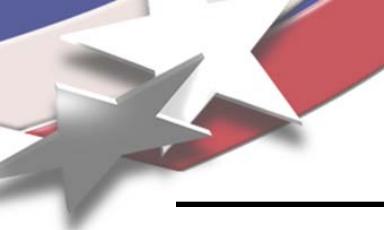


# Risk-Based Cost-Benefit Analysis for Security Assessment Problems


*Presented at the International Conference on  
Vulnerability and Risk Analysis and Management (ICVRAM)*

*April 11-13, 2011 - University of Maryland Conference Center*

**By Gregory D. Wyss, Ph.D.**  
Sandia National Laboratories

**Co-Authors:** John P. Hinton, Katherine Dunphy-Guzman, John Clem,  
John Darby, Consuelo Silva, and Kim Mitchiner

Contact:  (505) 844-5893  [gdwyss@sandia.gov](mailto:gdwyss@sandia.gov)



# Security Risk Management Recommendations from the National Academy of Sciences

---

- Our goal must be *effective security risk management*.

National Academy of Sciences, 2010, emphasis added

*Risk management is the process of identifying, analyzing, assessing, and communicating risk and accepting, avoiding, transferring, or controlling it to an acceptable level at an acceptable cost.*

- Key risk management recommendations include:

- Use a risk-informed, not risk based, approach to security risk management
  - Informed by PRA tools, but not relying on PRA
- Qualitative risk assessment methods may be suitable
- Focus on risk management rather than “how much or little risk exists”

# A Fundamental Definition of Risk

| Scenario | Consequence | Likelihood |
|----------|-------------|------------|
| $S_1$    | $C_1$       | $F_1$      |
| $S_2$    | $C_2$       | $F_2$      |
| $S_3$    | $C_3$       | $F_3$      |
| $S_4$    | $C_4$       | $F_4$      |
| $S_5$    | $C_5$       | $F_5$      |
| $S_6$    | $C_6$       | $F_6$      |
| ...      | ...         | ...        |

**This table  
IS the risk!**

- Risk can be thought of as answers to 3 questions:
  - *What can happen?* (scenario)
  - *How likely is it?* (probability / frequency)
  - *How bad is it?* (consequence)

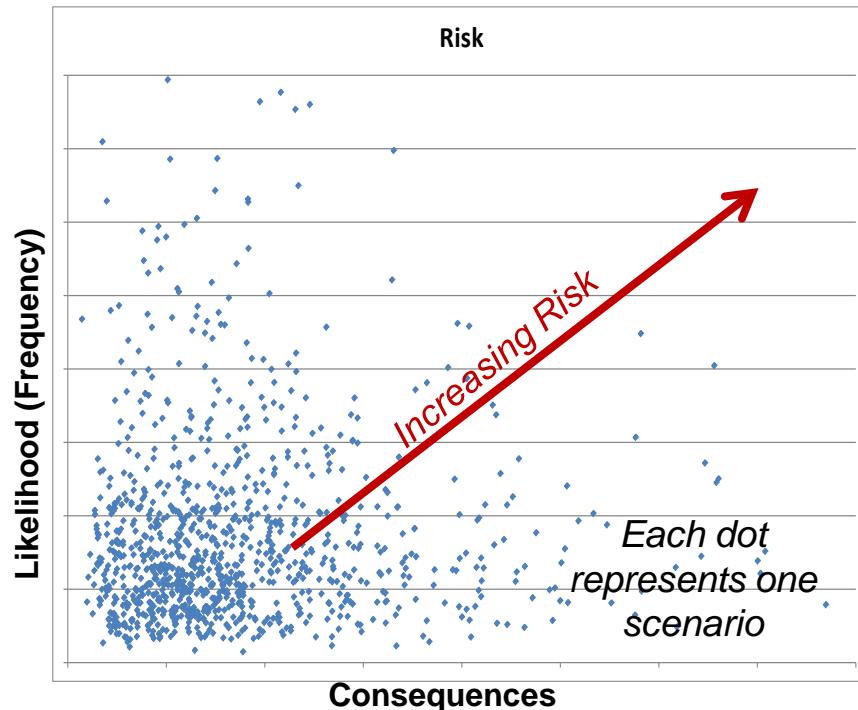
“If [a] table contains all the scenarios we can think of, we can then say that it (*the table*) is the answer to the question and therefore *is the risk*.”

