

Exceptional service in the national interest

Determination of Loadings on Spent Nuclear Fuel Assemblies During Normal Conditions of Transport

International Symposium on Spent Nuclear Fuel (SNF) Management
Ken Sorenson
March 26, 2014

SAND2013-XXXXP

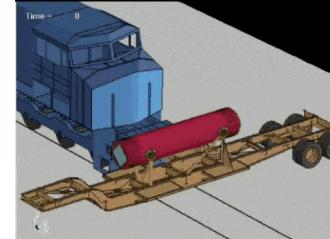
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

There has been much R&D work over the last 4 decades related to cask response to severe accident conditions.....

Most of this work relates to understanding cask response and its ability to remain leak-tight after severe mechanical and thermal loadings are applied.....

RAIL1.AVI

RAIL2.AVI


grade_cross_collision2.avi

TRUCK84.AVI

FIRE.AVI

Rail Impact Test

- 74-ton package
- 81 mph impact

Locomotive Impact Test

- 25-ton package
- 120-ton locomotive
- 81 mph impact

Locomotive Impact Analysis

- 25-ton package
- 120-ton locomotive
- 80 mph impact

Truck Impact Test

- 22-ton package
- 84 mph impact

Calorimeter Fire Test

- 30 minutes
- Fully engulfing

Spent Fuel Transportation Risk Assessment

Final Report

Manuscript Completed: September 2013
Date Published: January 2014

John R. Cook, NRC Project Manager

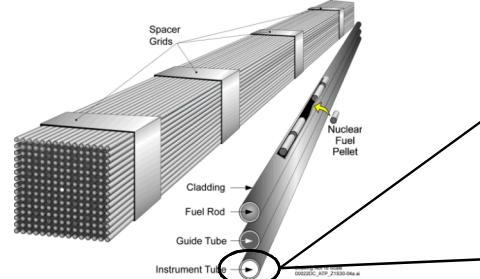
Office of Nuclear Materials Safety and Safeguards

In January 2014, the US NRC published NUREG-2125 which affirmed the safety of transport. This study states that there is only a 1 in 1 billion chance of radioactive material release in the event of an accident.

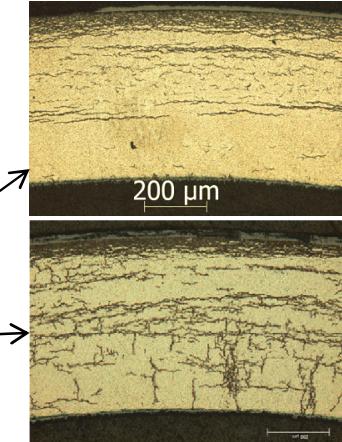
However, while we are confident that we can accurately analyze cask response during severe mechanical and thermal loadings, we have limited knowledge of how the spent fuel itself will respond, even during normal conditions of transport.....

In the United States, two unrelated factors have focused attention on the integrity of high burnup spent fuel (i.e., > 45 GWD/MTU) during storage and transportation operations:

Cessation of the Yucca Mountain repository licensing activities


(www.pubs.usgs.gov)

Impact:


- Spent fuel may be stored for periods well beyond the current licensing timeframe
- Long term degradation mechanisms are not validated

Efficiencies in US reactor operations have resulted in higher fuel burnups

Fuel assembly

Fuel cladding

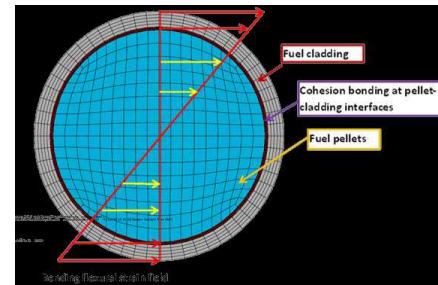
(Billone, Argonne Nat'l Lab
Presentation to EPRI/ESCP
Dec 5, 2013)

Impact:

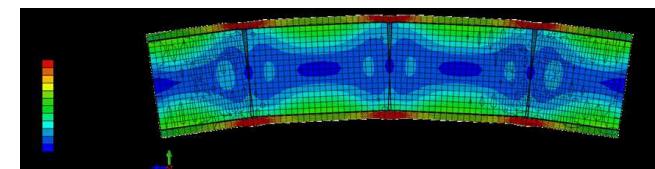
- Longer duty cycles result in more hydrogen being absorbed into the fuel cladding
- Operational drying cycles may result in hydride re-orientation, thereby reducing cladding ductility

A technical basis is needed to demonstrate our understanding of high burnup fuel response to retrieval from storage and to transport.

