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Introduction

• Damping plays an important role in structural vibration. 
• For example, damping determines how much energy is dissipated as heat 

when a PZT bimorph is used as a vibration energy harvester. 
• The natural frequency and damping could be obtained by measuring the 
time lapse and the logarithmic decrement between consecutive peaks of the 
trace of free-decay time history . 
• In practical response histories, however, the peaks may not be captured 
exactly. For example, a peak may appear higher than its preceding peak 
because of nonlinearity, sampling, noise, and various other conditions, 
resulting in erroneous negative damping. 
• The method presented in this paper is based on the Hilbert transform. This 
method is more robust and considerably easier to apply than previous 
methods. 
• The method allows modeling of nonlinearity. 
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Response to “plucking” is a cosine with time-
decaying amplitude. 

• For an underdamped linear SDOF oscillator, the free decaying velocity response 
to an initial condition is 

   0cos)(   ttAtv d

 tAtA n0 exp)( 

A0 is the initial amplitude,  is the damping 
ratio and n is the natural frequency. 
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Hilbert transform gives the envelope. 
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The Hilbert transform of a signal v(t) is 

• is an imaginary signal that is 90o lagging from phase from the real signal v(t). )(~ tv

• The |vector sum| of the real signal and the imaginary signal is the amplitude 

)(~)()( 22 tvtvtV 

• The amplitude of a decaying sinusoid is the envelope

)(~ tv

v(t)
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The envelope is a decaying exponential. 

Measured data, 
real Hilbert 

transform

Imaginary 
part

+

Envelope

)(~)()( 22 tvtvtV 

v(t) )(~ tv
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Linear regression analysis gives the least-squares 
solution to 

Curve fitting gives initial amplitude and 
decay rate. 
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• product of
• linear damping
• natural frequency

• initial amplitude

 tAtV n0 exp)( 

    tAtV n0ln)(ln 

Envelope from Hilbert transform: 

Logarithm of envelope: 

     )(ln,,)1(ln,)(ln 10 NtVtVtV Values at discrete times: 

n= -C. For later, define
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Besides amplitude, Hilbert transform gives 
phase (t). 

oscillation frequency is time derivative of signal phase:  

)(0 ttd  

dt
dt

d
 )(

Signal phase can be obtained from the Hilbert transform 

v(t)

    tvtvt /~tan)( 1
Hilbert 

transform

v(t)
)(~ tv

Measured data, 
real

Imaginary 
part

   0cos)(   ttAtv d
In any sinusoid ,  

0)(   tt dFrom the phase   
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Curve-fitting gives the oscillation frequency from 
the phase. 
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)(~ tvSignal phase is obtained from the Hilbert transform 

v(t)
    tvtvt /~tan)( 1

Curve fitting of the signal phase gives

• initial phase

• oscillation frequency

Natural frequency is

the natural frequency  n can be obtained as

n was obtained from envelope curve fitting:

0)(   tt d

n= -C. 

2
nd 1  

22

dn C 

Using , 

 = -C/n. And damping  as
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Cantilever was plucked. 
Velocity was measured by LDV. 

• A laser Doppler vibrometer (LDV) measured the tip velocity v(t).  

a) b)

Figure 1 : a) Cantilever with LDV laser beam at the tip. b) Thin beams of four different metals.
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Monel cantilever gave a clean linear ringdown. 

Time history  

Log of envelop  Phase growth with time 

v(t)

    tvtvt /~tan)( 1
Hilbert 

transform

v(t)
)(~ tv



slide 11

• product of
• linear damping
• natural frequency

• initial amplitude

Monel cantilever decay rate and oscillation 
frequency were curve-fit linearly. 
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n= -C. 
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Curve fitting of the signal phase gives

• initial phase

• oscillation frequency

Curve fitting of the signal amplitude
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Linear regression analysis gave -C=n and d. 

Monel cantilever frequency and damping were 
easy to extract. 

22

dn C   = -C/n. Natural freq is Damping is 

Transform them into  
n and   as follows:   
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PZT bimorph cantilever showed nonlinearity 
and high damping. 

• The above problems require nonlinear curve fitting. 

• Response FFT tilts to the right. • High damping reduces response to noise 
floor quickly.  
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Nonlinearity requires curve-fitting with higher 
degrees.
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Linear, d is constant: Nonlinear, d is a function of time: 

d = d(t)/dt=const. 
d (t) = d(t)/dt
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Curve fitting of amplitude is also expanded 
from linear to polynomial.
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Linear,  is constant: Nonlinear,  is a function of time: 
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PZT Bimorph nonlinear ringdown is curve-fit. 
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Natural frequency and damping are 
functions of time or amplitude. 

n is almost constant.    changes much with 
time (i.e., with 
decaying amplitude).  

 is a function of 
amplitude.  
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Test procedure gave damping ratios of 
various cantilevers. 

Material Test run 
#

Q = 
1/(2)

fn,
Hz

Brass from sheet stock 1 580 36.3

Brass from commercial bimorph supplier 1 640 62.18

Brass from commercial bimorph supplier 2 640 62.18

Bronze 1 625 37.8

Bronze 2 624 37.8

Monel 1 498 48.4

Monel 2 492 48.5

Monel 3 495 48.4

PZT 402 sheet (in-house) 1 357 60.5

PZT 402 sheet (in-house) 2 351 60.5

PZT 5A bimorph (in-house) 1 80 377

PZT 5A bimorph (in-house) 2 47 378

PZT 5A bimorph from
commercial supplier

1 96 499.8

PZT 5A bimorph from
commercial supplier

2 96 500.7
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Conclusions:

•The method presented here has enabled the computation of natural frequency and
damping of an SDOF system from its free ring-down history.
•Noise is a major problem. Curve fitting helps suppress the noise from time-
differentiation.
•The method produced very good results for the linear beams.
•The nonlinear bimorph beams with higher damping gave very noisy data.
•In that case, nonlinear curve fitting is very important.
•The test results give an idea of how much damping (hence energy dissipated as heat)
is typical of PZT bimorphs used for vibration energy harvesters.
•They also help in selecting the material to be used as the shim metal in fabricating
the bimorphs.



slide 20

Acknowledgment

hSumali@Sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin 
Company, for the United States Department of Energy’s National Nuclear Security 
Administration under contract DE-AC04-94AL85000.


