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Micro Gas Analyzers Program Plan:
Fast GC separations

Phase II: Component-level Demonstration

- demonstrate separation using micromachined 
components

- demonstrate detectors/sensors

- control electronics (board level, not integrated)

Go-Ahead Milestones:

- size < 20 cm3

- det. limit < 50 ppt 

- 8/8 separation < 4sec

- Analytical channel capacity > 100

- energy/analysis < 3 J  (PC, GC, Detector, pump)

- FAR < 1 in 200,000 for 8/8 mix

- Repeatability of elution time ±2 sec

- System reset time <30 sec

- Cold start time < 2 min

- Total analysis time < 6 sec (not officially briefed)

Phase III: System Integration

-Utilize arrayed approaches

-Process integration w/ IC’s

Program goals:

- size < 2 cm3

- 20/10 separation < 4sec

- Peak capacity > 40 x 30

- det. limit < 1 ppt

- energy/analysis < 0.5 J

- FAR < 1 in 107 for 20/10 
mix (block ROC)



Separation of 16 Compounds in < 4 sec
(DARPA program milestone)
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 Temperature Programmed 
from 59 to 87 °C 

 30 PSI head pressure

 Peak Capacity R=1; ~35

8 CWA simulants
8 interferents
1m length, 100µm round column
0.1µm DB-5 stationary phase



Modeling Predicts System Efficiency Using 
Rectangular GC Columns

Longitudinal 
diffusion 

Mass Transport in the 
Mobile Phase 

Mass Transport in the 
Stationary Phase 

Extra-Column 
Band Broadening
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1st 3 terms model column performance, 4th term connects column to system

ū – average linear carrier gas velocity

Dg – binary diffusion coefficient in gas phase

f1 –Giddings-Golay gas compression correction factor 

f2 – Martin-James gas compression correction factor 

k – retention factor

w – channel width

h – channel height

df – stationary phase film thickness

Ds – binary diffusion coefficient in stationary phase

L – column length

t – time correlating to extra column band broadening

Δt = inlet (or outlet) volume, cm3

gas flow rate, cm3/sec



Integration Driver: Modeled GC Band Broadening
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Ideal 

(column only)

1 L outlet 
dead volume

1 L inlet 
dead volume

Inlet dead volume costs more than outlet dead volume due to

carrier gas compressibility:  (cm3/sec)outlet > (cm3/sec)inlet

Ahn and Brandani Model – Dec. 2005 T-programmed 8/8 separation



GC Peak Capacity vs. Injection Split Ratio

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60

Split Ratio 

P
e

a
k

 C
a

p
a

c
it

ty

Ideal - No Dead Volume

2 uL Inlet Dead Volume

3DPC volume ~2 µL

Required performance using single detector
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Mitigating the Effects of Inlet Dead Volume 



Phase 2:  2 External Valve System Schematic
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H2 inlet

Sample
Inlet

To sampling pump

To detector

Valve arrays

GC
PC

Phase 2 Hybrid Chips

Split Outlet

MEMS valves on PC chip limit inlet volume



Exploded view from the bottom

Glass lid

PC/valve chip

Glass base

Capillary

PC structure



Passive Offset Check Valve design concept
(normally open valve)

• Open one-way at low pressures
• Closed in the same flow direction at higher pressures 
• A check valve with an offset.    