*Kaplan & Garrick, Risk Analysis 1:1(11) 1981, emphasis added.*

## Risk for a Scenario:

$$R = P_A \cdot (1 - P_E) \cdot C$$

## How likely is it? How bad is it?


# Applying the Definition of Risk

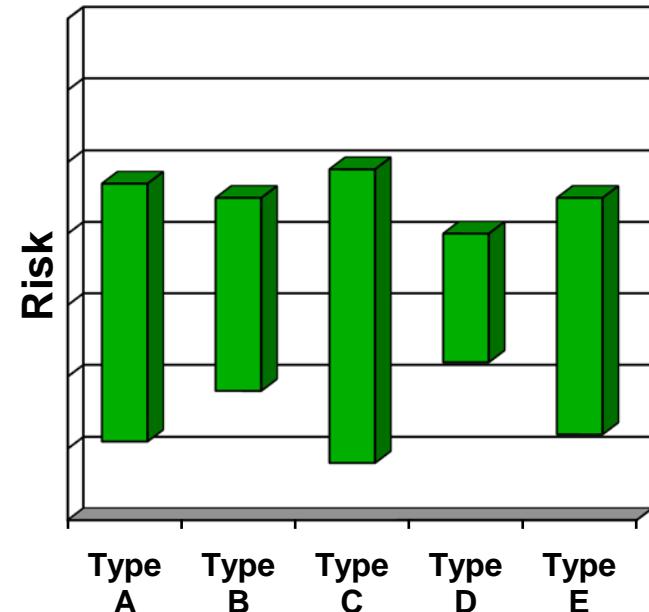
| Scenario | Consequence | Likelihood |
|----------|-------------|------------|
| $S_1$    | $C_1$       | $F_1$      |
| $S_2$    | $C_2$       | $F_2$      |
| $S_3$    | $C_3$       | $F_3$      |
| $S_4$    | $C_4$       | $F_4$      |
| $S_5$    | $C_5$       | $F_5$      |
| $S_6$    | $C_6$       | $F_6$      |
| ...      | ...         | ...        |

This table  
IS the risk!

| Routine Event                  | ●          |     |          |      |              |   |
|--------------------------------|------------|-----|----------|------|--------------|---|
| Unusual Event                  |            | ●   |          |      |              |   |
| Expected: Life of Facility     | ●          | ●   | ●        | ●    | ●            |   |
| Unlikely: Life of Facility     | ●          | ●   | ●        | ●    | ●            | ● |
| Remotely Possible              | ●          | ●   | ●        | ●    | ●            | ● |
| ↑ Likelihood<br>Consequences → | Negligible | Low | Moderate | High | Catastrophic |   |

Or...




# The Problem of Likelihood

Attack scenario likelihoods are often elicited from experts.

- Often assumed by the experts to be statistically independent. But...
- Highly dependent on attacker's capability, motivation & intent
- Highly dependent on attacker's other opportunities – both inside and outside the system.

Security risk estimates are captive to uncertain likelihoods.

- Which of these is the highest risk?
- Which should we mitigate?
- Even if we could draw conclusions from this risk picture, the attack likelihood changes frequently and in ways that we may not understand.



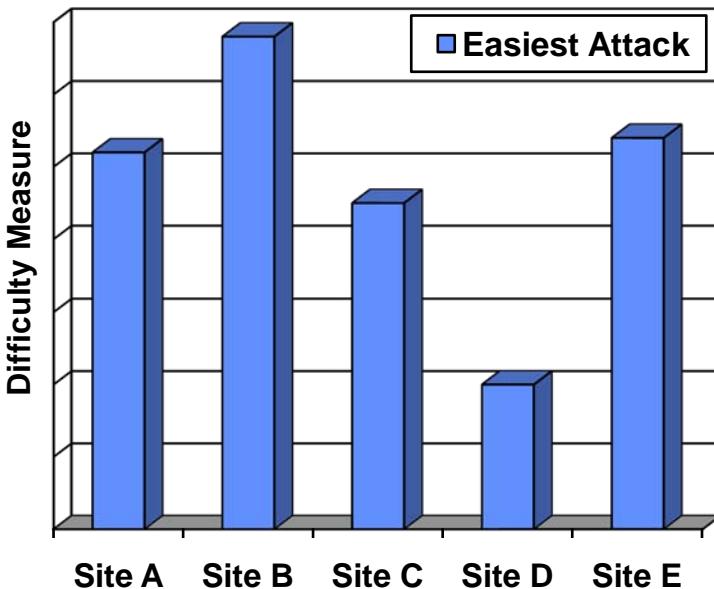
Attack frequency should be the output of a risk assessment, not an input.\*

