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Summary

We consider the problem of finding a planted clique in a

social network whose edges are distributed between two

players. We make two empirically-justified assumptions

about the social network: 1) the maximum degree is
√
n

and 2) the clustering coefficient of a node with degree d is

O(1/d2), a property implied with high probability from

the log-normal distribution posited by Kolda et. al. [7].

Our goal is to find the planted clique while minimizing

the amount of communication between the players.

We give a protocol that provably ensures whp that both

players find the clique, while requiring at most polyloga-

rithmic communication, and polynomial computation. We

believe that our algorithm can be generalized to the case

where edges are distributed among a constant number of

players and/or to finding a planted γ-quasi-clique.

Introduction

Bob and Alice are two separate entities who observe the

world, learning about relationships, each building a graph.

The graphs are potentially huge, gathered over years, and

may represent considerable financial investment. Bob

and Alice observe the same world, but may observe with

different emphasis or different methods. Although each

knows nothing about the other’s graph, we assume they

use the same naming conventions for the nodes. Thus, if

Alice and Bob both have a node for object x, they use the

same name, and if Bob sends Alice an edge with x as an

endpoint, she knows it is adjacent to her node labeled x.

Bob and Alice would like to cooperate to answer ques-

tions about the union of their graphs. However, we assume

communication between Alice and Bob is constrained to

be polylogarithmic. This may be because of the economic

value of information, internal corporate policy, or simply

limited bandwidth.

We make two key assumptions about the social network
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that Alice and Bob observe. The first is that the maximum

degree of any node is
√
n. This can be enforced with a

log-normal distribution [7], and has been assumed in other

social-graph analysis such as Britton et. al. [1] and Chung-

Lu [3].

Our second assumption concerns how the clustering

coefficient of a node can depend on the node degree. In

particular, we assume the clustering coefficient of a node

with degree d is O(1/d2). Empirical evidence suggests

this assumption is reasonable for many social networks [7].

This is especially true when social networks are “cleaned”

of abnormal behavior such as twitter accounts that recip-

rocate all follower relationships [9].

Moreover, two sociological properties may explain this

phenomena. First, the Strong Triadic Closure property

of [6] says that if node x has strong links with nodes y

and z then there is likely to be a (potentially weak) link

between y and z. Second, sociologists have argued that

the number of strong links that a node can have in a social

network is bounded [5]. These two facts together suggest

that the clustering coefficient must drop off at least as

fast as an inverse quadratic in the degree of the node.

Let n be the number of nodes in this social network.

For our theoretical results, we assume that Alice and Bob

both know n. Our experimental results use a slightly

revised algorithm that does not require this knowledge.

We assume that a subset of O(lnn) nodes are chosen

uniformly at random and that edges are added among

these nodes to form a clique. We can extend these results

for an adversarial placement of the clique1. We define

G = (V,E) to be the base social network with the planted

clique. The adversary distributes the edges arbitrarily to

Alice and Bob subject to the constraint that at least one

player knows each planted clique edge. Some edges of the

base graph may be in neither graph, but this only makes

the problem easier.

1The extended analysis requires the generalized log-normal degree

distribution. Kolda et. al. [7] argue that log-normal better represents

social networks than a power law. McCormick et. al. [8] also found a
log-normal form for the size of a personal network, the total number

of people a person knows.
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Algorithm Sketch

Let Ga be Alice’s graph and let Gb be Bob’s graph. Alice

and Bob run the following algorithm. They also run

the algorithm with their roles reversed and return the

best of the two cliques, since Bob may have received the

bigger clique piece. If any set is too large to send (super-

polylogarithmic), just stop. The adversary gave Alice too

few nodes from S. 1) Alice finds the subset of nodes, Qa

with maximum triangle density. Triangle density is the

number of triangles divided by the number of nodes. We

can find this in polynomial time using a triangle-density

version of the edge-density linear program in [2]. 2) Alice

finds the set of nodes, Na(Qa), adjacent to at least half the

nodes in Qa in the graph Ga and sends Qa and Na(Qa) to

Bob. 3) Bob computes Nb(Qa), the set of nodes adjacent

to at least half the nodes Qa in Gb and sends it to Alice.

4) Let Va ← Qa ∪Na(Qa)∪Nb(Qa). Let Ea be the set of

edges in Ga induced by Va and let E′
a be the set of edges

in Gb induced by Va. Bob computes E′
a and sends it to

Alice. Let Ea ← Ea ∪ E′
a. 5) Alice finds the maximum

clique in the graph (Va, Ea) using any intelligent algorithm

guaranteed to find the maximum clique.

Correctness Sketch

Let S be the nodes in the planted clique. We can show

using Ramsey theory that one of Alice or Bob will re-

ceive Θ(ln3 n) triangles of S. We assume without loss of

generality that Alice is a player receiving this number of

triangles. Any node not in S is involved in O(1) triangles

before the clique planting by the clustering-coefficient as-

sumption. Using the maximum-degree assumption, simple

probability, the uniform, random selection of clique nodes,

and the union bound, we can show that any node not in S

has at most a constant number of edges into S with high

probability (whp). Therefore any such node has a constant

number of triangles involving any node of S. Thus any

node not in S is involved in O(1) triangles whp.

Alice’s subgraph Qa ⊆ S whp. The subgraph Qa has

triangle density Ω(ln2n), since Alice received Θ(ln3 n)

triangles of the clique with lnn nodes. In a subgraph of

optimal triangle density d, any node participates in Ω(d)

triangles. Otherwise, density would increase by dropping

that node. Since any node v 6∈ S is part of O(1) triangles,

it will not be in Qa. Since Qa has triangle density Ω(ln2 n),

and the maximum triangle density of a graph with x nodes

is O(x3/x) = O(x2), we have |Qa| = Ω(lnn). In fact,

|Qa| = Θ(lnn) because Qa ⊆ S.

The other nodes in S are neighbors of each node in Qa.

Therefore each such node will be adjacent to at least half

the nodes in Qa in Ga and/or Gb. Thus S ⊆ Qa∪Na(Qa)∪
Nb(Qa). If there are any stray nodes with high degree into

Qa (a low probability event), the clique-finding operation

at the end will remove them. Because |Qa| = Θ(lnn),

even exhaustive enumeration runs in polynomial time.

Experiments

In our preliminary experiments, if we find an extremely

triangle dense subgraph of size much more than lnn, we re-

move it as abnormal behavior described by Rossi et. al. [9].

With one such cleaning, we found a planted clique S with

|S| < 3 lnn in the YouTube graph with 3 million edges.

Comments

The structure of social graphs with reasonably-justified

restrictions on degree and clustering coefficient allows

efficient finding of planted cliques of size O(lnn). This

appears to be much easier than finding cliques in half-

dense Erdös-Renyi graphs, where the largest clique is of

size O(lnn), but the best algorithms can only find planted

cliques of size Θ(
√
n/e)[4].
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