This requires validation of the integrity of high burnup spent fuel through a combination of testing and analysis to demonstrate actual performance.


Fundamentally:

applied stress/strain < material strength

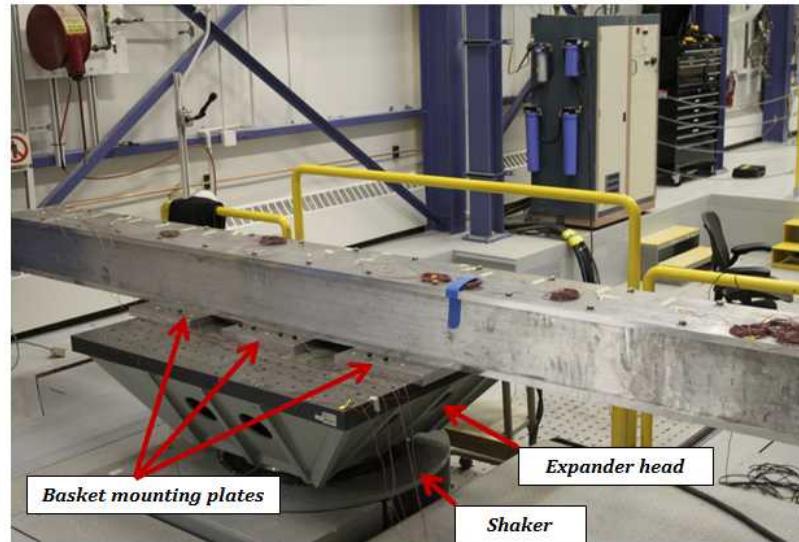

Requires determination of:

- Loads
- Applied strains
- Calculated stresses

Requires determination of:

- Material properties
 - Yield/ultimate strength
 - Ductility
 - Fracture toughness
- Constitutive relationships
- Pellet-clad interaction

Jiang, Wang; Oak Ridge National Laboratory, WM2014 Conference, March 2014


The US DOE storage and transportation R&D program is developing this technical basis.
→ Sandia is the lead lab for determining loads transferred to the fuel during Normal Conditions of Transport.

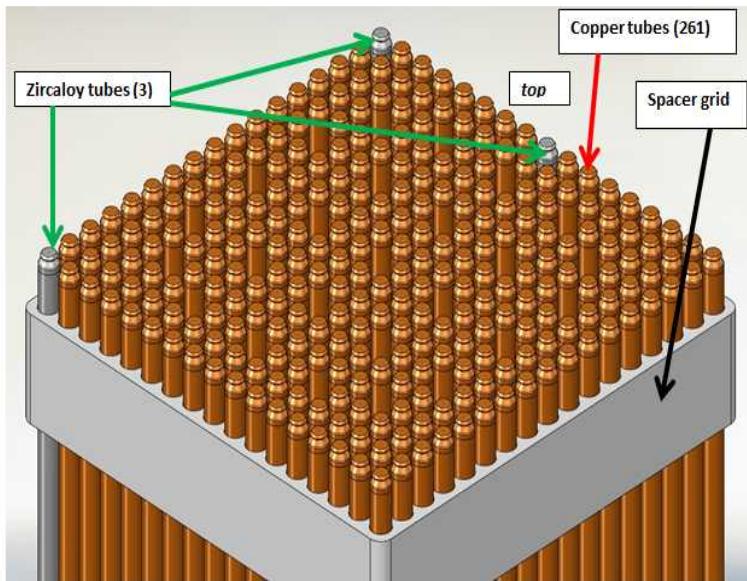
Assembly Shaker Test

Sandia conducted a series of shaker table tests in April 2013 as a first step in determining loads transmitted to fuel during Normal Conditions of Transport

