Calculating Damping from Ring-Down Using Hilbert Transform and Curve Fitting

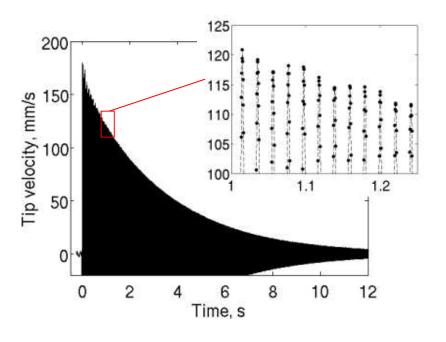
Hartono Sumali Rick A. Kellogg

IOMAC 2011 Istanbul, Turkey May 9-11, 2011

- Damping plays an important role in structural vibration.
 - For example, damping determines how much energy is dissipated as heat when a PZT bimorph is used as a vibration energy harvester.
- The natural frequency and damping could be obtained by measuring the time lapse and the logarithmic decrement between consecutive peaks of the trace of free-decay time history.
- In practical response histories, however, the peaks may not be captured exactly. For example, a peak may appear higher than its preceding peak because of nonlinearity, sampling, noise, and various other conditions, resulting in erroneous negative damping.
- The method presented in this paper is based on the Hilbert transform. This method is more robust and considerably easier to apply than previous methods.
- The method allows modeling of nonlinearity.

Response to "plucking" is a cosine with timedecaying amplitude.

• For an underdamped linear SDOF oscillator, the free decaying velocity response to an initial condition is



$$v(t) = A(t)\cos(\omega_d t + \phi_0)$$

$$A(t) = A_0 \exp(-\zeta \omega_n t)$$

 A_0 is the initial amplitude, ζ is the damping ratio and ω_n is the natural frequency.

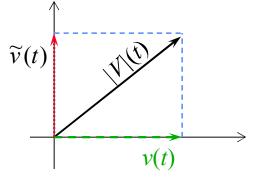
Hilbert transform gives the envelope.

The Hilbert transform of a signal v(t) is $\widetilde{v}(t) = \mathcal{H}\{v(t)\} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{v(\tau)}{t-\tau} d\tau$

• $\tilde{v}(t)$ is an imaginary signal that is 90° lagging from phase from the real signal v(t).

$$V(t) = v(t) + j\widetilde{v}(t)$$

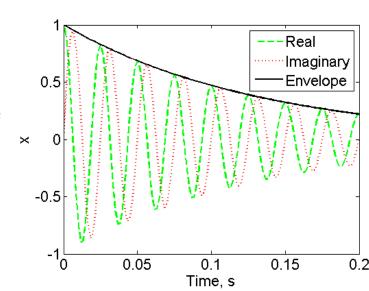
• The |vector sum| of the real signal and the imaginary signal is the amplitude



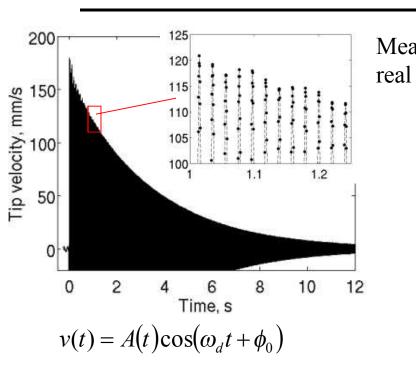
$$|V|(t) = \sqrt{v^2(t) + \widetilde{v}^2(t)}$$

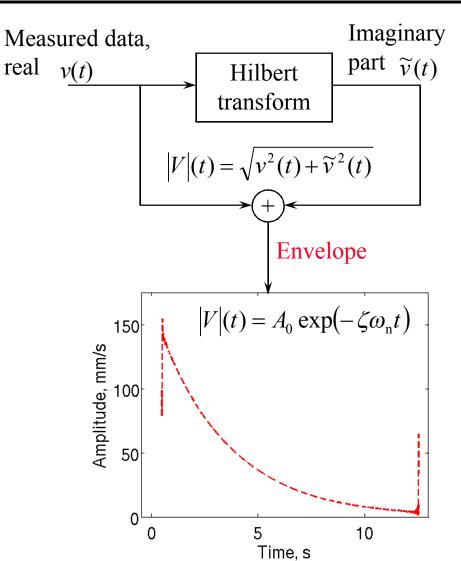
• The amplitude of a decaying sinusoid is the envelope

