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Abstract cesses is delayed because the local operating system is busy
Running untrusted user-level code inside an operating SyS_running other processes or doing housekeeping tasks, it will

tem kernel has been studied in the 1990’s but has not reaIIyqe""‘_y the entire application. _AS paraIIeIi_sm incre_ases, the
caught on. We believe the time has come to resurrect kernellikelihood that any one operatln_g system mstan(_:e IS not cur-
extensions for operating systems that run on highly-parallel "6Ntly running the parallel application process, increases as
clusters and supercomputers. The reason is that the usag¥€ll- That means the parallel application is slowed down as
model for these machines differs significantly from a desk- itis run on more nodes an(_:i resources are wasted as hundreds
top machine or a server. In addition, vendors are starting to ©F thousands of nodes wait for the straggler.

add features, such as floating-point accelerators, multicore A\l the resources of a node: CPUs, network interfaces,

processors, and reconfigurable compute elements. An oper-and memory, are allocated to processes of the same appli-

ating system for such machines must be adaptable to the re €ation. While memory protection between processes is still
quirements of specific applications and provide abstractions USeful for debugging, it is no longer strictly necessary. In
to access next-generation hardware features, without sacri{aCct: it might be performance beneficial to let processes run-
ficing performance or scalability. ning on r_nultlple cores freely shar(_e _the memory of a single
node (Brightwell et al. 2008). Policies for process control
1. Introduction should also be determined by the application itself. There-

i fore, within a node, less protection is needed than what typ-
Large-scale, high-performance clusters and supercomputers. operating systems provide

use(_j for scientific pa}rallel computing require specialized op- However, some protection mechanism still need to be en-
erating systems (Brightwell et al. 2003). Usually, these ma- ¢, by the operating system. For example, the applica-

chines run a single, parallel application that is spread aCr0SStion should have full control over the network interface (OSs
many or alllthe_ ”09'95 Of, a system. Each process tf‘at IS f’_anoypass) so it can be managed as efficiently as possible, but
of that application is assigned to a CPU (core) and “owns” it y,qted header information, such as the source node 1D and
for the duration of the run. That means that during that run, process ID of a message, must be under operating system
no c_)ther processes that are no_t part othat_appIication will be control. In other words, the operating system should let an
assigned to th_ese CPUs. Multiple applicatispace-share application manage the nodes that have been allocated to it,
parallel machlne. i . , i . while still protecting the resources of the machine that be-
OS-noise has been identified as a major culprit that in- long to other applications
hibits scalab_ility.(Petrini et al. 2003; Ferreira et al. 2008). Many clusters, especially the larger ones, and most super-
Parallel applications exchange messages and often need teomputers employ a parallel file system whose storage de-
wait for the data before they can proceed. If one of the pro- \icaq are external to the machine or attached to dedicated 1/0
* Sandia is a multiprogram laboratory operated by Sandia Corporation, a nOd_eS- Compute nodes do not have local disks. _MOSt other
Lockheed Martin Company, for the United States Department of Energy peripherals that are supported by desktop operating systems
under contract DE-AC04-94AL85000. are missing as well. In fact, the main peripheral accessible to
the application is a high-speed network interface sometimes
directly attached to the memory bus. All I/O operations, re-
mote memory access, and explicit message passing are han-
dled by that one device.
This architecture limits the number of devices an oper-
ating system must support. Furthermore, many modern net-

Submitted to HotOS Xil work interfaces are intelligent and interact with the appli-
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cation directly. Copying data through the operating system  For these reasons we believe the time has come to revisit
would have disastrous effects on network performance. extensible operating systems and apply some of the tech-

Because of these characteristics, parallel applicationsniques and lessons learned in the 1990’s to high-end, paral-
running at large scale have very specific demands of an operdel computing. We envision a very small kernel that provides
ating system. In addition, the hardware to build clustexs an base services and can be extended by the runtime system of
supercomputers is changing and requires adaptation fromthe machine or by the application itself. Some of these exten
the application and the operating system. The operating sys sions adapt the kernel to a given machine and are probably
tem is expected to match an application to the hardware it inserted during boot time by a trusted entity. Less trusked e
runs on as efficiently as possible. tensions can be inserted by the applications. These are only

