SAND2012-9209C

An Irregular Approach to Large-Scale
Computed Tomography on Multiple Graphics
Processors Improves Voxel Processing

Throughput

Edward S. Jimenez, Laurel J. Orr, and Kyle R. Thompson

Sandia National Laboratories
PO Box 5800
Albuguerque,NM 87185
{esiimen,ljorr,krthomp} @sandia.gov

Abstract—While much work has been done on applying Xiao et. al. [5] and Axelsson et. al [6] have reduced
GPU technology to computed tomography (CT) recon- the complexity to O(n®log(n)), but even with this

struction algorithms, many of these implementations focus jmnroyement, computation for large-scale datasets can
on smaller datasets that are better suited for medical

applications. This paper proposes an irregular approach still require days to weeks to complete using high-end
to the algorithm design which utilizes the GPU hardware’s Workstations.

unique cache structure and employs small x-ray image data Over the past thirty years, various methods have been
prefetches on the host to upload to the GPUs while the jnvestigated to improve the computational speed of CT
devices are operating on large contiguous subvolumes of reconstructions including the use of supercomputers,

the reconstruction. .
This approach will improve the overall cache hit-rates dedicated hardware (ASIC, FPGA, etc), and commod-

and thus improve the performance of the massively multi- 1ty graphics processing units (GPU) [7]. Currently, the
threaded environment of the GPU. Overall, utilizing small GPU is the most cost effective and versatile. Computed

prefetches of x-ray image data improved the volumetric Tomography can be thought of simply as a set of pixel
pixel (voxel) processing rate when compared to utilizing 54 yoxel (volumetric pixel) operations and thus is not a

large data prefetches which would minimize data transfers f ht ider th ivel llel hitect
and kernel launches. Additionally, this approach does not ar reach to consider the massively parallel architecture

sacrifice performance on small datasets and is thus suitable (?f the GF’U- The GPU employs a SIMD (§ingle instruc-
for medical and industrial applications. This work utilizes tion multiple data) programming model with large- and

the CUDA programming environment and Nvidia's Tesla small-grain parallelism [8]. Driven mainly by the Gam-
GPUs. ing and CAD industry, investment in GPU-technology is
unparalleled and has exhibited performance growth that
triples Moore’s Law [7].

Cone-beam Computed Tomography (CT) is an indirect There has been extensive work done on applying
3D imaging technique in which a set of 2D x-rayGPU technology to various CT algorithms [4], [7], [9],
projection images are used to reconstruct the interrfdl] with tremendous computation time improvements
and external structure of the imaged object [1]. Mansealized when compared to traditional CPU-based im-
industrial applications of Cone-beam Computed Tomoglementations. However, much of the development of
raphy aquire a very large number (usaually greater théme GPU algorithms focus on medical datasets which are
900) of x-ray projection images taken around an axis ¢fpically an order of magnitude smaller than industrial
rotation [2]. Large-sized reconstructions for this worlCT datasets. The majority of medical CT datasets consist
can mean the x-ray image projections are numerous, 1283 — 10242 voxels and 300-1000 x-ray image
the x-ray projections are high-resolution, the volume tprojections. The number of acquired x-ray projection
be reconstructed is high-resolution, or any combinatiamages and the resolution is balanced by the need to
thereof. minimize radiation exposure to the patient.

CT reconstructions require significant computation For industrial CT applications, radiation exposure is
and, in many cases, expensive computing resources. Tigically not a concern as it is with medical applications
popular FDK (Feldkamp) 3D reconstruction algorithnand often object density will require long exposure times.
has computational complexit®(n*) [3], [4]; work by With the exposure constraint relaxed, it is not uncommon

|I. INTRODUCTION

for industrial datasets to readh00? voxels and approx- up for significant magnification, then the interpolation
imately 2000 projections. Unfortunately, much of thecoordinates for neighborhoods of voxels could be spread
medical literature on GPU-based CT assume that eithmut over a large portion of a given x-ray image. Second,
the volume, x-ray projection data, or both can entirelihread execution order could have a measurable effect on
reside on the GPU device memory simulataneously. Thiesmputationaly efficiency as different threads in a warp
is not possible in most large-scale (i.e. industrial) recocould potentially be accessing x-ray data from different
structions and thus a blocking algorithm that blocks botbrojection images.
the volume and the x-ray projection data is necessary.
This paper _/viII pres_ent a techniqu_e for large-scalg Irregular Approach
CT reconstruction that implements an irregular approach
to the pixel and voxel operations that maximizes voxel The combination of large-scale data, blocked x-ray
throughput for large-scale datasets. Two large synthetlata, and blocked subvolumes suddenly makes CT an
datasets will be presented; the first consists of 18@@egular problem. CT algorithms transfer a large number
16-megapixel x-ray projection images reconstructed intf bytes from both the volume and the x-ray data,
a 4000 x 4000 x 4000 voxel volume (64 Gigavoxels); but are also very computationally expensiveitn?).
this case is representative of real-world industrial CThe massively parallel environment and imaging system
datasets, the second consists of 10,000 100-megapis@hfiguration has the potential to create little data lo-
images reconstructed intal8000 x 10000 x 10000 voxel cality. Additionally, the amount of x-ray data necessary
volume (1 Teravoxel); this dataset was chosen to shd@ reconstruct a given subvolume is dependent on the
that this approach is capable of handling future-sizddcation of the subvolume with respect to the entire
datasets. volume, and thus a dynamic approach to subvolume size
determination is necessary. Traditional CT algorithms
Il. APPROACH typically reconstruct bydlices, which are defined as

