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Topics for discussion
 Background

 Overview of Fukushima Accidents

 Comparisons of SOARCA Study with 
Fukushima accidents

 Equipment functioning in real-world accidents

 Conclusions
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SNL Fukushima MELCOR Reactor Models

• BWR Mk-I model from the NRC’s State-of-the-
Art Consequence Analysis (SOARCA) project 
used as a template

– 20+ years of BWR model R&D

– Current state-of-the-art/best practices 

• Incorporated reactor-specific information into 
the template to create Fukushima reactor 
models

• Developed surrogate information for 
unavailable Fukushima information

• Analyses performed using MELCOR 2.1
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Earthquake Led to Loss of Offsite 
Power

 Seismic events disrupted roads and power 
lines

 Regional blackout isolated Fukushima 
station from power grid

 Reactors shut down

 Site operated by onsite diesel generators

Used by permission from TEPCO
Kenji Tetawa
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Daiichi Site was Inundated

 Site flooding initiated “Station Blackout”

 Diesel generators flooded

 Unit 1 lost all power (AC/DC) and had no ECCS available

 Unit 2 lost all power, but RCIC ran uncontrolled

 Unit 3 maintained some DC and ran RCIC and HPCI systems

 All reactors isolated from ultimate heat sink (Ocean)

Used by permission from TEPCO
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Mark-I Containment

Browns Ferry from Wikipedia

NRC Training Manual
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Containment vent

H2 Explosion

Unit 1
level loss

RCIC -  CST

Possible Fuel damage
Containment venting unsuccessful

Noise heard ?

RCIC from suppression pool
Unit 2

RPV Depressurization

Unit 4 (SFP)
Explosion in Unit 4 

RCIC operating

Containment vents

H2 Explosion

HPCI 

RPV Depressurization

low pressure emergency injection

Unit 3

Friday 11 Saturday 12 Sunday 13 Monday 14 Tuesday 15 Wednesday 16

Earthquake at 14:46: Loss of Offsite Power

Tsunami at 15:41: SBO

Timeline of Major Fukushima 
Damage Events ( )Japan Standard Time

Fuel Damage

Level 
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Fuel damage

low pressure emergency injection

low pressure emergency injection
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Level loss

sea waterfresh water
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Unit 1 Isolation Condenser

 In older BWR 
models

 Steam from RPV 
condensed in IC

 Returned to RPV

 Capable of 
rejecting decay 
heat

 Operated by 
opening return 
valve
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Unit 2 and 3 Has RCIC and HPCI

 RCIC is turbine 
driven pump

 Steam drawn 
from RPV and 
exhausted to 
suppression 
pool

 Water drawn 
from CST or 
suppression 
pool



SOARCA PEACH BOTTOM VERSUS
FUKUSHIMA ACCIDENTS
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Comparison of SOARCA PB-STSBO with 1F1

 SBO at start of accident

 Core damage by 1 hour

 SRV seizure just before 2 hours

 Core slumping by ~2.5 hours

 Lower head failure ~8.5 hours

 MCCI and Dry well liner failure ~8.5 hours+
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 SBO at ~1 hour due to tsunami

 Core damage at ~4 hours

 MSL rupture at ~ 6.5 hours

 Core slumping by ~8 hours

 Lower head failure ~12.5 hours 

 MCCI and DW head flange leak  ~12.5 hours+

 No liner failure evidence in DW pressure trend
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Drywell Pressure
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Dry Well Head Flange Leakage
 Flange leakage 

driven by MCCI gas 
generation and by 
steam from water 
injection

 Idealized flange 
leakage model 
closes leak path 
when manual 
venting lowers PCV 
pressure

 Also, water injection 
is suspended just 
prior to venting

 Stops (or slows) 
steam/gas leak to 
refueling bay
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Cs Release 1F1

Radiation 
monitors at 
front gate 
jump at ~13 hr

Cs Env
release about 
400,000 Ci
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SOARCA PB LTSBO vs 1F2

 RCIC starts level control

 Operator SRV control on pressure
 RCIC controlling level

 Battery depletion @4 hours 
 SRV closes and RCIC runs full on

 MSL floods and RCIC assumed to fail

 Water level loss and core damage

 Time to core slump – 7 hrs after RCIC fails

Peach Bottom LTSBO

 RCIC starts level control – runs 68 hours 
(uncontrolled due to SBO after 1 hour)

 RPV overfilling passes 2-phase water to turbine

 Enthalpy removal set to match RPV pressure

 Cyclic turbine response proposed

 RPV re-pressurizes following RCIC failure

 Water level loss, manual SRV open, reflood

 Time to core slump – ~5 hrs after RCIC fails

1F2    LTSBO
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SOARCA PB LTSBO vs 1F3

 RCIC starts level control

 Operator SRV control on pressure
 RCIC controlling level

 Battery depletion @4 hours 
 SRV closes and RCIC runs full on

 MSL floods and RCIC fails

 Water level loss and core damage

 Time to core slump – 7 hrs after RCIC fails

Peach Bottom LTSBO 1F3    LTSBO

 RCIC starts level control – runs 21 hours

 Operators keep RPV pressure high
 RCIC controlling level

 HPCI run continuously using bypass mode 
until failure @ ~35 hours

 Water level loss, manual SRV open

 Time to core slump – 10 hrs after HPCI fails
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Summary of SOARCA-Fukushima 
Comparisons

 SOARCA BWR analyses included STSBO and LTSBO and were 
performed before Fukushima accidents
 Both sequence types were observed in Fukushima accidents

 These accidents are classic and among the collection of “usual 
suspects”

 While variants of STSBO and LTSBO are observed
 Striking similar trends and operator responses

 More information to come from post-accident 
decommissioning activities
 MSL creep rupture, SRV seizure, Liner failure

 Equipment performance brings new insights into realistic 
operation as seen in following slides
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Long Term RCIC Operation

 RCIC pump is driven by “Terry 
Turbine”

 Robust design tolerates wet steam 
(i.e. water/steam)

 Prior assumptions held that steam 
line flooding would kill RCIC

 1F2 experience shows otherwise 

 Should this be modeled in safety 
analyses ?