\* Cox, L.A., *Game Theory and Risk Analysis*, Risk Analysis, Vol. 29, No. 8, 2009.

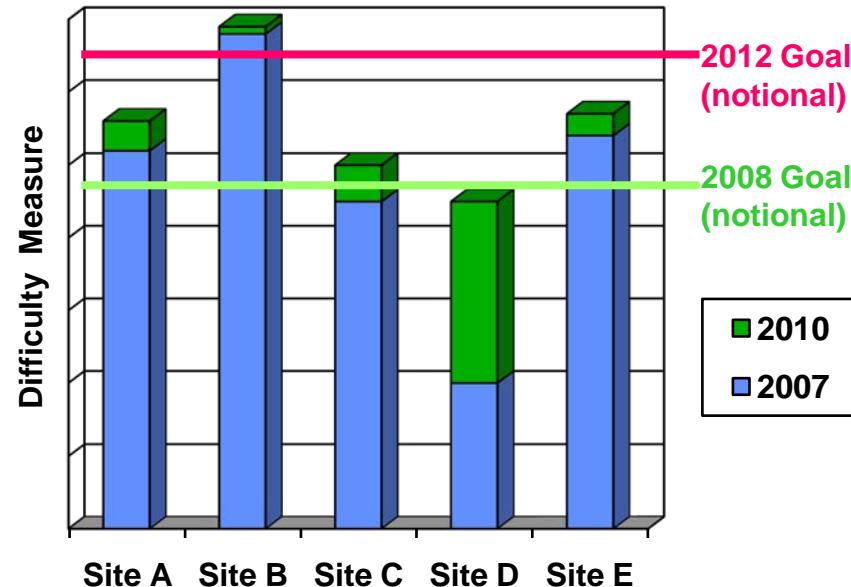


# Goal: Manage Security Risks

---


- Given uncertainties in attack likelihood, it's hard to get statistically significant recommendations for risk management.
  - Can we reduce uncertainty in likelihood? *Probably not enough.*
- A different approach: examine adversary criteria for selecting which attack scenario to pursue, including:

| Adversary's Decision Criterion                                                                                       | How we make an attack less likely                                       |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| “Could I do it if I wanted to?”<br>( <i>Is success likelihood high?</i> )                                            | Make attack scenario more difficult                                     |
| “Would I do it if I could?”<br>( <i>Worthy investment of resources?</i> )<br>( <i>Does it violate my doctrine?</i> ) | Make attack scenario more difficult<br>or reduce potential consequences |
| “Are the expected consequences high enough?”                                                                         | Reduce the potential or expected consequences of the scenario           |


- The benefits of a security investment can be inferred from two metrics:
  - How much harder has the scenario become for an adversary?
  - How much have expected consequences been reduced?

# Scenario Difficulty Measures the Benefit of a Security Investment

Illustration based on sites assumed to have the same consequence for a successful attack.



- How much have I improved?
- Why do my sites not meet the new security goal?
- Does this security goal serve the function of a Design Basis Threat?



- Are sites balanced?
- Where should I spend my next dollar?

Game theory predicts that, given similar consequences, easier attacks are more likely.

“Scenario difficulty” may be a reasonable surrogate for attack likelihood.

Problems of this type are amenable to traditional optimization methods.

