
Analysis and Optimization of Paradigm Microprograms

Victor L. Winter
Department of Computer Science
University of Nebraska at Omaha

USA
Email: vwinter@unomaha.edu

James McCoy, Dominic Montoya, and Greg Wickstrom
Sandia National Laboratories

USA
Email: {damonto,glwicks}@sandia.gov

Abstract—Microcode often plays a key role in modern pro-
cessor architectures. Microcode optimization is an important
topic, and opportunities for microcode optimization can present
themselves at various levels of abstraction. The Paradigm
System, developed as part of a joint research effort between
Sandia National Laboratories and the University of Nebraska
at Omaha, consists of a high-level architecture-independent
microprogramming language together with it’s compiler. This
paper discusses the artifacts and mechanisms, within the
Paradigm System, that support the analysis and optimization
of Paradigm microprograms.

Keywords-micro-programming, microprogram optimization,
microprogram analysis, program transformation

I. INTRODUCTION

On modern processing platforms there oftentimes exists
a computational gap between the functionality provided by
the assembly language instruction set, which is targeted
by high-level language compilers, and the set of signals
used to control hardware resources. In such an environment,
microcode (µcode) can be effectively used to emulate the
functionality of assembly language instructions that are not
directly supported by the hardware.

Because µcode lies at the core of a processor’s design, it’s
optimization is an important topic. Efficiency gains in µcode,
even small gains, can have a substantive impact on system-
level performance. Research into the optimization of µcode
spans algorithmic optimization of high-level µcode down
to determining the optimal order in which microoperations
(µoperations) should be executed.

A. Application
Paradigm is a high-level architecture-independent mi-

croprogramming (µprogramming) language that has been
developed as part of a joint research effort, funded by
Sandia National Laboratories (SNL), between SNL and the
University of Nebraska at Omaha. The primary application
motivating Paradigm is the development of a processor,
called the Scalable Core (SCore) [10]. The SCore is a hard-
ware implementation of a subset of the JVM, designed and
developed at SNL, for use in high-consequence embedded
systems [16].

Within the SCore, the functionality of Java bytecodes is
achieved through µprogramming. In particular, each Java

bytecode supported by the SCore is realized through a
corresponding µcode implementation. Furthermore, native
methods used in the JVM and supported by the SCore are
also implemented in µcode.

B. Contribution

The Paradigm System provides a unique environment for
exploring µcode optimization through a mixture of manual
activities such as restructuring high-level µprograms and
automated activities such as the compaction of low-level
µcode performed by the Paradigm compiler.

This article will discuss the following aspects of the
Paradigm System that facilitate µcode analysis and opti-
mization.

• extensive analysis – The Paradigm compiler produces a
variety of artifacts (heat maps, graphs, tables) providing
developers with insight into the allocation of registers
that occur during compilation as well as detailed esti-
mates of time/space trade-offs associated with calling
versus in-lining methods.

• user defined optimizations – Paradigm developers can
affect compilation in three important ways: (1) through
in-lining directives, which are source-code level di-
rectives instructing the compiler to inline particular
methods, (2) through optimizing transformations, which
are transformation rules that developers can add to
the compiler itself in order to perform specific opti-
mizations during compilation, and (3) through timing
constraints, which are used to guide the compaction of
µcode instructions.

The remainder of this article is structured as follows:
Section II reviews some the basic concepts and terminology
of microcoding. Section III overviews related work. Section
IV discusses analysis artifacts produced by the Paradigm
compiler. Section V overviews user-defined optimization
rules that can be added to the Paradigm compiler. Section
VI describes the declarative language used by Paradigm to
specify parallel capabilities of a target machine, and Section
VII concludes.

SAND2014-1774C

II. THE BASICS OF MICRO-PROGRAMMING

The purpose of µprogramming is to orchestrate the be-
havior of resources in a CPU. The basic concept was
developed by Maurice Wilkes [14] in 1951 who also
coined the term micro-programming. Microprogramming
(µprogramming) provides what amounts to a software-based
alternative to the hardware-based logic boxes whose design
was (and is) considered to be a bit of a black art[6].

