
Sunshine to Petrol: Oxide 
Materials for Thermochemical 

CO2 Splitting Using 
Concentrated Solar Energy

Andrea Ambrosini,  Eric N. Coker, Mark A. 
Rodriguez, Nathan P. Siegel, Terry Garino, Lindsey 

R. Evans, Brian D. Ehrhart, James E. Miller,
Ellen B. Stechel

ASME Energy Sustainability 2011
Track 1-10-3 Solar Fuels via Two-Step TC with Metal 

Oxide Reactions
9 August 2011

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed 
Martin Company, for the United States Department of Energy’s National Nuclear 

Security Administration under contract DE-AC04-94AL85000.

SAND2011-5663C



Ambrosini, ASME ES2011 2

Acknowledgements

 SNL – S2P Team
• Ellen B. Stechel, PM
• James E. Miller, PI 
• Richard B. Diver
• Nathan P. Siegel
• Eric Coker
• Mark D. Allendorf
• Gary L. Kellogg
• Roy E. Hogan
• Daniel Dedrick
• Ivan Ermanoski
• Tony McDaniel
• Ken Chen
• Terry Johnson
• Chad Staiger

Funding: Sandia National Laboratories,  
Lab Directed Research & Development

 Special thanks:
• Bonnie McKenzie (SEM)
• Tony Ohlhausen (SIMS)

 University Partners
• Christos Maravelias, University of Wisconsin
• Chris Wolverton, Northwestern University
• Darryl James, Texas Tech University
• Alan Weimer, University of Colorado



Ambrosini, ASME ES2011 3

Directly apply a solar energy source  
to effectively split CO2 and H2O into 
syn gas, utilizing redox-active metal 
oxides,  in a process analogous to, 
but more efficient than, 
photochemical or biological 
processes.

Vision: Sunshine to Petrol
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Sunlight + CO2 + H2O → Fuel + O2

Two step solar-thermochemical process utilizing redox reaction to split CO2 or H2O:

MOx + Sunlight ⇒ MOx-δ + δ/2O2 (Thermal Reduction, TR)

MOx-δ + δCO2 ⇒ MOx + δCO (CO2-Splitting Oxidation, CDS)
MOx-δ + δH2O ⇒ MOx + δH2 (H2O-Splitting Oxidation, WS)
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Thermo-Chemical Splitting: The CR5

Cross-Section Illustration
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JE Miller et al, J Mater Sci (2008) 43:4714–4728
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The Ferrite System
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Two step solar-thermochemical process 
based on iron-oxide to split CO2 (or H2O):

1)  Fe3O4 + Heat ⇒ 3FeO + ½ O2 (Thermal 
Reduction, TR)

2)  3FeO + CO2 ⇒ Fe3O4 + CO (CO2-Splitting 
Oxidation, CDS)

Net:  CO2 ⇒ CO + ½O2

• Ferrites, AFe2O4 (A=Fe, Ni, Co, Mn), are 
redox active

• Operate in the temperature regime of 
concentrated solar thermal

• Require a “support” material, e.g. ZrO2 or 
YSZ, for efficient long-term cyclability
(Tamaura, Kodama)

• Behavior of the ferrite systems at the high 
temperatures and conditions present in 
these repeated cycles is not well 
understood

• Such questions include:
• equilibrium reactions
• oxygen transport
• surface chemistry
• structure-property relationships
• interaction between support-active 
material
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Room Temperature XRD of Fe2O3:8YSZ
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01-077-2112> Zr.72Y.28O1.862 - Zirconium Yttrium Oxide

01-089-0597> Hematite - Fe2O3

30 40 50 60
Two-Theta (deg)

8 mol% Y:ZrO2
3 wt%Fe2O3:8YSZ sintered 1350/48h, 1500/2h, x-section pelle
10wt%Fe2O3:8YSZ sinter 1350/48h, 1500/2h, x-sec pellet
20 wt% Fe2O3:8YSZ, powder, 1500C/2h

20 wt%
10 wt%
3 wt%
8YSZ
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Solid Solubility
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 Following Vegard’s Law, 
we can estimate a solubility 
of approx. 6.3 wt% Fe2O3 (~ 
9.4 mol% Fe) in 8YSZ at 
room temperature

 At low [Fe2O3] can assume 
complete solid solution, i.e., 
all Fe is crystallographically
substituted in YSZ crystal 
lattice

 At higher [Fe2O3] can 
assume composite of solid 
solution + “free” Fe2O3 

Solid state synthesis
Calcined  1350 °C/48h, 1500 °C/2hr

Solid sol’n Composite
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In-situ XRD

Hot stage

Diffractometer setup

Pt/Rh heating element
Hot stage chamber

O2 getter pO2 detector

Ai
r

C
O

2

H
e

bypass
bubbler

stage

X-ray
source Solid-state

detector

XRD output

 Temperature range: 25 to 1450oC
 Pressure range: 10-9 to 1000 Torr (< 2 bar)
 Sample size: ~1 cm2 

 Heating rates: 1 to 100 oC/min
 Phase fraction detection limit: ~1 w%

Question: Does solid solubility change with temperature/environment?
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In-situ XRD of 3 wt.% Fe2O3:8YSZ
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• Fe remains in solid solution during TR cycle
• CO produced during CDS
• Δ Fe oxidation state does not noticeably affect YSZ d-spacing
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Solubility of Fe in 8YSZ is Dynamic
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• As sample is heated under He 
Fe2O3Fe3O4FeO

• YSZ lattice expansion occurs 
due to both thermal expansion 
and migration of Fe out of lattice

• 1st cycle shows significant 
migration of Fe out of YSZ

• 2nd cycle shows minor migration 
of Fe out of YSZ
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Long Redox of Fe2O3:8YSZ