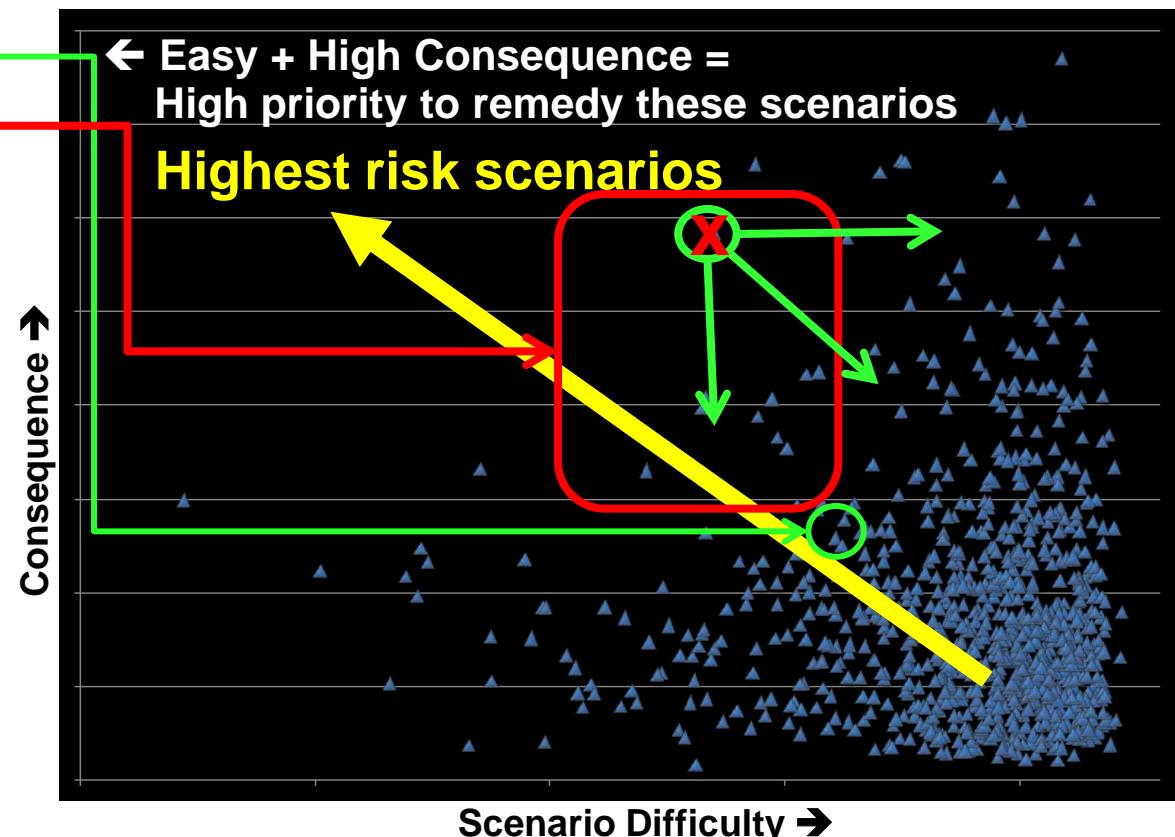
# Scenario Difficulty Measures the Benefit of a Security Investment

If we fix this... 

Without fixing this... 

We may not have improved security. Because...

Many scenarios still exist that are both easier to achieve AND provide higher consequences!


## Parallels to Game Theory

Scenarios with the highest net utility are most advantageous, and most likely to be selected.

$$\frac{\sum \text{Benefits} - \sum \text{Costs}}{\text{Net Utility}}$$

[-Consequence]    [-Difficulty]