• Our design uses a soft spring with properly selected stiffness, matched to:
• Pressure requirement
• Flow requirement
• Orifice size 

Normally open valve - low pressure

Gas flowpath

Valve body

Valve seat

spring

P = - 5 psig



Valve 2 - SUMMiTTM design and fabrication

Cross
section

Valve body 

Gas flow

Valve orifice

Spring 

Valve body

Spring attachment

Valve size ~400 m2

Upper poly-Si 
layer, which 
defines the 
valve orifice, is 
cut away in the 
micrograph
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Round vs. HARM columns

• Flow restriction and performance 
limited by radius

• Film deposition is uniform

• Flow restriction controlled by 
height

• Performance limited by 
width

• End effects

– Film deposition often 
results in thicker phases 
in the corner 

– Dead spaces in corners



2090 GC
Die 1: 20 um wide, 20 um wall, 
89.16 cm length between edge 
connections; 98 occurrences

Die 2: Like Die 1 with 
slight taper before edge 
connections; 94 
occurrences

Die 3: 20 um wide, 30 um 
wall, 73.58 cm length; 68 
occurrences

Utilize BOX layer of SOI 
wafer as etch stop to 
achieve required column 
depths



Sample Closeup: Die 1 
fabricated on 20 um SOI 
(1 um BOX, 650 um Si)

Spiral in/out
Inner radius: 250 um

Stated lengths 
are measured 
between here…

…and here

Die2 has a 
slight taper

Ctot 0.097
J

K


Delay layer has arrived and is awaiting processing



2090 GC test wafer - SEM

Capillary inlet

GC Column



2090 GC test wafer - SEM

Column walls (first etch)

Bottom of column (2nd etch)
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Example data, 2090 GC autocatalytic heating

H2 flow, mL/min: 31.5 (12.0 psi)
Air flow, mL/min: 88.6  (15.21 psi)
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• Fuel autoignites
• Thermocouple T 

lags fuel valve 
switching

• Efficiency ~25%, 
can be improved 
with “burner” 
design

dT/dt vs. 
T



Single Spiral in/out LIGA GC Column

•Test structure: 20 µm wall, 20 µm column, 150 µm depth
• 250 µm deep columns have been bonded
• Material stress test structures indicate 685 µm possible
• Designs with integral column interconnects are in fab



Initial Vapor sensing of DMMP using a 
protected phenol

  DMMP vapor from Tenax PC using Boc Protected Phenol Molecule as  Ch 1 and Ch 

2 and ODT as Ch 3 and Ch 4 both with Au nanoparticles
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Our initial observations during exposure to DMMP show: 
•Protected phenol-Au films have dramatically increased conduction (molecular electronic effect)
•Control ODT-Au films have a slight decrease in conduction (swelling)  

•10-4 J per detector channel per analysis!

Phenol Film

ODT Film

DMMP Selectivity 3400:1



Additional Sensor Channel Candidates
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•Phosphonate-selective
•Electron hopping?

Swelling mechanism, nonpolar

•Swelling mechanism
•Vary polarity, polarizability 
•Changing partition coefficients adds 
information to array response, 
increasing analytical power



Next device package
has 15 nL volume (3000x 
decrease), to improve 
both response speed and 
detector mass transport 
efficiency (lower LOD)

Linear Nanoresonator Response



Nanoparticle IDT Arrays

0.5 mm thick 
glass with 685 
micron capillary 
holes 

Two quartz 
nanoparticle IDT 
chips covered by a 
flow lid



Phase 2 MGA System
Microfabricated Components

PC w/MEMS 
valves

GC chip

Detector chip 
assembly



Phase 2 MGA System

COTS H2 control valves

GC chip

PC chip

H2 manifold

Air manifold

COTS
Sampling
pump



Summary: Phase II MGA Hybrid Integration Strategy

• Our Phase II prototype utilizes hybrid integration

• Disadvantages: System volume and interconnect dead volume

• Advantages: Yield, thermal isolation, system flexibility, LIGA column options

• Risk reduction for testing of prototypes

• Use COTS pump, COTS valves for “active” gas switching

• Use MEMS check valves, PC, GC, and detectors

• Modeling results drive custom microfabrication efforts (PC with integrated 
microvalves, GC column, detector fluidic packaging) to enable high-speed
system performance

• We have demonstrated first GC detection results on nanofabricated 
cantilevers in collaboration with the Roukes group at Caltech

• We have fabricated initial designs for Phase II external manifold structures