A µprogram is a specification of how the resources within
a CPU are to be controlled. µprograms can be expressed at
various levels of abstraction: High-level µprograms strive to
facilitate human comprehension, and can have syntactic and
semantic similarities to high-level general-purpose program-
ming languages such as C and Java. In contrast, low-level
µprograms are suitable for execution on a processor. The
purpose of a µcompiler is to translate a high-level µprogram
into a low-level µprogram.

A low-level µprogram consists of a sequence of
µinstructions. A µinstruction consists of a set of µoperations
each of which specify the control of a fundamental resource
within the processor. Typical examples of µoperations in-
clude:

• the transfer of data from memory to a register
• elementary operations such as shift, load, and clear

performed on data residing a register
• properly updating the internal registers of the control

unit in order to enable a jump
A µoperation consists of a set of fields. Fields are made

up of bits whose binary values correspond to control lines.
For example, a field consisting of k bits can be used to
denote 2k combinations of control lines. A special case
arises when k = 1 for all fields. µinstructions constructed
exclusively from µoperations having 1-bit fields are referred
to as horizontal µinstructions. Horizontal µinstructions are
long, but allow for the maximal expression of parallelism.
In contrast, the signals denoted by fields for which k > 1
are encoded, and µinstructions made up of such fields
are referred to as vertical µinstructions. A benefit of such
encoding is that the bit-width of µinstructions is significantly
reduced. However, the parallelism which can be expressed
through vertical µinstructions is limited and combinatory
logic is needed to decode field values.

Orthogonal to the vertical/horizontal nature of a
µinstruction is the architectural notion of how many
µoperations a µinstruction can hold. If only a “few”
µoperations can be placed into a µinstruction the machine
has a vertical architecture; otherwise it has a horizontal
architecture[8][3].

For architectures that support concurrent execution of
µoperations, be they vertical architectures or horizontal
architectures, the scheduling of µoperations presents an area
of optimization. In this context, the goal of optimization
is to produce a low-level µprogram having a minimal or

near-minimal number or µinstructions. For this form of
optimization, referred to as µcode compaction, achieving op-
timal results has been shown to be NP-complete[17]. There
are two types of compaction: (1) local compaction which
focuses on restructuring the µoperations within straight-line
µcode(SLM) – also known as basic blocks, and (2) global
compaction whose focus spans multiple SLMs.

III. RELATED WORK

Research into the design of high-level µprogramming
languages and µcompilers predominantly took place during
the 1970’s and early 1980’s. A number of papers have
been published on the topic of µcode optimization [5],
[4], [9], [8]. Agerwala [1] has written a survey on µcode
optimization. A central issue in the type of optimization
discussed in the survey is the reduction of the size of the
control memory needed to hold a µprogram implementing
a given function. Here, the control memory is modeled as
a two-dimensional array (W × B) where W denotes the
number of words (i.e., rows) and B denotes the number
of bits (i.e., columns) in the control memory respectively. A
primary goal of optimization is to reduce the control memory
along either of its dimensions.

In [1], optimization strategies are categorized as being
either high-level or low-level. High-level optimizations are
based on dataflow analysis of the source-code and strive to
discover parallelism inherent in the algorithm implementa-
tion. Optimizations possible at this level also include existing
(well-known) compiler optimization techniques. Roughly
stated, the result of high-level optimization is a sequence of
sets, called time frames, whose elements are µoperations.
This sequence of time frames is viewed as partitioning the
computation defined by the high-level (input) µprogram in
a manner that is maximally parallel irrespective of physical
limitations of the host machine. After such a partitioning
has been completed, low-level optimizations can be applied
to map the structure onto a host machine. These low-level
optimizations center on normalizing the existing partition
structure so that each set in the partition can be realized by
exactly one horizontal µinstruction.

SIMPL (Single Identity Microprogramming Language)
[11] is a high-level (machine dependent) µprogramming
language developed in the early 70’s having an ALGOL-
like syntax. During SIMPL compilation, a high-level se-
quential program undergoes sophisticated analysis in order
to produce a highly optimized low-level horizontal program.
SIMPL optimization is based heavily on the single identity
principle which states that a (particular) definition for a
variable holds from the point it is assigned up to the point
where it is reassigned. The single identity principle forms the
basis for partitioning a sequence of statements into subblocks
each of which constitute an independent set of µoperations.
This decomposition represents a key first step in solving the
global optimization problem.