Some of the new hardware features that require applica-needed while the application is running and are meant to pro-
tions and operating systems to adapt are here already. On&ide a better impedance match between the application and
example is the use of multicore processors. Other featuresthe underlying operating system and hardware.
are not in production use yet, but are being discussed as po- We will explain our design ideas in the next section and
tential performance booster for next-generation systéxs.  discuss in Section 3 why we think these ideas are beneficial
amples include attaching graphic processing units (GPUs)to high-end parallel computing platforms. We will look at
or other specialized processors, such as IBM'’s cell archite related work and provide a summary at the end of the paper.
ture, to general purpose CPUs to accelerate floating-pwint i
tensive calculations. More exotic devices, for examplédFie 2 Nimble
Programmable Gate Arrays (FPGAS) that can be reconfig-
ured on the fly for a specific application need, or Processor
in Memory (PIM) devices that could help alleviate memory
bus throughput demands, are on the horizon.

An operating system must provide abstractions that unify
several of these technologies and make them accessible t
portable applications. Such applications cannot be ré&emri
for every possible new feature a vendor offers. Rather, it is :
the operating system’s role to manage the new resource, anguch as Kitten.
make them available to the application. S

A look at the list atwww.top500.org reveals that the 2.1 Bxtensibility
number of processors built into the five-hundred fastest Core operating system tasks, such as initializing devares,
systems in the world, is increasing every year. With a Simple process and memory management, will be provided
higher component count the likelihood of a hardware fail- Py the lightweight kernel. In contrast to a full-featureskie
ure increases. This reduces the Meantime Between Failured0p Or server operating system, lightweight kernels previd
(MTBF) for large scale applications. only rudimentary services. There is a single, or at most a

A similar argument can be made for the software side. couple, of processes running on each CPU core and there is
The likelihood that a subtle timing bug is triggered ince=as o support for demand paging, kernel-level threads, TCP/IP
with the number of code instances running. A small op- dynamic libraries and many other amenities that desktop
erating system kernel is easier to debug, test, and reasor/sers expect but limit performance and scalability.
about than a multi-million line, full-featured operatingss Nevertheless, some applications may be willing to make
tem. Furthermore, it is easier to restart or migrate a small performance and scalability sacrifices for a given featéte.
operating system in case of a hardware failure or an early other times in may not be practical to rewrite as service or a
warning. library on which an application depends. Additionally, pro

An earlier HotOS paper (Hunt et al. 2005) listed the chal- Vviding just one more feature may not compromise perfor-
|enges for next-generation systems as: dependabi"tyrsec mance or scalability, while making all of the available will
rity, system configuration, extension, and multi-processo Cripple the operating system and the machine it runs on.
programming. While that paper was written in the context ~ Therefore, we propose to use kernel extensions to cus-
of desktop operating systems, many of the points the au-tomize the operating system to the specific hardware it is
thors make also apply to operating systems for high-end running on and adapt it to the currently running application
parallel computing. In particular, system configurationlan There are two types of extensioffsustedkernel extensions
multi-processor programming are areas that need to be adhave directaccess to the hardware and are used by the system
dressed. We think that kernel extensions allow us to write @dministrator and the runtime system to adapt the kernel to
small, simple, and scalable operating systems with the flex- the hardware. This is typically done at boot time and is akin

ibility to adapt to the demands of future architectures and to loadable kernel modules that Linux provides.
applications. Application-insertedkernel extensions are generally not

trusted and do not have direct access to hardware or other

Work on a kernel called Kitten that builds on our experiences
with lightweight kernels (Wheat et al. 1994; Maccabe et al.
2004; Riesen et al. 2008) for massively parallel machines
is currently under way. The goal of the Kitten project is to
@fﬁciently use the multicore resources that have begun-to ap
pear in modern parallel machines. In this section we describ
Nimble, an extension infrastructure for a lightweight kedmn



privileged resources. However, remember that most of the  During code insertion the extension is threaded. Each
node resources have been allocated to the application aldinstruction in the extension is converted to a subroutidle ca
ready. The kernel must enforce access policies to resourcesnto the interpreter. This makes interpretation a two-step
outside the node, but most of the node resources are manprocess. First, the instructions are examined and trauslat
aged by the application itself. This is typically done thgbu In the second step, during the execution of an extension,
a library that inserts a kernel extension on behalf of the ap- execution proceeds along a thread that consists of various
plication. subroutines the interpreter provides.