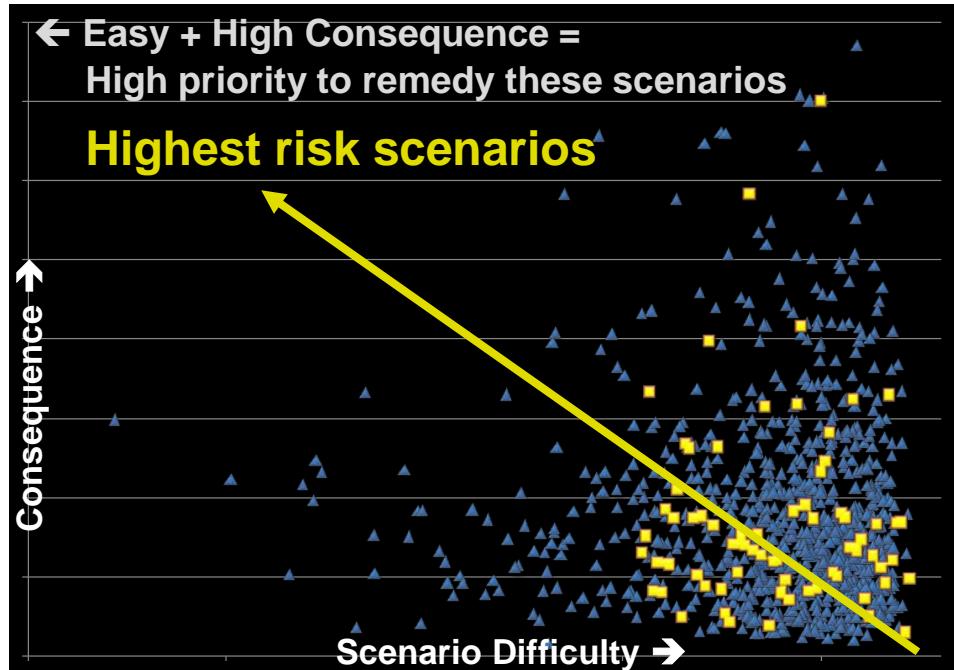
This representation of security risk can be used for game theoretic assessments of attack scenario likelihood!



## To “fix” a scenario we must

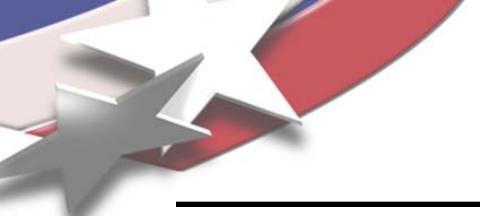
- Eliminate it (make it impossible to achieve)
- Reduce the consequences that occur if it is completed
- Make it harder to accomplish successfully

... or any combination of these


# A Notional Example Application

How do we decide which vulnerabilities should be addressed first?

- Generally, work on scenarios that are both easy to do & high consequence.
- Enterprise decisions may be affected by intelligence data
- Decision maker values affect whether [Easy,  $\downarrow C$ ] or [Hard,  $\uparrow C$ ] is next


Why use scenario difficulty as a component of risk?

- Difficulty better reflects adversary planning processes
- Difficulty changes more slowly and predictably than likelihood
- Problem: How do we quantify the difficulty of an attack?
  - *This is the subject of ongoing research...*



Composite (Enterprise/Facility) View of Security Risk

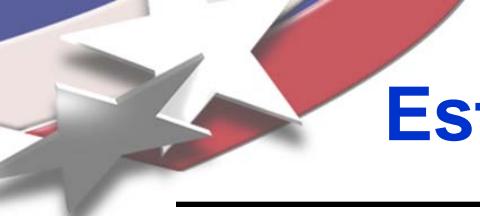
Investment insights from this method seem more robust & defensible than those based on highly uncertain attack likelihood estimates.



# Considerations for Estimating Attack Scenario Difficulty

## Attack Preparation

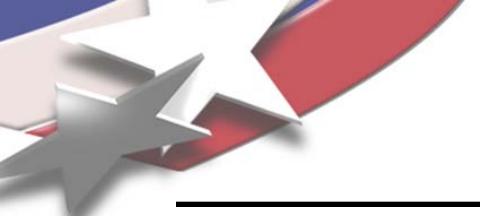
- *Outsider attack participants*
  - Number of engaged participants
  - Training & expertise required
- *Insider attack participants*
  - Number and coordination
  - Level of physical and cyber access required, sensitivity, vs. security controls
- *Organizational support structure*
  - Size, capabilities & commitment
  - Training facilities, R&D, safe haven, intelligence & OPSEC capabilities...
- *Availability of required tools*
  - Rarity, signatures for intelligence or law enforcement, training signatures...