Though there were a number of µcode language and
compiler development efforts underway at the time, SIMPL
was considered to be the first high-level µprogramming
language in which both compilation and optimization were
performed automatically. A SIMPL compiler has been de-
veloped targeting the Tucker-Flynn dynamic microprocessor
[13].

Micro-C [7] is a high-level machine-independent
µprogramming language compatible with C. A Micro-C
µprogram can be compiled by a special compiler based
on the Portable C Compiler. The output produced by this
compiler is vertical (i.e., unoptimized) symbolic µcode.
This intermediate representation can then be optimized
by a “straight-line” packer which translates sequences of
µoperations into horizontal µinstructions. An assembler is
then used to translate the result into executable low-level
µcode.

In [12], a language is presented in which high-level
µprograms are composed of declaration statements and
command statements. The compiler for this language con-
sists of two phases: In the first phase of compilation, the
input µprogram is parsed, analyzed, and an unoptimized
sequence of µinstructions is produced. At this stage, each
µ-instruction performs exactly one elementary operation
(i.e., a µoperation). The second phase of compilation is an
optimization phase in which a number of tables contain-
ing machine-dependent information (e.g., parallel capabil-
ities of the hardware) are employed in order to compact
µinstructions taking full advantage of the parallel capabili-
ties of the hardware.

In [2], an approach is presented where machine-
independent high-level µcode optimization is performed by
the software component of a µcode compiler and low-level
machine-dependent optimization is performed by hardware
residing on the host machine (i.e., the machine on which
the µcode will be executed). In this context, the goal of
a hardware microcode optimizer(HMO) is to condense a
sequence of µinstructions (i.e., where each µinstruction
contains only one µoperation) into a functionally equiv-
alent sequence of µinstructions taking full advantage of
the parallel capabilities of the host machine. At a higher-
level, optimization strategies are divided into two distinct
categories: The local optimization category is performed
by the hardware-based component of the compiler and
focuses on the serial combination (i.e., compaction) of
µinstructions. The global optimization category is performed
by the software-based component of the compiler and fo-
cuses on the commutative reordering µinstruction sequences
(driven by dataflow analysis) in order to more fully exploit
parallelism.

IV. ANALYSIS

In addition to designing well-structured high-level
µprograms, developers often need to pay close attention to

the consumption of resources entailed by their design. For
example, how many internal registers are needed by the com-
piler to compile a given high-level µprogram? What is the
size, in terms of the number of µinstructions, of the resulting
low-level µprogram produced by the compiler? And, how
many µinstructions are executed when the program is run?

The Paradigm compiler produces three artifacts to assist
developers in their optimization-oriented analysis efforts: (1)
views, (2) heat maps, and (3) estimation tables.

A. Views

Paradigm provides a notation, called a view, for spec-
ifying subsets of methods. From the specification of such
subsets, views can be constructed. In particular, a view is
an acyclic directed graph whose nodes denote methods and
whose labeled edges denote the number of internal registers
allocated by the compiler relative to specific nodes. For
example, consider the graph below consisting of two nodes,
labeled f and g, connected by an edge labeled 12.�� ��f 12−−−−−−−−→

�� ��g

This graph indicates that (1) the method g is called in the
body of f , and (2) at the point of the call to g, the compiler
has allocated 12 internal registers local to the context of f .

A high-level µprogram may have multiple views defined
for it, each of which will be output to a correspondingly
named file. Such files are output in a “dot format” and can
be viewed using Graphviz. Figure 1, shows an example of a
view generated by the Paradigm compiler for a µprogram
produced for a hypothetical machine.

B. Heat Maps

Heat maps are another form of feedback produced by
the Paradigm compiler. Specifically, the Paradigm compiler
will output twelve attributes to a file in a comma-separated
value format. Attributes range from method arity, method
size, reference frequency, inlined - called size, to (inlined -
called size) * reference frequency. Figure 2 shows a heat
map for a hypothetical machine. In this heat map, the
first grouping (in grey) is by method type (e.g., macro,
subroutine, operator, operation, condition, interface). The
second grouping (also in grey) is the difference between the
in-lined size and the called size – this includes all overhead
associated with making a method call. The size of squares
in the heat map represents the called size, and the color
indicates reference frequency with red denoting the most
frequently referenced methods and blue denoting the least
frequently referenced methods.

