are small and per-
form simple tasks. It should be possible to gather the most
often used constructs and sequences into a virtual machine
which can be optimized to execute efficiently (Pittman 1987;
Proebsting 1995). Then, using indirect threaded code or di-
rect threaded code techniques, build an extremely fast inter-
preter (Bell 1973; Dewar 1975; Kogge 1982; Ertl 1993).

Several operating systems have made use of extensions.
We already mentioned SPIN. Global Layer Unix (GLU-
nix) (Vahdat et al. 1994) used software-based fault isolation
to move OS functionality into user level libraries. We want
to move user code functionality into the kernel. The VINO
kernel was designed to let applications specify the policies
the kernel uses to manage resources. That is what we are
interested in, but specifically for high-performance parallel
environments, instead of database management systems for
which VINO was designed.

In the µChoices operating system (Campbell and Tan
1995; Tan et al. 1995) agents can be inserted into the ker-
nel. These agents are written in a simple, flexible scripting
language similar to TCL, and are interpreted. Agents batch a
series of system calls into a single procedure that requires
only one trap into the kernel to be executed. Agents use
existing kernel services and do not extend the functional-
ity of the kernel or provide services that are not available
at user level. Agents are a simple optimizations to elimi-
nate the overhead of several system calls. We also need to
mention the MIT Exo kernel (Engler et al. 1995; Engler and
Kaashoek 1995). It attempts to lower the OS interface to the
hardware level, eliminating all abstractions that traditional
operating systems provide, and concentrates on multiplex-
ing the available physical resources. This is similar to our
lightweight kernels which provide only very basic services
and rely on user-level libraries to implement other services.
Nimble is meant to extend this concept and push some of
that functionality back into the kernel when it is needed at
run time.

Methods to safely execute untrusted code in a privileged
environment are compared in (Small and Seltzer 1996).

5. Conclusions and future work
Lightweight kernels have proven successful in the past on In-
tel’s Paragon and ASCI Red at Sandia National Laboratories,
on Cray’s XT-3 Red Storm, and on IBM’s Blugene/L series
of machines. These lightweight kernels are small and scal-
able, allow applications to get most of the available memory
(without demand-paging) and run on tens of thousands of
nodes in parallel.



As more applications are being ported to these kinds of
machines, the demand for additional features and services
increases. A modern operating system must provide some
of these features without compromising scalability or effi-
ciency.

We are working on a new lightweight kernel called Kit-
ten that carries our experiences with large-scale parallelma-
chines forward to machines with potentially hundreds of
cores per node. We have started the design of Nimble which
will be integrated into Kitten. Nimble will provide the in-
frastructure to let applications extend Kitten’s functionality.
These extensions are meant to provide additional services
and provide access to next-generation hardware features.
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