## Attack Execution

- *Ingenuity & inventiveness*
- *Situational understanding*
  - Observability & transience of vulnerabilities
- *Stealth & covertness*
- *Dedication & commitment of participants*
  - Risk to both outsiders & insiders includes personal risk, willingness to die, etc.
  - Risk to the “cause” or support base
- *Operational complexity/flexibility*
  - Precision coordination of disparate tasks
  - Multi-modal attack (cyber+physical+???)

Scenario difficulty is a property of the target.

It estimates how capable the adversary must be to have a successful attack.


Risk managers can then ask, “Are the easiest attacks difficult enough to deter the adversaries we are concerned about?”



# Estimating Difficulty of Attack Scenarios

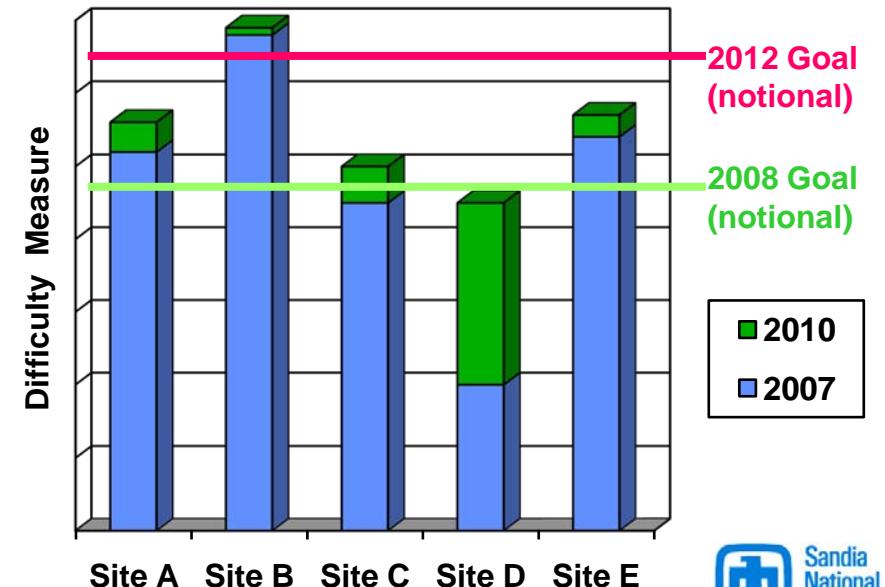
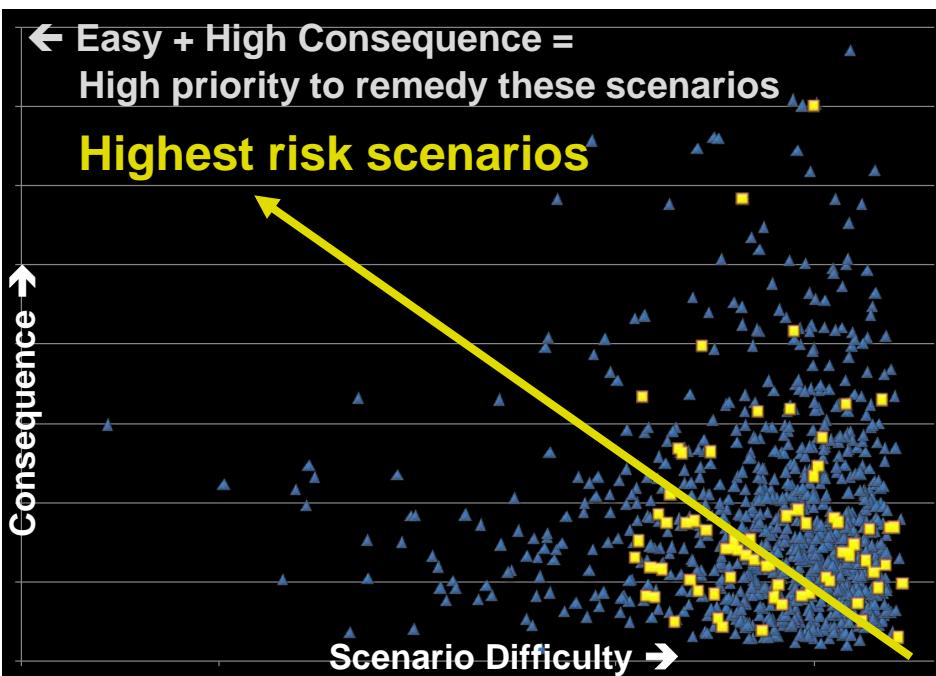
General characteristics used to establish levels of difficulty for dimensions.