RPV pressure drop caused by large 
2-phase  enthalpy flow through 
robust Terry turbine 
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Hydrogen Behavior

 Source to reactor building via 
liner failure – torus room

 H2 burns in torus room

 Blowout panels are calculated to 
“blown out” 

 True building damage not 
assessed 
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Damage from Explosions

Used by permission from TEPCO
Kenji Tetawa
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Conclusions on Hydrogen 
Comparison

 Containment failure mode affects hydrogen behavior and has 
implications on hydrogen control
 Liner failure releases hydrogen low in building

 Uncontrolled release

 DW head flange releases hydrogen to refueling bay

 Release can be controlled by venting via hardened/reliable vent path

 Flammability or detonability affected by steam content and 
condensation

 MCCI progression is very important
 Produced liner failure in PB but probably not in 1F1

 MCCI calculated to sustain containment over-pressure in 1F1
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Conclusions
 SOARCA STSBO and LTSBO were analyzed prior to Fukushima accidents

 Real-world Fukushima accidents appear to be slight variants on SOARCA 
studies

 While more data is forthcoming, comparisons are very encouraging

 RCIC and HPCI operation at Fukushima showed differences in idealized 
(modeled) performance

 Equipment proved more robust than thought

 Potential bifurcation points in accident progression

 MSL rupture versus SRV seizure

 Containment liner failure versus DW head flange leak

 Hydrogen threat to reactor buildings is clear from Fukushima accidents

 Burns/explosions could be either low in building or high in building

 DW head flange leak can be controlled by venting via hardened pathway

 Liner failure leak path is uncontrolled

 SOARCA is a methodology
 Safety can be further increased by using computer codes (MELCOR/MAAP) to 

characterize accidents and potential mitigative actions
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End of Presentation
Backup Slides Follow
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Is BWR Melt Progression Similar to PWR Melt 
Progression ?  (1995)
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Hydrogen Accumulation in 1F1

 Between ~12 hours and ~23 hours, steam and hydrogen leaks from drywell 
head flange and enters RB via shield plug seams

 Hydrogen, CO and steam rises to roof and spreads laterally

 Steam produced in MCCI and from emergency water injection

 Condensation in refueling bay depletes steam in hot layer and enriches 
hydrogen

 Mixture displaces air from building

 Steam mole fraction exceeds 50% - inert conditions prevent combustion

Spent fuel 
pool

Shield plug
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Combustible Conditions Follow PCV Venting in 1F1

 At around ~23 hours, steam and hydrogen leakage from PCV greatly reduced
 Water injection was stopped

 PCV was depressurized by operator venting action

 Continuing condensation without steam source….
 Reduces steam molar fraction to below 50% in refueling bay, and

 Produces partial vacuum that draws in outside air

 Air ingress and steam condensation leads to conditions favoring combustion

 Hydrogen stratification produces flammable or detonable concentrations of 
H2/O2

Air ingress
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Damage from Explosions

Used by permission from TEPCO
Kenji Tetawa
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Unit 2 Results
Containment Pressures  2-inch hole in containment assumed 

to explain low containment pressure
 Alternate proposal is that torus room 

flooding caused greater energy transfer

 Containment pressure data do not 
follow expectations:

 during SRV cycling (70-75 hours), PCV 
pressure data is decreasing;

 SRV relief mode (75 hours), predicted 
PCV rapid pressure increase is not 
observed;
 Could Torus be subcooled?

 Is decay heat actually going into torus ?

 drywell and wetwell pressure deviate; 
and (drywell assumed correct)

 Too large water injection cools core

 Data suggests Drywell Head Flange 
leak at 80 hours, similar to Unit 1

 Large steam generation from 
quenching  and/or core degradation

 RCIC turbine exhaust leak into 
RCIC room ?

RPV 
depressurization 
via SRV 

RPV 
depressurization 
via SRV 
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Lower Head Failure Mechanisms

 200+ penetrations in head

 Penetration failure may be first 
breach of pressure boundary

 However, RPV is  likely 
depressurized

 Penetration failure may not 
release much fuel material

 Most fuel may be released 
following global rupture

 Drain plug likely filled with CB 
steel
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Findings from XR2-1 Experiment

 XR2-1 test used prototypic BWR 
components

 Nose pieces, grid spacers, control 
blades, core plate and elephants 
foot

 Molten CB and Zr materials drained 
into test section

 Channel box walls eroded by CB 
melt 

 Zr-Fe eutectic

 70% of metals drained below 
core plate via nose piece 
pathway

 Accumulations also on core 
plate

 Fuel rod geometry seriously 
degraded