$$|V|(t) = A_0 \exp(-\zeta \omega_n t)$$

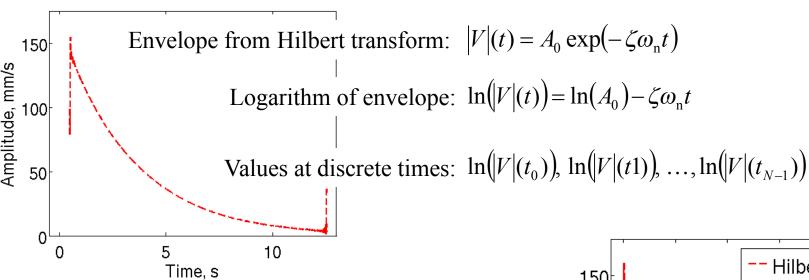


The envelope is a decaying exponential.



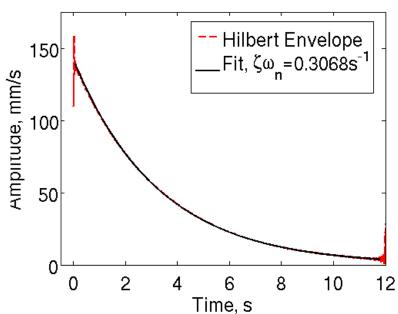


Curve fitting gives initial amplitude and decay rate.



Linear regression analysis gives the least-squares solution to

$$\begin{cases} \ln |V(t_0)| \\ \ln |V(t_1)| \\ \vdots \\ \ln |V(t_{N-1})| \end{cases} = \begin{bmatrix} t_0 & 1 \\ t_1 & 1 \\ \vdots & \vdots \\ t_{N-1} & 1 \end{bmatrix} \begin{cases} \zeta \omega_n & \text{on the initial amplitude} \\ \ln (A_0) & \text{otherwise} \end{cases}$$



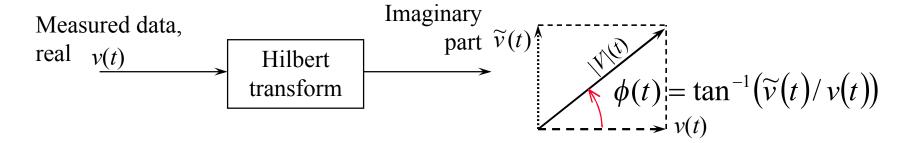
For later, define

$$\zeta \omega_{\rm n} = -C$$
.

Besides amplitude, Hilbert transform gives phase $\phi(t)$.

In any sinusoid
$$v(t) = A(t)\cos(\omega_d t + \phi_0)$$
, $\omega_d t + \phi_0 = \phi(t)$

Signal phase can be obtained from the Hilbert transform



From the phase $\phi(t) = \omega_d t + \phi_0$

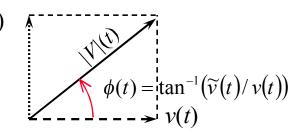
oscillation frequency is time derivative of signal phase: $\frac{d}{dt}\phi(t) = \omega_d$

Curve-fitting gives the oscillation frequency from the phase.

slide 8

Signal phase is obtained from the Hilbert transform

$$\phi(t) = \omega_d t + \phi_0$$



Curve fitting of the signal phase gives

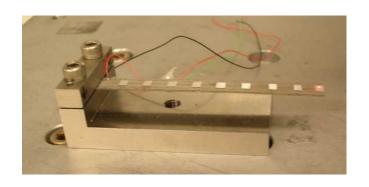
$$\begin{cases} \phi(t_0) \\ \phi(t_1) \\ \vdots \\ \phi(t_{N-1}) \end{cases} = \begin{bmatrix} t_0 & 1 \\ t_1 & 1 \\ \vdots & \vdots \\ t_{N-1} & 1 \end{bmatrix} \begin{cases} \omega_d \\ \phi_0 \end{cases}$$
 • initial phase Natural frequency is

 $\zeta \omega_n$ was obtained from envelope curve fitting: $\zeta \omega_n = -C$.

Using
$$\omega_{\rm d} = \omega_{\rm n} \sqrt{1 - \zeta^2}$$
,

the natural frequency ω_n can be obtained as $\omega_n = \sqrt{\omega_d^2 + C^2}$

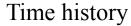
And damping as $\zeta = -C/\omega_n$.



a) b)

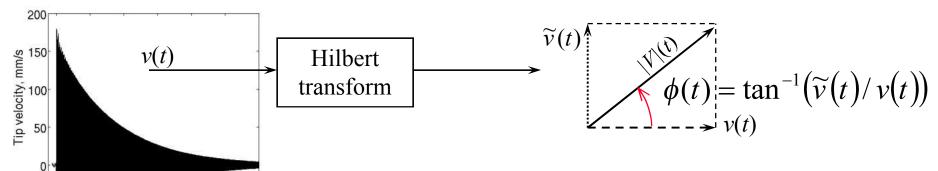
Figure 1: a) Cantilever with LDV laser beam at the tip. b) Thin beams of four different metals.