C. Efficiency Estimator

In order to meet resource constraints, it may be necessary
for developers to optimize their high-level µprogram. To fa-
cilitate optimization, Paradigm provides high-level language

Figure 1. A view showing internal register allocations performed by the compiler.

Figure 2. Heat map of µcode for a hypothetical machine.

directives that can be used to instruct the compiler to in-line
various method declarations.

Method in-lining represents a time/space tradeoff, since
in-lining can cause the size of the low-level µcode to expand
dramatically. For example, suppose the body of a method
m consists of 100 lines of µcode. Further suppose that m
is called in 10 places in the µcode. If all 10 calls are in-
lined, then in-lining (without compression) will yield 1000
µinstructions. In contrast, suppose that a call to the method
m requires 20 lines of µcode. In this case, calling m 10
times will result in a total overhead of 200 lines of µcode.
Thus, an implementation in which m is called will contain
700 fewer lines of µcode(i.e., 200 lines of call overhead plus
100 lines for the method body). However, it should be noted
that in-lined methods always execute faster than their called
counterparts since there is no call overhead associated with
their execution.

The overhead associated with a method call is significant.

Internal registers must be allocated for the input parameters.
Instructions must be generated by the compiler to move
actual parameters to the internal registers corresponding to
formal input parameters of the method. A call instruction
must be generated by the compiler to transfer execution
to the method body, and a return must be executed upon
completion of the method body. Furthermore, moves, calls,
and returns do not lend themselves to compression. In other
words, only one such µoperation will fit into a µinstruction.
Thus, going back to our previous example, if the execution
of each µinstruction takes 1 unit of time, then executing the
body of m via a call will take 120 units of time.

As the body of a method gets smaller it gradually becomes
more attractive to in-line a method. Eventually, a crossover
point is reached where calling a method consumes more time
and more space than simply in-lining a method. It should
be noted that, from the point of view of development, the
method is a mechanism for abstracting functionality. Thus,
a best-practices approach to development would encourage
the use of methods as needed to give clarity to an imple-
mentation.

The Paradigm compiler, provides an estimation of the
effects of method call versus method in-lining. In particular,
two sorted tables are produced: (1) a static call-frequency
estimation table, and (2) an execution path estimation table.
Examples describing the information in both of these tables
are described in the sections that follow.

1) Example: Static Call-Frequency Estimation: Suppose
method m1 is an in-line method candidate having 3 formal
input parameters. Furthermore, let us assume that a static
inspection of the Paradigm application reveals that m1 is
called from 10 syntactically distinct locations. Similarly,
suppose method m2 is inline candidate method having 2
formal input parameters. Furthermore, let us assume that a
static inspection of the Paradigm application reveals that
m2 is called from 20 syntactically distinct locations.

It should be noted that static-call-estimation provides a
fairly course grained and basic estimation of the overhead
associated with calling methods. In particular, static call

Static Call-Frequency Estimation
Method Move Instruction Overhead Static Overhead Sum
m1 3 ∗ 10 = 30 (3 + 2) ∗ 10 = 50
m2 2 ∗ 20 = 40 (2 + 2) ∗ 20 = 80

estimation does not take into account execution paths which
can have multiplicative effect on the number of times a
method can actually be called during runtime. For example,
suppose method m1 is called twice in the body of method
m2, and suppose method m2 is called 5 times within the
µcode. Note that in this example, there are only 2 lexical
occurrences of m1. However, m1 will be called a total of
5 ∗ 2 = 10 times during the execution of the application.
We call this second form of estimation execution path
estimation. It should be noted that, since it does not account
for loop iterations, execution path estimation is also only
an estimate, albeit a more accurate one than static call
estimation.

2) Example: Execution Path Estimation: Suppose meth-
ods m1, m2 and m3 are respectively called 5, 6, and 4 times
from the µcode as shown in Figure 3. Also note, that m1 is
called 2 times from m2 and m2 is called 3 times from m3.

The execution path estimation table shows that the total
calls for m1 is 41. This value corresponds to the sum: 1 ∗
5 + 1 ∗ 6 ∗ 2 + 1 ∗ 4 ∗ 3 ∗ 2 = 41. More specifically, m1 is
called 5 times from the µcode. This accounts for the 1 ∗ 5
term. Next, m1 is called 2 times from m2, which itself is
called 6 times from the µcode. This accounts for the term
1 ∗ 6 ∗ 2. And finally, m2 is called 3 times from m3 which
is called 4 times from the µcode. This accounts for the term
1 ∗ 4 ∗ 3 ∗ 2.