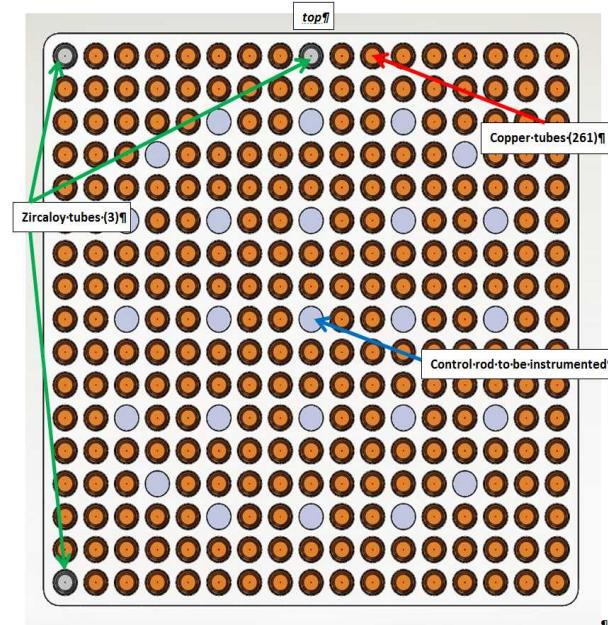
Objectives

1. Simulate normal conditions of transport loading on a surrogate PWR fuel assembly by applying vibration and shock loadings that the assembly would experience during truck transport.
2. Instrument the fuel cladding to **measure accelerations and strains** imposed by the vibration and shock loadings resulting from normal condition of transport.

Test Configuration


- The test unit included a fully loaded assembly and a basket.
- The test configuration was based upon the geometries of the NAC-LWT truck cask with a PWR basket.
- The assembly was placed in a basket which was placed on a shaker. The basket was bolted to the shaker. The clearances between the assembly and the basket matched those of the assembly/basket for the NAC-LWT design.
- The assembly had the same lateral and vertical freedom of motion as it would have in an actual cask.
- The mass and stiffness of the surrogate assembly match well with a real fresh fuel PWR 17x17 assembly

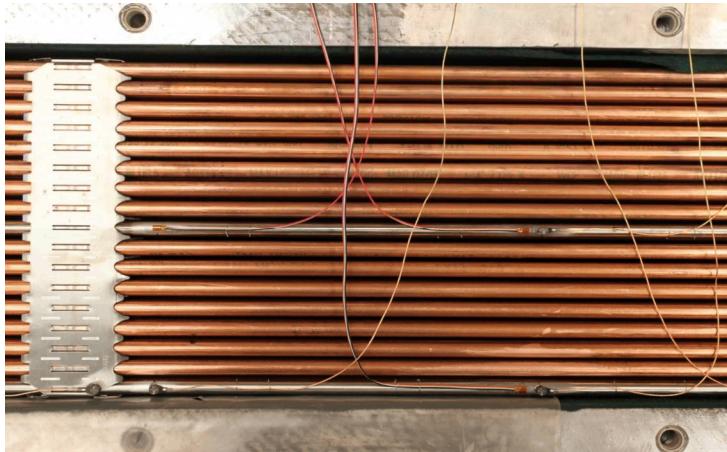
Basket Specifications


- 6061 Aluminum Basket
- Sides 1.5 inches thick
- Top/bottom 1 inch thick
- Length 161.5 inches
- Weight 837 pounds