When approaching a massively parallel problem, orf@planar sets of voxels. In this work, a subvolume is
must be aware of the various bottlenecks that are ndset of consecutively ordered slices and will be referred
typically present in single-threaded algorithms. One mé@ as aslice block.
jor bottleneck in GPU computing is the data transfer be- The approach presented does not focus on data trans-
tween host and device. The typical approach to allieviater minimization, but instead, texture cache-hit rate
this bottleneck is to minimize the total number of datémprovement by reducing the amount of x-ray image
transfers [11]. data uploaded at once combined with data prefetching.

If one were to follow this scheme for the reconstrucA paper by Mowry and Gupta which looked at an
tion of a given subvolume, then it would be desirabléregular application showed that performance could be
to fit large amounts of x-ray data per kernel launch arithproved with an intelligent data prefetching approach
thus minimizing the number of x-ray data uploads twhich focused on improving the cache-hit rate of the
the GPU necessary to reconstruct the given subvolun@@plication [12]. Additionally, work done by Lam et. al.
Furthermore, one could utilize host pinned-memory tshowed that cache interference in blocked algorithms can
maximize data transfer speeds [8]. On the surface, ttfigve a significant performance degradation for a given
should guarantee minimal interruption during voxel pranachine [13]. Overall, five aspects of the algorithm de-
cessing. sign, which uses the CUDA programming environment,

The issue with the approach described above is tw#ill be addressed.
fold. First, allocating large amounts of pinned-memory 1) Massive Parallelism: The computational intensity
on the host is normally not allowed by the operatingf the CT algorithm necessitates a massively parallel
system. Second, for a given subvolume and a relativedywvironment. For this application, a slice block with
large amount of x-ray data, the memory access patternsiites andN voxels per slice will requireN compu-
the x-ray data may become scattered and thus hindertagonal threads, where each thread is responsible for
kernel performance. processing voxels in the subvolume. More specifically,

Much of the work done in the past has addressedthread is responsible for a column of voxels in the
this by utilzing read-only texture memory which utilizessubvolume, one on each slice. The thread will loop
texture cache and fast bilinear interpolation [9]. Utitigi over all images in the image subset present in the GPU
this approach for large-scale reconstruction still resulmemory for given slice before advancing to the next
in scattered reads and poor performance as the textsliee. This approach helps to keep the memory access
cache-hit rate is very low. Scattered memory accepsattern somewhat coalesced, potentially increasing the
patterns are mostly caused by two factors. First, if theache hit-rate, and also allows for only one voxel update
geometrical configuration of the imaging system is séb global memory per kernel launch.

2) Texture memory/Texture cache: This approach will particular GPU and use the remaining memory available
utilize the Texture/L2/Global memory hierarchy availfor the x-ray image data. This will determine the number
able on the GPU to improve the bi-linear interpolationsf kernel launches necessary to fully reconstruct the
on the x-ray image as this is the main computationalibvolume on the GPU. If at least one x-ray projection
burden in the FDK algorithm. Utilizing texture memoryimage does not fit on the remaining memory, then the
for x-ray image data is not a new idea and is kemumber of slices on the GPU is reduced by one and the
to many GPU-based CT algorithms [4], [7], [9], [10].process is retried. The minimum requirement for this
However, this approach utilizes small texture memorgigorithm is that the GPU fit at least one slice and its
allocations for the x-ray data in relation to the allocax-ray subimage that contains the partial projection image
tions used for the subvolumes so that a larger fractidhat is necessary for the computation.
of the texture memory fits within the texture and L2 6) Computation Ordering: When developing a kernel
caches. As fetches from texture and L2 cache are updorithm, one needs to be aware that accessing a register
two orders of magnitude faster than fetches from GPtbnsumes zero extra clock cycles per instruction, but
global memory, this approach will improve overall voxelatencies may occur due to register read-after-write de-
processing throughput by decreasing the time to fetglendencies. At approximately 24 clock cycles for Nvidia
information from the x-ray projection data as well agGPUs, these latencies could be very significant when
reducing memory traffic on the GPU global memoryrocessing millions of voxels simultaneously [14]. The
bus. Texture memory also has the benefit of allowingiassive number of threads helps to cover this latency but
one to utilize fast hardware-based low-precision bilineanay not be enough for all configurations. The instruction
interpolation to improve computational speed. ordering of the kernel is designed such that it minimizes