| Level 1                                                                          | Level 2                                                                                                  | Level 3                                                                  | Level 4                                                        | Level 5                                                                                      |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Easy to get/do                                                                   | Moderately easy to get/do                                                                                | Difficult                                                                | Very difficult                                                 | Extremely difficult to get / do                                                              |
| Capability available by legal means                                              | Requires capability similar to criminal activity                                                         | Requires capability similar to organized criminal activity               | Requires sophisticated capability similar to large corporation | Requires state-supported capability                                                          |
| Requires no special skills                                                       | Requires low-level skills (~days of training)                                                            | Requires moderate-level skills (~months of training)                     | Requires high-level skills (~years of training)                | Requires highly specialized skills (~multiple years of training, such as an advanced degree) |
| Easily accessible by general public                                              | Accessible by public that has moderate-level knowledge                                                   | Typically accessible by criminal, paramilitary, or terrorist enterprises | Accessible by highly specialized organizations                 | Typically accessible only by elite forces                                                    |
| Essentially no early warning signatures - little risk to adversary of disruption | Some early warning signatures that may elevate general concerns of authorities – some risk of disruption |                                                                          |                                                                | Very large early warning signatures – great risk of disruption                               |



# Example Scenario: Oklahoma City Bombing

**Scenario 3: Oklahoma City Bombing.** This scenario reflects the difficulty that was likely encountered by the participants in the plot to bomb the Murrah Federal Building in Oklahoma City.



**Level (Score) [1, 2, 3, 4, 5 → 1, 3, 9, 27, 81]**

|                               |                           |       |                                                                                                                                                                                |
|-------------------------------|---------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Attack Planning & Preparation | Participants              | 2 (3) | Several (~2-5); Small team                                                                                                                                                     |
|                               | Training                  | 2 (3) | Self-taught; Open source info; No professional foundation; Practice not required for critical tasks                                                                            |
|                               | Support                   | 1 (1) | Minimal; Few if any support personnel / collaborators; No intelligence support; Preparations easily concealed—no need for cover; Open source info                              |
|                               | Tools                     | 2 (3) | Legal availability controlled, limited to special purpose uses; Typical of criminal enterprises                                                                                |
|                               | # of Insiders             | 1 (1) | None                                                                                                                                                                           |
|                               | Insider Access            | 1 (1) | None                                                                                                                                                                           |
|                               | Ingenuity                 | 1 (1) | Very predictable, straightforward approach; Easily conceivable by knowledgeable public; Defenses likely to be well prepared / trained against                                  |
| Attack Execution              | Situational Understanding | 1 (1) | Minimal; Requires little recognition or utilization of exploitable conditions; Exploitable vulnerabilities are persistent and predictable, with evident signatures             |
|                               | Stealth & Covertness      | 1 (1) | Minimal                                                                                                                                                                        |
|                               | Outsider Commitment       | 2 (3) | Persistent remote exposure or participants, limited direct exposure to less-than-lethal conditions; Little risk of casualties, but significant risk of participant attribution |
|                               | Insider Commitment        | 1 (1) | None                                                                                                                                                                           |
|                               | Complexity                | 1 (1) | Single avenue of attack with simple tasks; Unimodal tasks; If multi-modal attack, modalities are sequential, temporally decoupled                                              |
|                               | Flexibility               | 1 (1) | Singular binary course of action; No contingency planning; Little tactical adjustment                                                                                          |
| Aggregated Score              |                           | (21)  | Score for each level is 3x that of the next lower level in this example.                                                                                                       |

# Summary

Risk-informed security investment prioritization is possible *if* risk is based on scenario difficulty.

- Robust against likelihood uncertainties that constrain today's risk-based security decision-making.
- Difficulty reflects known adversary planning process better than likelihood.
- Communicates well with decision makers even if it cannot be used to roll up risk into a single number.