Surrogate 17x17 PWR Experimental Assembly

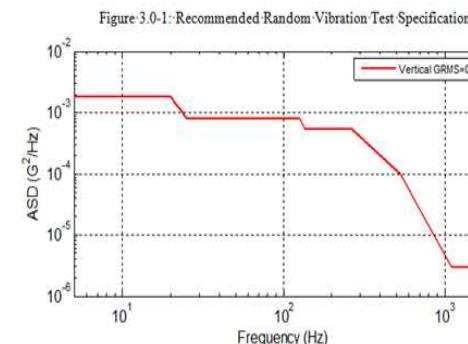
Isometric View of Fuel Rods

Top View of Assembly



Surrogate rod:

- Three Zr-4 rods
- Remainder: Copper
- All filled with lead rope
- Mass simulates fresh UO₂ fuel

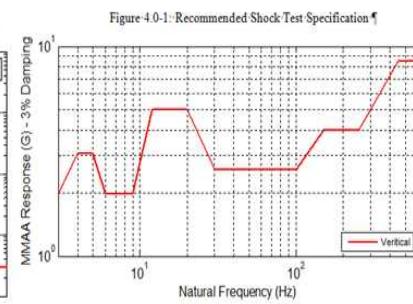

Instrumentation

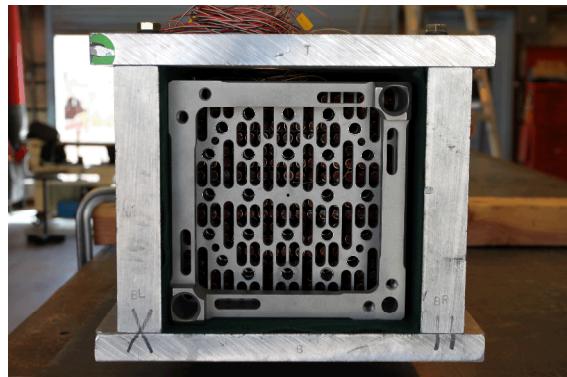
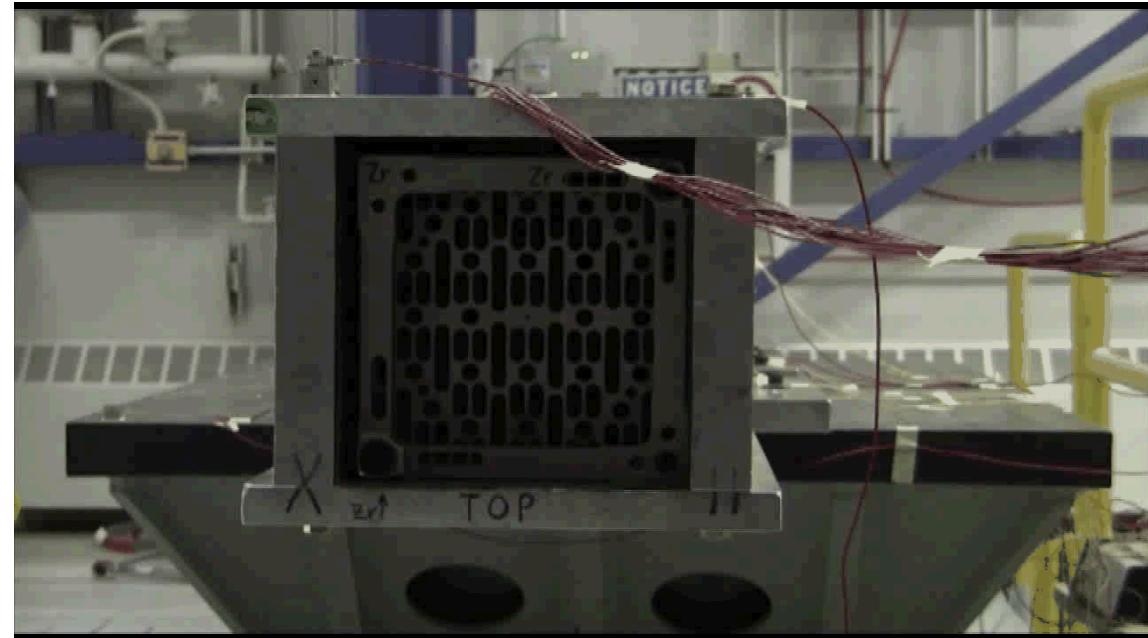
- Instrumentation placement based on pre-test finite elements analyses
- Only the Zr-4 rods and spacer grids were instrumented
 - 16 strain gages
 - 18 accelerometers on rods and grids
 - 7 accelerometers on basket and shaker table