For example, an application-inserted kernel extension When Nimble starts executing an extension, for each
can augment the basic process scheduler present in theriginal statementin the extension, control flow will beired
lightweight kernel to allow for active messages to force a rected into the appropriate subroutine inside the intéepre
context switch to a user-level handler as soon as they arrive The subroutines contain the code that encapsulates the se-
An application that consists of a single process per CPU coremantics of a given statement in the kernel extension.
could run with an infinite time quantum. The subroutines are written in C and compiled into Nim-

An application could use kernel extensions to dedicate a ble. We intend to have two versions of most subroutines. One
CPU core to handle message-passing traffic from the net-that performs access checks and another which does not.
work interface and run compute-intensive processes on the Threaded code reduces the interpretation overhead to one
other cores. An application that is not communication inten or two assembly instruction per interpreted statementén th
sive may use an interrupt-driven kernel extension to handle kernel extension. While many statements will be simple,
network interface requests, and use all CPU cores for com-such as loading a value, many are more complex and the
putation. overhead of interpretation will be negligible.

Latency-sensitive operations, such as remote memory ac- There are variations on threaded code. The method we
cesses or collective message-passing operations, comdd be described above is called subroutine threading. During the
efit from a kernel extension that handles some network re- translation step the statements to be interpreted arddtads
quests in the kernel on behalf of the application instead of into a series of CPU “call subroutine” instructions. It can b
incurring a full context switch to run a user-level handler. argued that this technique is not interpretation, sinceétlie

Instead of the kernel providing a slew of mechanisms, it instructions are simply executed after the original stztets
provides only basic services and the ability to insert exten have been translated. Depending on the CPU architecture,
sions that provide new mechanisms and set policy on behalfdirect threaded coded may be faster. Direct threaded code is
of the application. just a compact list of addresses. The interpreter reads thes
addresses and calls the subroutine where these addresses
point to. Either of these techniques are faster than inéerpr
ing byte code (Ertl 1993; Klint 1979; Dewar 1975).

In the 1990's several methods to extend kernels were inves-  Nimble will add mechanisms to the lightweight kernel
tigated. One that has not had very much attention is interpre to insert and remove extensions, to call them for specific
tation. An interpreter is relatively easy to write and it&g  events, such as interrupts or application traps into theeter

to shield other parts of the kernel from code that is inter- allow one extension to call another, and to limit the running
preted. For code from a trusted source, Nimble will disable time of an extension.

access and privilege checks in the interpreter. This wélld/i

a small performance advantage, but more importantly, It wil . .

allow trusted extensions to access and manipulate protecte 3. Discussion

resources. Operating system kernel extensions have been extensively
Another reason we are considering an interpreter is that studied in the 1990’s, but have not really caught on in main-

we expect most extensions to be small, simple, and to only stream desktop operating systems. We believe that one rea-

run for brief moments. For example, a process scheduler thatson for that is that much of the extensibility was aimed at im-

needs to pick the next process to run from a pool of less thanproving operating system performance by avoiding unneces-

a handful, does not require a lot of instructions. The code to sary kernel-to-user-level-transitions by executing usete

do the actual context switch is written in C, already resides  in the kernel.

the lightweight kernel, and can be called by the interpreter ~ There are other techniques for that and machines have

Code to initiate a data transfer through the network interfa  gotten fast enough for many tasks that were considered to be

already exists as well. A kernel extension makes a single in need of improvement in the 1990’s. We believe that ker-

subroutine call to start the data transfer. nel extensions have a place in high-end parallel computing
Techniques for fast interpretation have been studied for for several reasons. One is that speed is still of primary con

a long time and are still under investigation for today’s cern here and that inefficiencies in the operating system can

byte code interpreters. One such technique, called thdeade severely limit the scalability of a parallel machine. Thieet

code (Bell 1973), is one we intend to pursue. reason is that next-generation supercomputers will employ

2.2 Implementation



technologies — starting with multicore processorsto agdc  is our work of adding a FORTH interpreter to the firmware
floating-point engines — that will be difficult to exploitin a of a Myrinet network interface (Wagner et al. 2004). We
general purpose way. used that to improve the performance of collective MPI op-

