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Summary

We consider the problem of finding a planted clique in a
social network whose edges are distributed between two
players. We make two empirically-justified assumptions
about the social network: 1) the maximum degree is \/n
and 2) the clustering coefficient of a node with degree d is
O(1/d?), a property implied with high probability from
the log-normal distribution posited by Kolda et. al. [7].
Our goal is to find the planted clique while minimizing
the amount of communication between the players.

We give a protocol that provably ensures whp that both
players find the clique, while requiring at most polyloga-
rithmic communication, and polynomial computation. We
believe that our algorithm can be generalized to the case
where edges are distributed among a constant number of
players and/or to finding a planted y-quasi-clique.

Introduction

Bob and Alice are two separate entities who observe the
world, learning about relationships, each building a graph.
The graphs are potentially huge, gathered over years, and
Bob
and Alice observe the same world, but may observe with

may represent considerable financial investment.

different emphasis or different methods. Although each
knows nothing about the other’s graph, we assume they
use the same naming conventions for the nodes. Thus, if
Alice and Bob both have a node for object x, they use the
same name, and if Bob sends Alice an edge with x as an
endpoint, she knows it is adjacent to her node labeled x.

Bob and Alice would like to cooperate to answer ques-
tions about the union of their graphs. However, we assume
communication between Alice and Bob is constrained to
be polylogarithmic. This may be because of the economic
value of information, internal corporate policy, or simply
limited bandwidth.

We make two key assumptions about the social network
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that Alice and Bob observe. The first is that the maximum
degree of any node is y/n. This can be enforced with a
log-normal distribution [7], and has been assumed in other
social-graph analysis such as Britton et. al. [1] and Chung-
Lu [3].

Our second assumption concerns how the clustering
coefficient of a node can depend on the node degree. In
particular, we assume the clustering coefficient of a node
with degree d is O(1/d?).
this assumption is reasonable for many social networks [7].

Empirical evidence suggests

This is especially true when social networks are “cleaned”
of abnormal behavior such as twitter accounts that recip-
rocate all follower relationships [9].

Moreover, two sociological properties may explain this
phenomena. First, the Strong Triadic Closure property
of [6] says that if node = has strong links with nodes y
and z then there is likely to be a (potentially weak) link
between y and z. Second, sociologists have argued that
the number of strong links that a node can have in a social
network is bounded [5]. These two facts together suggest
that the clustering coefficient must drop off at least as
fast as an inverse quadratic in the degree of the node.

Let n be the number of nodes in this social network.
For our theoretical results, we assume that Alice and Bob
both know n. Our experimental results use a slightly
revised algorithm that does not require this knowledge.

We assume that a subset of O(Inn) nodes are chosen
uniformly at random and that edges are added among
these nodes to form a clique. We can extend these results
for an adversarial placement of the clique'. We define
G = (V, E) to be the base social network with the planted
clique. The adversary distributes the edges arbitrarily to
Alice and Bob subject to the constraint that at least one
player knows each planted clique edge. Some edges of the
base graph may be in neither graph, but this only makes
the problem easier.

IThe extended analysis requires the generalized log-normal degree
distribution. Kolda et. al. [7] argue that log-normal better represents
social networks than a power law. McCormick et. al. [8] also found a
log-normal form for the size of a personal network, the total number
of people a person knows.



Algorithm Sketch

Let G, be Alice’s graph and let G, be Bob’s graph. Alice
and Bob run the following algorithm. They also run
the algorithm with their roles reversed and return the
best of the two cliques, since Bob may have received the
bigger clique piece. If any set is too large to send (super-
polylogarithmic), just stop. The adversary gave Alice too
few nodes from S. 1) Alice finds the subset of nodes, Q,
with maximum triangle density. Triangle density is the
number of triangles divided by the number of nodes. We
can find this in polynomial time using a triangle-density
version of the edge-density linear program in [2]. 2) Alice
finds the set of nodes, N,(Q.), adjacent to at least half the
nodes in @, in the graph G, and sends @, and N,(Q,) to
Bob. 3) Bob computes N,,(Q,), the set of nodes adjacent
to at least half the nodes @), in GG and sends it to Alice.
4) Let V, + Qo UNL(Qa) UNy(Q,). Let E, be the set of
edges in G, induced by V,, and let E/ be the set of edges
in Gy induced by V,. Bob computes E! and sends it to
Alice. Let E, < E, U E/. 5) Alice finds the maximum
clique in the graph (V,, E,) using any intelligent algorithm
guaranteed to find the maximum clique.

Correctness Sketch

Let S be the nodes in the planted clique. We can show
using Ramsey theory that one of Alice or Bob will re-
ceive ©(In® n) triangles of S. We assume without loss of
generality that Alice is a player receiving this number of
triangles. Any node not in S is involved in O(1) triangles
before the clique planting by the clustering-coefficient as-
sumption. Using the maximum-degree assumption, simple
probability, the uniform, random selection of clique nodes,
and the union bound, we can show that any node not in .S
has at most a constant number of edges into S with high
probability (whp). Therefore any such node has a constant
number of triangles involving any node of S. Thus any
node not in S is involved in O(1) triangles whp.

Alice’s subgraph @, C S whp. The subgraph @, has
triangle density Q(In?n), since Alice received ©(In®n)
triangles of the clique with Inn nodes. In a subgraph of
optimal triangle density d, any node participates in Q(d)
triangles. Otherwise, density would increase by dropping
that node. Since any node v ¢ S is part of O(1) triangles,
it will not be in Q. Since Q, has triangle density Q(In”n),
and the maximum triangle density of a graph with x nodes
is O(23/x) = O(x?), we have |Q.| = Q(Inn). In fact,

|Qa] = ©(Inn) because Q, C S.

The other nodes in S are neighbors of each node in Q.
Therefore each such node will be adjacent to at least half
the nodes in ), in G, and/or Gp. Thus S C Q,UN,(Q.)U
Nyp(Qy). If there are any stray nodes with high degree into
Q. (a low probability event), the clique-finding operation
at the end will remove them. Because |Q,| = ©(Inn),

even exhaustive enumeration runs in polynomial time.
Experiments

In our preliminary experiments, if we find an extremely
triangle dense subgraph of size much more than Inn, we re-
move it as abnormal behavior described by Rossi et. al. [9].
With one such cleaning, we found a planted clique S with
|S] < 3lnn in the YouTube graph with 3 million edges.

Comments

The structure of social graphs with reasonably-justified
restrictions on degree and clustering coefficient allows
efficient finding of planted cliques of size O(Inn). This
appears to be much easier than finding cliques in half-
dense Erdos-Renyi graphs, where the largest clique is of
size O(Inn), but the best algorithms can only find planted

cliques of size ©(y/n/e)[4].
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