• A laser Doppler vibrometer (LDV) measured the tip velocity v(t).



2

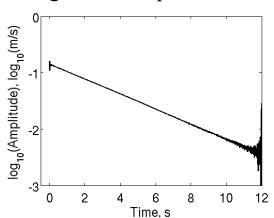
Time, s



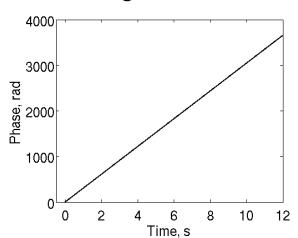
Log of envelop

12

10



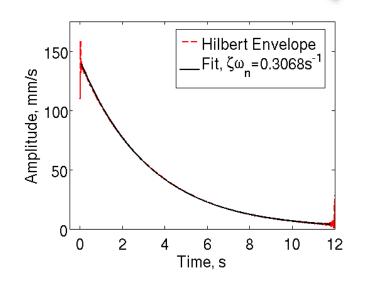
Phase growth with time



Monel cantilever decay rate and oscillation frequency were curve-fit linearly.

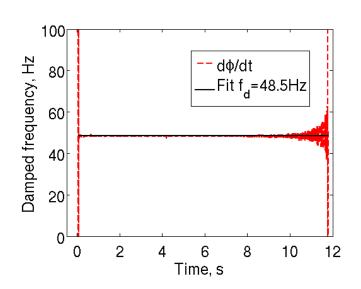
Curve fitting of the signal amplitude

$$\begin{cases}
\ln|V(t_0)| \\
\ln|V(t_1)| \\
\vdots \\
\ln|V(t_{N-1})|
\end{cases} = \begin{bmatrix}
t_0 & 1 \\
t_1 & 1 \\
\vdots & \vdots \\
t_{N-1} & 1
\end{bmatrix}
\begin{cases}
\zeta \omega_n
\end{cases}$$
• initial amplitude
$$\zeta \omega_n = -C.$$

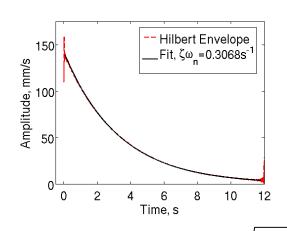


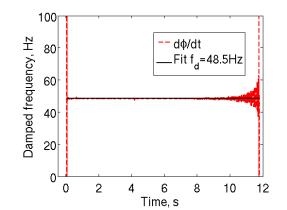
Curve fitting of the signal phase gives

$$\begin{cases}
\phi(t_0) \\
\phi(t_1) \\
\vdots \\
\phi(t_{N-1})
\end{cases} = \begin{bmatrix}
t_0 & 1 \\
t_1 & 1 \\
\vdots & \vdots \\
t_{N-1} & 1
\end{bmatrix}$$
• oscillation frequency
• initial phase



Linear regression analysis gave $-C = \zeta \omega_n$ and ω_d .

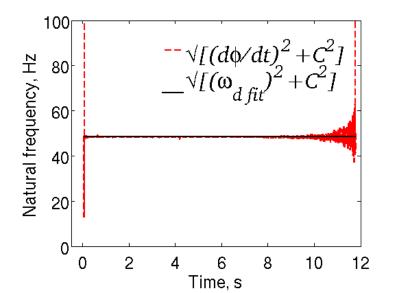




Transform them into ω_n and ζ as follows:

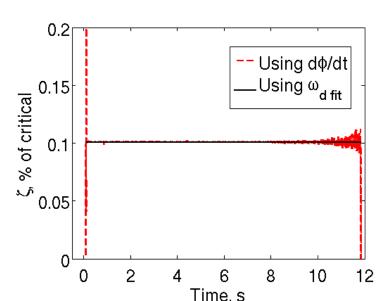
Natural freq is

$$\omega_{\rm n} = \sqrt{{\omega_{\rm d}}^2 + C^2}$$



Damping is

$$= -C/\omega_{\rm n}$$
.