Each application and programming model has its own erations such as broadcast.
specific needs. If a hardware resources and an access policy Interpreters are often considered to be too slow for sys-
can be customized for a specific application, performancetem services. However, our extensions are small and per-
and scalability benefits will follow. In the type of machines form simple tasks. It should be possible to gather the most
we are considering, this is possible because they are spaceften used constructs and sequences into a virtual machine
shared and whole sets of nodes are allocated to an applicawhich can be optimized to execute efficiently (Pittman 1987;
tion. Letting the application manage these resources imor Proebsting 1995). Then, using indirect threaded code or di-
efficient than providing general purpose mechanisms andrect threaded code techniques, build an extremely fastinte
policies. We need an operating system that can be used tqreter (Bell 1973; Dewar 1975; Kogge 1982; Ertl 1993).
manage the machine as a whole (allow for node allocation  Several operating systems have made use of extensions.
for example), but gets out of the way when an application We already mentioned SPIN. Global Layer Unix (GLU-
wants to make use of the resources allocated to it. nix) (Vahdat et al. 1994) used software-based fault isohati

Therefore, we want to give each application the oppor- to move OS functionality into user level libraries. We want
tunity to set its own resource allocation policy and add the to move user code functionality into the kernel. The VINO
specific features it needs in an operating system, while notkernel was designed to let applications specify the pdicie
being burdened by services it does not need and that couldthe kernel uses to manage resources. That is what we are
limit performance or scalability. Allowing applicationsin- interested in, but specifically for high-performance patal
sert user-level code into the kernel seems an ideal way toenvironments, instead of database management systems for
achieve this flexibility. which VINO was designed.

Allowing user-level code to execute inside a lightweight In the puChoices operating system (Campbell and Tan
kernel makes sense because the usage model and the requiré995; Tan et al. 1995) agents can be inserted into the ker-
ments for high-performance parallel computers are quite di nel. These agents are written in a simple, flexible scripting
ferent from the needs of a desktop user or even a server farmlanguage similar to TCL, and are interpreted. Agents batch a
Some aspects of embedded computing apply as well, butseries of system calls into a single procedure that requires
these systems, once deployed, are more static in nature thaonly one trap into the kernel to be executed. Agents use

the application mix run on a parallel computer. existing kernel services and do not extend the functional-
ity of the kernel or provide services that are not available
4 Related work at user level. Agents are a simple optimizations to elimi-

nate the overhead of several system calls. We also need to
The idea of executing user code, an extension, inside the ker mention the MIT Exo kernel (Engler et al. 1995; Engler and
nel has seen several incarnations. Sand-boxing, alsalcalle Kaashoek 1995). It attempts to lower the OS interface to the
software-based fault isolation (Wahbe etal. 1993), isde@i  hardware level, eliminating all abstractions that traxtiti
of limiting data accesses to a certain segment of main mem-gperating systems provide, and concentrates on multiplex-
ory. This is done by inserting code before potentially un- ing the available physical resources. This is similar to our
safe instructions that sets (or checks) the uppkits of the  |ightweight kernels which provide only very basic services
address to a value that corresponds to a segment which theind rely on user-level libraries to implement other seice
code is allowed to access. For our approach this may be tooNimble is meant to extend this concept and push some of
limiting, since we do want to make some memory mapped that functionality back into the kernel when it is needed at
devices accessible to extensions, while preventing atoess ryn time.
memory-mapped registers that must be protected. Methods to safely execute untrusted code in a privileged

The SPIN project (Bershad et al. 1994) used a trusted environment are compared in (Small and Seltzer 1996).
compiler to generate spindles that get inserted into the ker

nel. The spindles are digitally signed to ensure that thegwe
generated by the trusted compiler. The runtime system for .
the chosen language and the cryptographic tools to verify 5. Conclusions and future work
the signatures would need to be available on each node. Delightweight kernels have proven successful in the pasten In
pending on the source language chosen, this may be a signiftel's Paragon and ASCI Red at Sandia National Laboratories,
icant amount of code that is statically linked with the plelal  on Cray’s XT-3 Red Storm, and on IBM’s Blugene/L series
application. of machines. These lightweight kernels are small and scal-
Interpreters have been studied extensively and some ofable, allow applications to get most of the available memory
them have been embedded in kernels before. The BSD(without demand-paging) and run on tens of thousands of
packet filter is one example (Mogul et al. 1987). Another nodes in parallel.
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