In this example, the in-lined size for m1 is 0. This is
because the body of m1 is empty (after the removal of
the return instruction). The called size for m1 is 83 and
corresponds to 41 calls plus 41 returns plus the size of the
declaration of m1 (which is 1).

The in-lined time will always be equal to the in-lined size.
The assumption here is that each row in the µcode takes 1
unit of time to execute, and that additional compression of
method bodies is not possible.

The called time for m1 is 82. This corresponds to the
total calls to m1 times the sum of the number of moves
associated with calling m1 plus the number of microcode
rows associated with the call-to and return-from m1.

And finally, the speed up is 100%. This number is
computed using the following formula:

100.0−
(inlined execution time/called execution time) ∗

100.00

Although it is not highlighted by the example given, it
should be noted that the execution path estimator accounts
for the mandatory inlining of all macros, interfaces and

Size
Method Total Calls Inlined Called
m1 41 0 83
m2 18 36 39
m3 4 12 12

Time
Method Inlined Called % Speedup
m1 0 82 100%
m2 36 72 50.0%
m3 12 20 40.0%

Table I
EXECUTION PATH ESTIMATION.

interface call(LabelType toLabel) { aux_call(); }
interface return() { aux_return(); }

subroutine m1() returns void { return(); }
subroutine m2() returns void {

m1(); m1(); return();
}

subroutine m3() returns void {
m2(); m2(); m2(); return();

}

microcode {
m1(); m1(); m1(); m1(); m1();
m2(); m2(); m2(); m2(); m2(); m2();
m3(); m3(); m3(); m3();

}

Figure 3. Example used for execution path estimation

conditions1. This is important because such mandatory in-
lining can result in dramatic changes in the final size of a
subroutine or operator. Also note that the size of the call
and return interfaces also take inlining into account.

V. USER-DEFINED OPTIMIZATION RULES

The Paradigm compiler is transformation-based and im-
plemented in the TL System[15]. During compilation, a
Paradigm program is passed through a number of canonical
forms, each of which can be output in human-readable form.
The Paradigmcompiler is extensible in the sense that it sup-
ports the incorporation of user-defined transformation rules
into the compilation process. Such rules provide domain
experts the opportunity to perform custom optimizations
specific to a particular architecture or µcode design. Figure 4
is an example of a µcode fragment, which can be output by
the compiler, consisting of a sequence of µoperation method
calls separated by labels denoting jump destinations (e.g.,
starting positions of methods whose bodies have not been
in-lined).

By inspection of the sequence of operations we see that a
writeReg operation is immediately followed by a copyReg
operation. Suppose that by combining knowledge of the

1The language Paradigm has five different kinds of methods. The
rational behind this is beyond the scope of this article.

label_f: ...

writeReg(T1Type.SOME, AType.$temp_reg 3);

copyReg(AType.$temp_reg 3 ,AType.$reg 2);

Figure 4. A µcode fragment prior to custom optimization.

hardware architecture together with our understanding of
the semantics of the implementations of the writeReg and
copyReg operations we conclude that the transformation
shown in Figure 5 is correctness-preserving. Furthermore,
suppose that additional analysis leads us to conclude that
such a transformation would be correctness-preserving in
all contexts. That is, regardless of how it gets generated
by the compiler, whenever a “write” to a temp register X
is followed by a “copy” from that temp register X to the
register Y , then this pair of operations can be replaced by a
single operation that will directly “write” to the register Y .

Given that these conditions hold, we would like to expand
the functionality of the compiler to include such an opti-
mizing transformation. Paradigm supports such extension
of its compiler through a special transformation module in
which domain experts can place custom-designed program
transformations. There are no restrictions on the nature
of the transformations that can be created. In particular,
optimizing transformations can be developed utilizing the
full capabilities of the TL system.

writeReg(T1Type.SOME, AType.$temp_reg 3);

copyReg(AType.$temp_reg 3 ,AType.$reg 2);

→

writeReg(T1Type.SOME,AType.$reg 2);

Figure 5. A custom program transformation.