Applied Loadings for the Tests

- Input for the shaker was derived from data in “Shock and Vibration Environments for a Large Shipping Container During Truck Transport (Part II)”, NUREG/CR-0128, 1978, SAND78-0337
- NUREG/CR-0128 details:
 - Vibration and shock data were measured by accelerometers over a 700-mile journey. Two tests, two casks, 56000 and 44000 pounds.
 - Measurements taken on the external body of the casks.
 - Speeds ranged from 0 to 55 mph.

Frequency (Hz)	ASD (G ² /Hz)
3	2.0
4.5	3.1
5	3.1
6.5	2.0
9.5	2.0
12.5	5.0
20	5.0
30	2.6
100	2.6
150	4.0
250	4.0
450	8.5
600	8.5

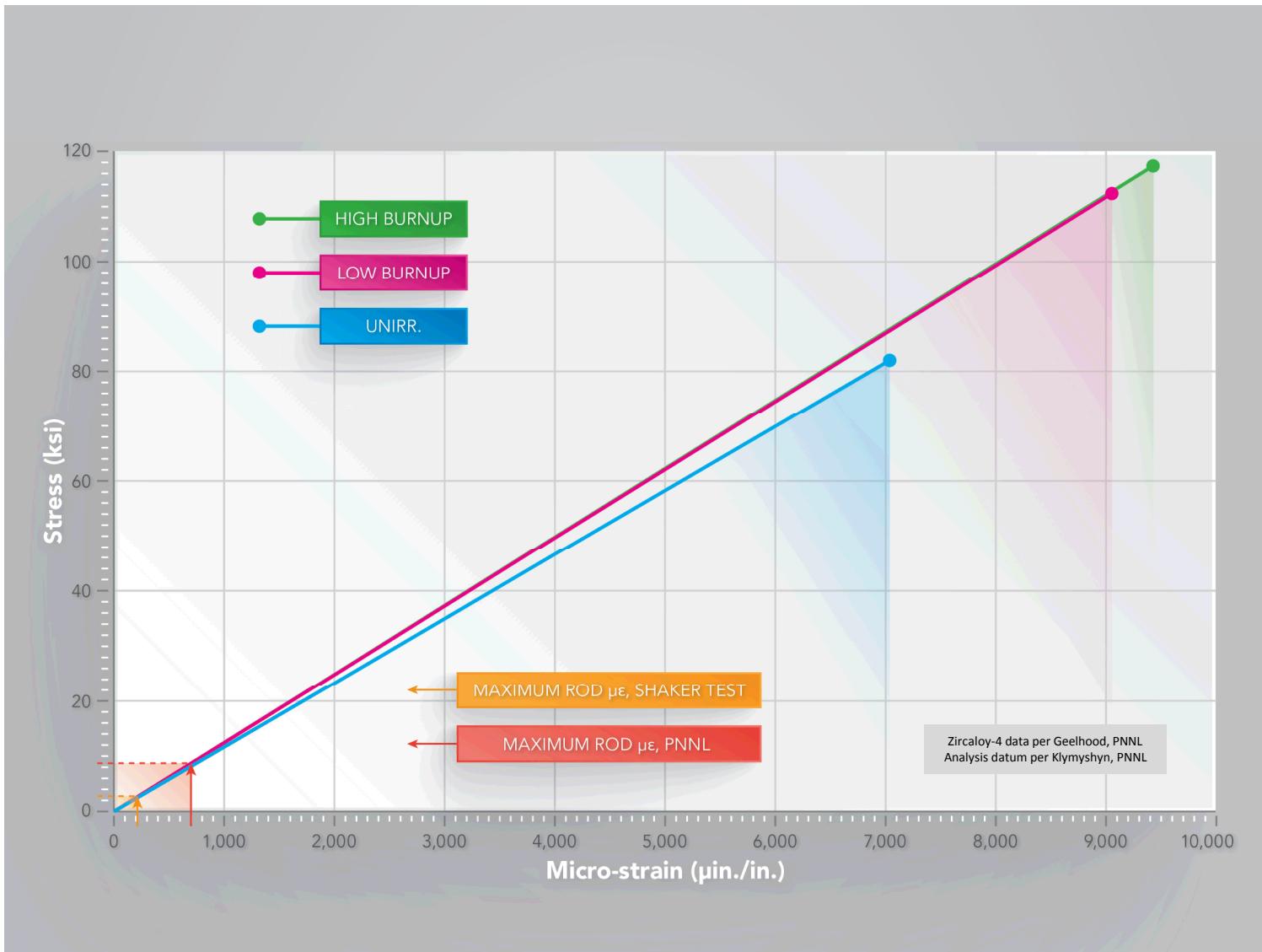




Table 4.0-1: Reference Shock Breakpoints

Frequency (Hz)	MMAA 3% (G)
3	2.0
4.5	3.1
5	3.1
6.5	2.0
9.5	2.0
12.5	5.0
20	5.0
30	2.6
100	2.6
150	4.0
250	4.0
450	8.5
600	8.5

Shock response spectra: NUREG/CR-0128

→ Spectral density input to the shaker table


Mounted assembly and basket on the shaker table

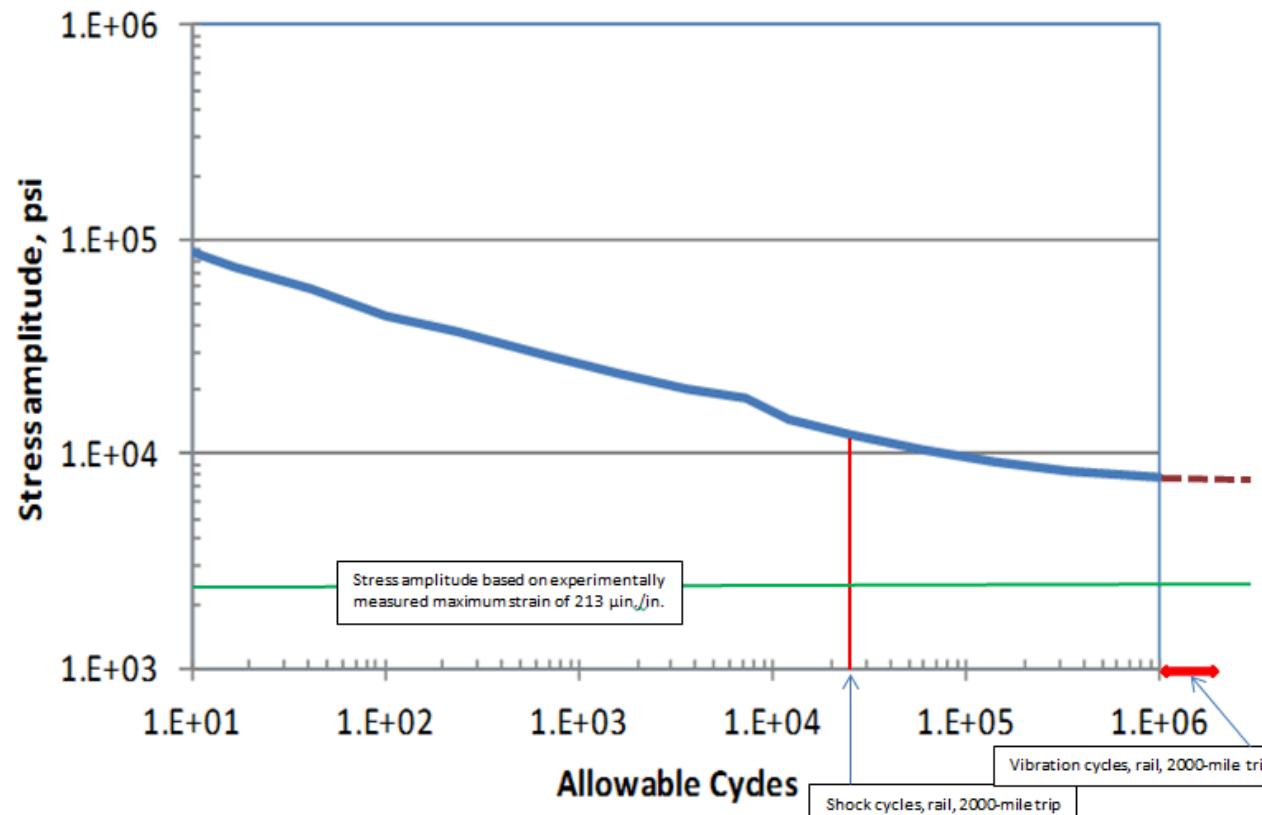
- **6 vibration tests**
- **5 shock tests**
- **Loading in vertical direction only**
- **Maximum measured strain was $213 \mu\epsilon$**