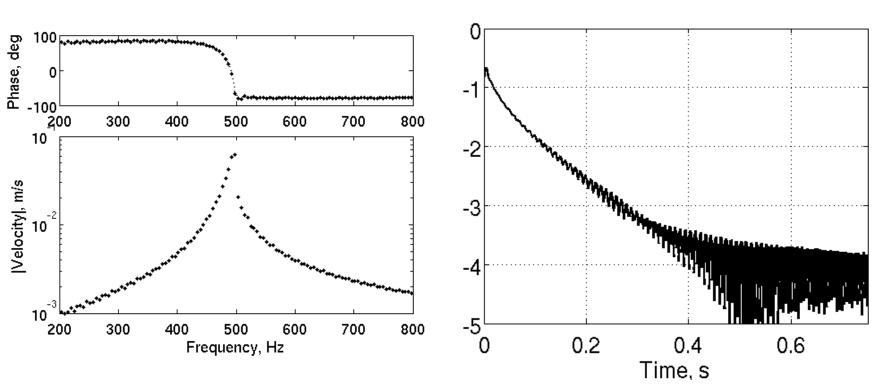


Sandia National Laboratories

PZT bimorph cantilever showed nonlinearity and high damping.

• Response FFT tilts to the right.

• High damping reduces response to noise floor quickly.



• The above problems require nonlinear curve fitting.

Nonlinearity requires curve-fitting with higher degrees.

Linear, ω_d is constant:

$$\phi(t) = \omega_d t + \phi_0$$

$$\begin{cases}
\phi(t_0) \\
\phi(t_1) \\
\vdots \\
\phi(t_{N-1})
\end{cases} = \begin{bmatrix}
t_0 & 1 \\
t_1 & 1 \\
\vdots & \vdots \\
t_{N-1} & 1
\end{bmatrix} \begin{cases}
\omega_d \\
\phi_0
\end{cases}$$

$$\omega_{\rm d} = d\phi(t)/dt = \text{const.}$$

Nonlinear, ω_d is a function of time:

$$\phi(t) = b_P t^P + b_{P-1} t^{P-1} + \dots + b_1 t + b_0 \phi_0$$

$$\omega_{\rm d}(t) = d\phi(t)/dt$$

$$\hat{\omega}_{d}(t) = \frac{d\hat{\phi}(t)}{dt} = \begin{bmatrix} Pt_{0}^{P-1} & \cdots & 1 & 0 \\ Pt_{1}^{P-1} & \cdots & 1 & 0 \\ \vdots & \cdots & \vdots & \vdots \\ Pt_{N-1}^{P-1} & \cdots & 1 & 0 \end{bmatrix} \begin{bmatrix} b_{P} \\ \vdots \\ b_{1} \\ b_{0} \end{bmatrix}$$

Curve fitting of amplitude is also expanded from linear to polynomial.

Linear, ζ is constant:

$$|V|(t) = A_0 \exp(-\zeta \omega_n t)$$

$$\ln(|V|(t)) = \ln(A_0) - \zeta \omega_n t$$

$$\begin{cases}
\ln |V(t_0)| \\
\ln |V(t_1)| \\
\vdots \\
\ln |V(t_{N-1})|
\end{cases} = \begin{bmatrix}
t_0 & 1 \\
t_1 & 1 \\
\vdots & \vdots \\
t_{N-1} & 1
\end{bmatrix} \begin{cases}
\zeta \omega_n \\
\ln (A_0)
\end{cases}$$

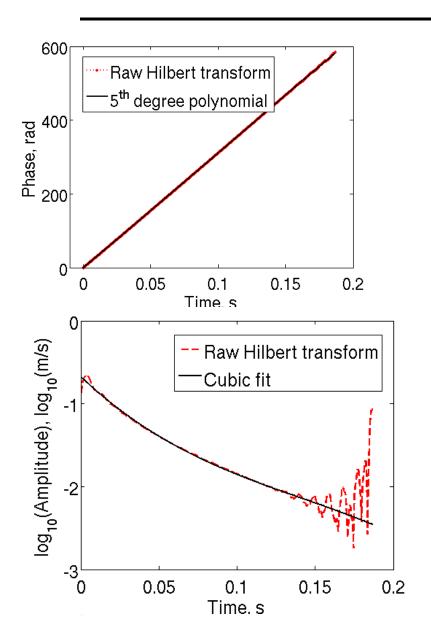
Nonlinear, ζ is a function of time:

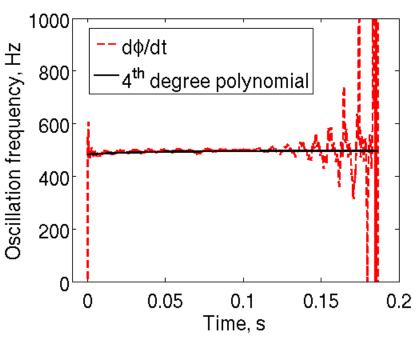
$$\begin{cases} \ln |V(t_0)| \\ \ln |V(t_1)| \\ \vdots \\ \ln |V(t_{N-1})| \end{cases} = \begin{bmatrix} t_0^{-3} & t_0^{-2} & t_0 & 1 \\ t_1^{-3} & t_1^{-2} & t_1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ t_{N-1}^{-3} & t_{N-1}^{-2} & t_{N-1} & 1 \end{bmatrix} \begin{bmatrix} c_3 \\ c_2 \\ c_1 \\ \ln (A_0) \end{cases}$$

$$\hat{A}(t) = A_0 \exp(-c_1 t - c_2 t^2 - c_3 t^3)$$

$$\zeta(t)\omega_n(t) = C(t) = (c_1 + c_2 t + c_3 t^2)$$

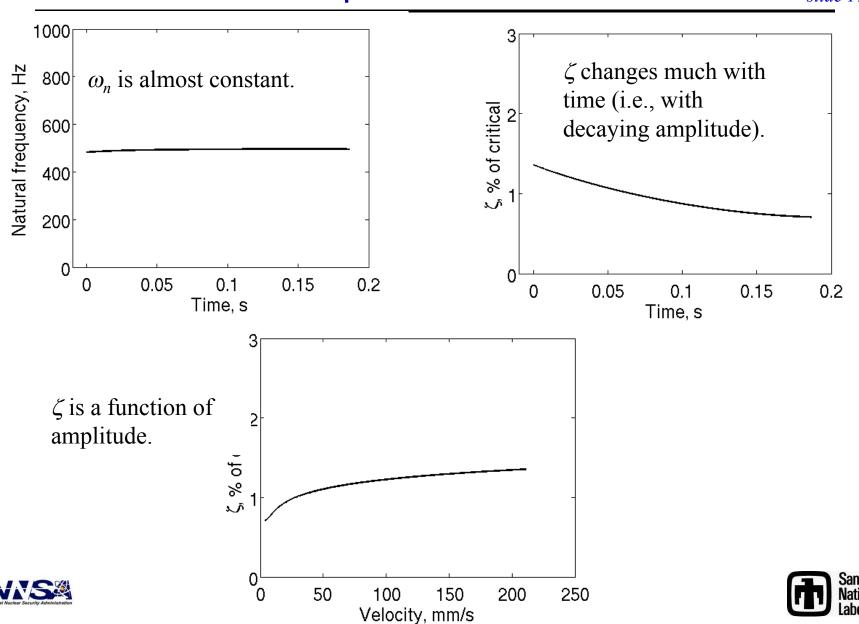
$$\omega_{\rm n}(t) = \sqrt{\left(\omega_{\rm d}(t)\right)^2 + \left(C(t)\right)^2}$$





Natural frequency and damping are functions of time or amplitude.

slide 17



Test procedure gave damping ratios of various cantilevers.

slide 18

Material	Test run #	<i>O</i> = 1/(2ζ)	$H_{\mathbf{Z}}^{f_{n}}$,
Brass from sheet stock	1	580	36.3
Brass from commercial bimorph supplier	1	640	62.18
Brass from commercial bimorph supplier	2	640	62.18
Bronze	1	625	37.8
Bronze	2	624	37.8
Monel	1	498	48.4
Monel	2	492	48.5
Monel	3	495	48.4
PZT 402 sheet (in-house)	1	357	60.5
PZT 402 sheet (in-house)	2	351	60.5
PZT 5A bimorph (in-house)	1	80	377
PZT 5A bimorph (in-house)	2	47	378
PZT 5A bimorph from commercial supplier	1	96	499.8
PZT 5A bimorph from commercial supplier	2	96	500.7

- •The method presented here has enabled the computation of natural frequency and damping of an SDOF system from its free ring-down history.
- •Noise is a major problem. Curve fitting helps suppress the noise from time-differentiation.
- •The method produced very good results for the linear beams.
- •The nonlinear bimorph beams with higher damping gave very noisy data.
- •In that case, nonlinear curve fitting is very important.
- •The test results give an idea of how much damping (hence energy dissipated as heat) is typical of PZT bimorphs used for vibration energy harvesters.
- •They also help in selecting the material to be used as the shim metal in fabricating the bimorphs.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Questions ??

Thank you!

hSumali@Sandia.gov