VI. Paradigm’S TIMING CONSTRAINT LANGUAGE

Paradigm provides a declarative language, called TCL,
for specifying the timing constraints of a targeted hard-
ware architecture. Timing constraints form the basis of
a local compaction algorithm focusing on the compres-
sion of straight-line µcode (SLM). Timing-constraint based
optimization does not involve commutative reordering of
µoperations, instead it focuses on maximizing the compres-
sion of adjacent (i.e., associative) µinstructions. It is worth
mentioning that in the compilation stage where timing-
constraint based optimization occurs, the µprogram being
compiled is in a form where all non-sequential control flows
are expressed in terms of jumps to labels. In this context, an
SLM is then simply the sequence of µinstructions occurring
between consecutive labels.

Conceptually, a timing constraint is a pair of logical
formulas that, if satisfied by adjacent µinstructions, prevent
them from being compressed into a single µinstruction.
Compression is also (implicitly) prohibited in cases when
corresponding fields, in adjacent µinstructions, contain dis-
tinct (i.e., unequal) non-default signals.

An abstract example of the syntax of a timing constraint
is shown in Figure 6. In the example, F1 and F2 denote the
pair of logical formulas of the timing constraint named TCk.

The evaluation of TCk with respect to a pair of adjacent
µinstructions Ij and Ij+1 proceeds as follows: If Ij sat-
isfies F1 and Ij+1 satisfies F2, then we say that the the
µinstructions Ij and Ij+1 satisfy the timing constraint TCk,
in which case the compression of Ij and Ij+1 is prohibited
by TCk; otherwise compression is not prohibited by TCk.

constraint TCk {

first_row: F1;
second_row: F2;

}

Figure 6. An abstract example of a timing constraint.

TCL allows µcode compression to be restricted by a
set of timing constraints STC = {TC1, . . . ,TCm}. The
compression of any pair of µinstructions Ij and Ij+1 is
prohibited if ∃TCk ∈ STC such that TCk is satisfied by the
µinstructions Ij and Ij+1.

A more detailed look at timing constraints reveals that
they are logical formulas, in conjunctive normal form, whose
elements are equality/inequality matching-based compar-
isons involving fields. An abstract example of a disjunction
constraining the fields f1 and f2 is shown below.

field.f1 = field1Type.item1 | field.f2 != field2Type.item2

Within an element, there are three kinds of items that
can be associated with a fieldtype: (1) a symbolic name
denoting a constant value belonging to a type declaration, (2)
a subscripted variable which can match with field constants
(occurring in the µinstructions in which evaluation is taking
place), and (3) the keyword DEFAULT/NONDEFAULT.
The scope of a subscripted variable spans an entire con-
straint (both formulas) and can therefore be used to express
equality-based properties between fields within a constraint.

The Paradigm compiler provides feedback summarizing
the impact of the optimizations it performs. Figure II shows
an example of an optimization summary.

VII. CONCLUSION

In the design of a high-level architecture-independent
µprogramming language, a major issue that must be con-
fronted centers on how architecture-specific information can
be specified, as well as how the compiler for the language
can utilize this information to produce efficient low-level

Optimization Metrics:
Standard Compiler Optimizations.
Total number of temp register optimizations = 0
Number of nop() statements removed = 0

Custom Optimizations.
Total number of row reductions due to custom optimizations = 0

Constraint-based Optimizations.
Number of row mergings prevented due to timing constraints = 1291
Number of duplicate row mergings = 500
Number of conflict-free row mergings = 1000
Total number of constraint-based row mergings = 1500

Number of rows before any optimization = 2800
Number of rows after all optimization = 1300
Size of optimized file as a percentage of the unoptimized file = 46.43%
The size of the unoptimized file was reduced by = 53.57%

Table II
OPTIMIZATION FEEDBACK PROVIDED BY THE Paradigm COMPILER.

µcode targeting a host machine. Addressing this issue,
Paradigm provides a timing constraint language (TCL)
for specifying the parallel capabilities of a host machine.
Furthermore, the Paradigm compiler also provides exten-
sive feedback on the nature of its compilation, including
pretty-printed representations of the program being compiled
during various stages of compilation, register usage, call
frequency, and comparisons between overheads associated
with method call versus method in-lining. This information
can be used to guide time/space optimizations involving
design level decisions such as method in-lining and can
even guide the development of user-defined rule-based
application-specific optimizations that can be folded into the
compilation process itself.