 1st cycle shows deeper reduction and incomplete reoxidation; more pronounced 
for 14.5% sample

• Samples don’t reoxidize completely to Fe2O3 (or Fe3+) after  initial reduction
 However re-oxidation magnitude remains constant between cycles
 Subsequent cycles resemble 2nd cycle (not shown)
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Red:
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Iron utilization

Lower Fe-loading gives higher 
utilization

Even at 1.8 mol-% Fe, still some un-
utilized Fe

• In solid solution, assume redox 
reaction is between Fe3+Fe2+

• Each Fe is accessible to redox, but 
there may be an equilibrium state 
between +3/+2 that prevents full 
reaction in YSZ

 For “free” iron oxide possible reaction 
mechanism is: Fe2O3  Fe3O4  FeO

• After initial reduction to FeO
complete reoxidation is unlikely 
under TGA conditions

• XRD post-reduction and post-TGA 
cycle show presence of wüstite and 
magnetite phases

• Is the reaction in bulk FeOx surface 
limited?

*  Utilization assumes Fe3O4 ↔ 3FeO + ½O2
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ToF-SIMS
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Time-of-Flight Surface Ionization Mass Spectrometry
• Isotopically label sample with 18O; analyze 18O distribution
•TR under Ar; 1400 ° C/16 hr; CDS under C(18O)2; 1100 °C/7 hr
• Disc cross-sectioned, polished
• 8YSZ matrix: uniform 18O & 16O distribution ‐ fast oxygen transport

18O distribution uniform through small 
particles (below solubility limit, but 
still some small FeO )

Fe above solubility limit, and large
particles: 18O mostly at surface of FeOx; 
interior 16O‐rich

100 x 100 μm2
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 Iron oxide:8YSZ system shows dynamic behavior during temperature cycling under 
reducing and oxidizing conditions

• HT‐XRD showed no phase changes in 4.5 mol‐% Fe solid solution upon in-situ 
reduction
• Phase changes observed in composite material
• HT‐XRD and 8YSZ lattice parameters reflect complex migration of Fe in/out of 
solid solution
• 2 – 3 cycles required until steady state composition achieved

 TGA cycling experiments:
• Illustrate dynamic behavior of composite material
• 1st cycle reduction greater than subsequent cycles (and not linear)
• %Fe utilization greater for lower iron‐loaded (solid solution) samples

 ToF‐SIMS shows limited re‐oxidation of bulk iron oxide particles under CO2
• 18O permeates YSZ matrix, but concentrates at surface of larger FeOx particles
• Smaller (e.g., nano) particles show better O-exchange, implying that composites 
consisting of nano-Fe particles may show increased activity

Summary and Conclusions
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Future and Ongoing Work

 Efforts to improve the ferrite materials
• Increase solid solubility of Fe in YSZ
• Develop composites that maintain high surface area and/or small 

ferrite particle size
 Further experiments and collaborative efforts include: 

• Multi-cycle durability experiments (100+ cycles)
• Atomistic modeling of Fe-Y-Zr oxide system
• In-situ XPS to define Fe oxidation states
• Further in-situ XRD and TGA characterization 

 Investigation of alternate materials
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Thank You for Your Attention

Questions?
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Fossil Fuels – Non Renewable, Buried 
Sunshine

 Each gallon of gasoline is estimated as equivalent to 
100 tons* of prehistoric biomass, processed for 
millions of years 

• Ancient stored solar energy
 Estimate of Conversion Efficiency ~2×10-4 %

• We don’t have millions of years to make what we are 
burning in centuries

 Corn Ethanol Conversion Efficiency ~0.1%
• Lot better

 But can we improve on that efficiency even more by 
using chemical processes?  10%?

• E.g. Solar driven thermo-chemical processes

*Jeffrey S. Dukes, Climatic Change 61: 31–44, 2003.
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CO2 Splitting Over 5% Fe2O3/YSZ

Feed is 80% CO2 unless noted
TR: 1 hour @ 1400 °C, WO/CDO @ 1100 °C
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Water Splitting
Cycle 2
Cycle 6
Cycle 15 
Cycle 35
Cycle 29 
(50% damp CO2)
Cycle 33 
(100% damp CO2)

•CO2 (and H2O) splitting 
demonstrated over 
multiple temperature 
cycles 

•Material does not reach 
steady state even after 
multiple cycles

•10-15% reaction extent 
in 2-3 minute cycles in 
On-Sun testing

•Higher % Fe utilization in 
5 wt% loaded Fe2O3
than 20 wt% (not shown)

47 cycles laboratory cycles of 2.8 g lattice monolith
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TGA Experiments

 Examined both solid solution and composite compositions
 Samples were sintered pellets or bars cut from pellets
 Pt TGA pans used (Al2O3 reacts with powders)
 Gas flowed at 100 sccm throughout experiment
 O2 scrubbers were placed on both Ar and CO2 gas lines
 Ramp rates were 20 ˚C/min; gas stream changed when desired 

temperature reached: 1400 ˚C for reduction (Ar), 1100 ˚C for oxidation 
(Ar/CO2 or pure CO2)

 Assumed weight change during isotherm due to O2 gain/loss in sample; 
weight change calculated for isotherms (not ramps)
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TGA: Redox Ar/CO2 of Fe2O3:8YSZ

 Deeper reduction on first cycle
 Neither sample reaches equilibrium (1hr) or shows complete reaction compared 

to theoretical calculations
 Solid solution (3 wt%) and composite (10 wt %) react similarly, despite different 

loadings
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XRD of 3 wt% Fe2O3 post-redox TGA 
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SEM of 10 wt% Fe2O3 Before and After TGA

Before After
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XRD of 10 wt% Fe2O3 post-redox TGA
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