Results

Measured Strains are Very Low Relative to the Elastic Limit of Zr-4

Maximum Micro-strains on Fuel Rods during Shock Test

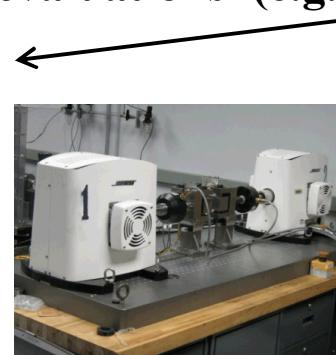
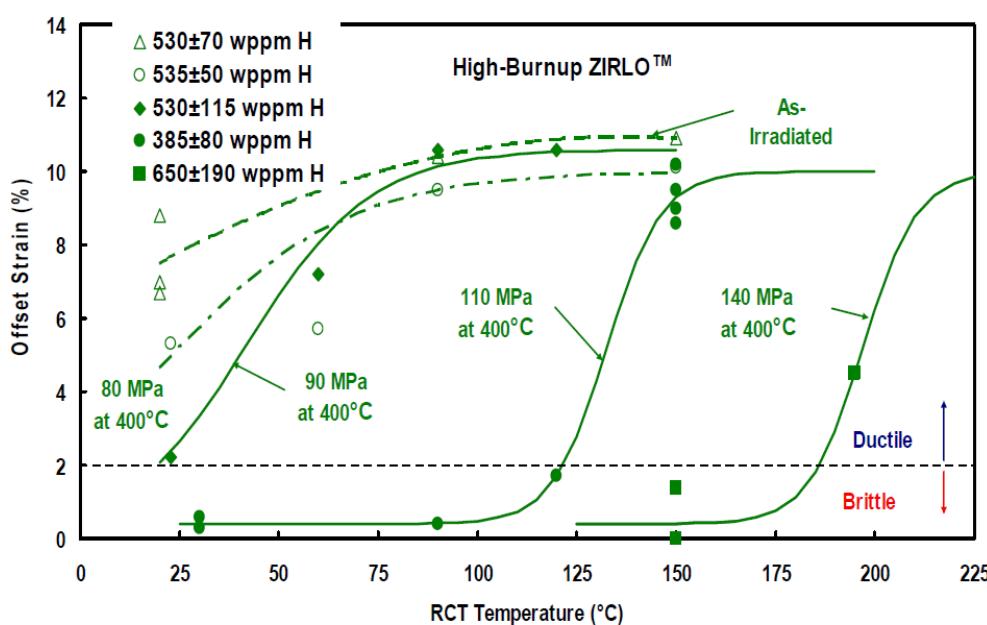
Maximum Strains on Zircaloy Fuel Rods, Shock Test #1			
Rod Location	Assembly Span	Position on Span	Maximum Strain (μ in./in.)
Top-middle rod	Bottom-end	Adjacent to spacer grid	90
Top-middle rod	Bottom-end	Mid-span	131
Top-middle rod	Bottom-end	Adjacent to spacer grid	171
Top-middle rod	Mid-assembly	Adjacent to spacer grid	104
Top-middle rod	Mid-assembly	Mid-span	97
Top-middle rod	Top-end	Adjacent to spacer grid	127
Top-middle rod	Top-end	Mid-span	199
Top-middle rod	Top-end	Adjacent to spacer grid	70
Top-side rod	Bottom-end	Adjacent to spacer grid	54
Top-side rod	Bottom-end	Mid-span	107
Top-side rod	Top-end	Mid-span	117
Top-side rod	Top-end	Adjacent to spacer grid	113
Bottom-side rod	Bottom-end	Mid-span	62
Bottom-side rod	Bottom-end	Adjacent to spacer grid	121
Bottom-side rod	Mid-assembly	Adjacent to spacer grid	110
Bottom-side rod	Mid-assembly	Mid-span	115
			Average of All Strain Gages
			112
			Average Top-middle Rod
			124
			98
			Average Top-side Rod
			102
			Average Bottom-side Rod
			105
			Average Bottom-end Span
			107
			Average Mid-assembly Span
			125
			Average Top-end Span
			118
			Average Mid span
			107
			Average Adjacent to Spacer Grid