REFERENCES

[1] T. Agerwala. Microprogram Optimization: A Survey. Com-
puters, IEEE Transactions on, C-25(10):962–973, Oct. 1976.

[2] J. O. Bondi and P. D. Stigall. Designing HMO, an Integrated
Hardware Microcode Optimizer. In MICRO 7: Conference
record of the 7th annual workshop on Microprogramming,
pages 268–276, New York, NY, USA, 1974. ACM.

[3] S. Dasgupta. The organization of microprogram stores. ACM
Comput. Surv., 11(1):39–65, Mar. 1979.

[4] S. Davidson, D. Landskov, B. Shriver, and P. Mallett. Some
Experiments in Local Microcode Compaction for Horizontal
Machines. Computers, IEEE Transactions on, C-30(7):460–
477, July 1981.

[5] J. Fisher. Trace Scheduling: A Technique for Global Mi-
crocode Compaction. Computers, IEEE Transactions on, C-
30(7):478–490, July 1981.

[6] R. C. Haavind, Jr. The many faces of microprogramming:
What started out as a convenience for systems designers may
eventually bring computers much better tailored to users’
needs. SIGMICRO Newsl., 2(4):12–16, Jan. 1972.

[7] W. C. Hopkins, M. J. Horton, and C. S. Arnold. Target-
Independent High-Level Microprogramming. In MICRO 18:
Proceedings of the 18th annual workshop on Microprogram-
ming, pages 137–144, New York, NY, USA, 1985. ACM.

[8] D. Landskov, S. Davidson, B. Shriver, and P. W. Mallett.
Local microcode compaction techniques. ACM Comput. Surv.,
12(3):261–294, Sept. 1980.

[9] P. Marwedel. A Retargetable Compiler for a High-Level Mi-
croprogramming Language. SIGMICRO Newsl., 15(4):267–
274, 1984.

[10] J. A. McCoy. An Embedded System For Safe, Secure
And Reliable Execution of High Consequence Software. In
Proceedings of the 5th IEEE International Symposium on
High Assurance Systems Engineering (HASE), pages 107–
114. IEEE, 2000.

[11] C. Ramamoorthy and M. Tsuchiya. A High-Level Language
for Horizontal Microprogramming. Computers, IEEE Trans-
actions on, C-23(8):791–801, Aug. 1974.

[12] A. K. Tirrell. A Study of the Application of Compiler
Techniques to the Generation of Micro-code. In Proceedings
of the meeting on SIGPLAN/SIGMICRO interface, pages 67–
85, New York, NY, USA, 1973. ACM.

[13] A. B. Tucker and M. J. Flynn. Dynamic microprogramming:
Processor organization and programming. Commun. ACM,
14(4):240–250, Apr. 1971.

[14] M. V. Wilkes. The early british computer conferences. chapter
The Best Way to Design an Automatic Calculating Machine,
pages 182–184. MIT Press, Cambridge, MA, USA, 1989.

[15] V. L. Winter. Stack-based Strategic Control. In Prepro-
ceedings of the Seventh International Workshop on Reduction
Strategies in Rewriting and Programming, June 2007.

[16] V. L. Winter, H. Siy, J. McCoy, B. Farkas, G. Wickstrom,
D. Demming, J. Perry, and S. Srinivasan. Incorporating Stan-
dard Java Libraries into the Design of Embedded Systems.
In K. Cai, editor, Java in Academia and Research. iConcept
Press, 2011.

[17] S. S. Yau, A. C. Schowe, and M. Tsuchiya. On storage
optimization of horizontal microprograms. In Conference
Record of the 7th Annual Workshop on Microprogramming,
MICRO 7, pages 98–106, New York, NY, USA, 1974. ACM.

	Introduction
	Application
	Contribution

	The Basics of Micro-programming
	Related Work
	Analysis
	Views
	Heat Maps
	Efficiency Estimator
	Example: Static Call-Frequency Estimation
	Example: Execution Path Estimation

	User-defined Optimization Rules
	Paradigm's Timing Constraint Language
	Conclusion
	References