Average Accelerations and Average Peak Accelerations during Random Vibration Test

Average Accelerations, g_{RMS} , and Average Peak Accelerations, g_{peak} , Random Vibration Test #5					
Location	Span	Position on Span	Average (g_{RMS})	Average (g_{peak})	
SHAKER			0.5	0.7	
Top-middle	1	On spacer grid	1.3	1.8	
Top-middle		Adjacent to spacer grid	2.0	2.8	
Top-middle		Mid-span of rod	2.0	2.8	
Top-middle		Adjacent to spacer grid	0.3	0.4	
Top-middle	5	On spacer grid	0.7	1.0	
Top-middle		On spacer grid	1.2	1.7	
Top-middle		Adjacent to spacer grid	3.7	5.2	
Top-middle		Mid-span of rod	4.0	5.7	
Top-middle	10	Adjacent to spacer grid	3.9	5.5	
Top-middle		On spacer grid	0.6	0.8	
Top-side		On spacer grid	0.6	0.8	
Top-side		Adjacent to spacer grid	3.8	5.4	
Top-side	10	Mid-span of rod	4.3	6.1	
Top-side		Adjacent to spacer grid	4.6	6.5	
Top-side		On spacer grid	1.0	1.4	
Control rod, bottom end	1	On control rod	0.7	1.0	
Control rod, top end	10		0.9	1.3	
Basket, bottom end	≈ 1	On top edge of basket	1.9	2.7	
Basket, mid-span	≈ 5		0.9	1.3	
Basket, top end	≈ 10		1.7	2.4	
Mounting plate, vertical	≈ 5		1.0	1.4	
Mounting plate, lateral			0.08	0.1	
Mounting plate, long.			0.09	0.1	

Fracture Mechanics & Fatigue Assessments

Based Upon Experimentally-Measured Strains



Crack depth/Zircaloy-rod wall thickness	Applied stress intensity at crack tip, (MPa-Vm)	Lower bound Zircaloy-4 fracture toughness, (MPa-Vm)
0.10	0.3	
0.25	0.4	
0.50	0.6	20 - 30


Next Steps

Preliminary results look promising in demonstrating that high burnup fuel can maintain its integrity during Normal Conditions of Transport. However, more work needs to be done:

- Verify NRC NUREG/CR-0128 shock and vibrations loadings for NCT
- Test at lower frequencies: ~1 Hz (current test range 3 Hz to 1500 Hz)
- Conduct test to simulate 30 cm drop?
- Conduct similar tests for rail conditions
- Integrate materials testing results into evaluations (e.g., DBTT, PCI)

Relating curvature to flexural rigidity:
 $EI = M/k$

Jiang, Wang; Oak Ridge National Laboratory, WM2014 Conference, March 2014

Danke schön für Ihnen Aufmerksamkeit!