3) Constant Memory: Constant memory on the GPUto the need to immediately access a variable it just
is another type of cache specific to GPU hardware thedmputed as well as reducing the Register pressure to
is user-specified. This cache is also orders of magnitudasure that no values in regiser are being cached to the
faster than global memory and is ideal for variable&PU global memory.
that are shared across threads. For this implementation,
geometrical information about the imaging system that is 1. 1 MPLEMENTATION
needed for the reconstruction computation is stored here,
further reducing the demand on the global memory bus.This GPU-based approach is implemented using

4) Data Prefetching to Pinned-Memory: While the Nvidia's CUDA programming environment and C++.
GPU device is operating on an x-ray image subset, tAide kernels developed for this application are written
CPU is prefetching the next image subset to a pinnegdch that any Nvidia graphics processor with at least 1
memory region that will be uploaded to the GPU. Th&B of device memory and at least Fermi architecture is
x-ray image dataset will already be loaded in mainapable of performing a reconstruction provided at least
memory with the pinned-memory region being separa@e slice and one x-ray image subset (consisting of at
from the global x-ray data. Smaller pinned-memorlgast one x-ray subimage) can reside in memory.
allocations greatly increases the chance that the allocaOther kernels developed, but not presented in this
tion will be successful. As mentioned earlier, pinnedwork, include slightly less efficient implementations that
memory increases data throughput on data transfegsiarantee a kernel runtime of less than two seconds to
and the prefetching while the kernel is executing wilallow GPUs that are subject to display timeout restric-
guarantee that pauses between kernel launches are ltiepis to run larger reconstructions. This implementation
to a minimum. can allow for 1 to 8 GPUs to run on a single system

5) Dynamic Task Partioning: One desirable feature using OpenMP 2.0. For this work, assume that all x-ray
of this algorthim is for it to be scalable with respect témage data is resident on the host memory (this work
the number of GPUs present on the system. In ordeyakes no claims on disk I/O performance and will be
for this algorithm to be scalable from one to manyddressed in future work).

GPUs, it must maximize all GPU memory resources The dynamic task partitioning is determined by a
to ensure that the GPUs are as busy as possible.dite-to-texture ratio (ST R) that is configured using a
was mentioned above that the amount of x-ray dapmrameter in an input file. This ratio tells the application
varies with respect to the location of the slices in th® attempt to fit the data on the device memory in such
global reconstruction. Additionally, GPU memory values way that the number of simulataneously reconstructed
vary greatly between GPU models and configurationslices to the total number of image subsets satisfies
This results in the need for a dynamic partitioninghe given ratio as closely as possible. There are three
scheme. The overall partitioning approach will maximizpossible reasons why this ratio may not be satisfied
the number of contiguous slices that can reside onexactly:

« Resource Maximization: The partitioning function Algorithm 1 Dynamic Determination of GPU Task

will maximize device memory usage. Any ramain-
ing memory after allocation will be utilized for ad-

ditionaly x-ray image data. This was implemented
since some system configurations allow for multiple

GPUs to be connected to a single PCI-E bus and

therefore this approach would help allieviate the
pressure on the PCI-E bus. This will not dramat-
ically affect theST R for most cases, therefore will
not be a significant performance hit.
Reconstruction Size: The minimum requirement
for this application in the task partitioning phase is

that at least one x-ray subimage and one volume

slice fit on the device memory. It is possible for
the reconstruction configuration to be awkwardly
sized for a particular memory configuration of a
GPU. A simple example would be a GPU with 2GB
of available memory with a reconstruction task of
one 1 GB slice with a 700 MB x-ray subimage;
although this would easily fit within the 2GB limit,

while Reconstruction task queue not compldte

Sep 1: Query GPU memory resources available
Sep 2: Determine task partitioning given GPU
memory resources and slice-to-texture ratio
Sep 3. Allocate/Initialize Memory resources on
CPU and GPU
Sep 4: Upload reconstruction geometry informa-
tion to GPU constant memory
Sep 5:
for all image subsetdo
-Upload image subset data from host to device
texture memory
-Upon completion of upload, execufa) and
(b) simultaneously:
(a) GPU: Update slice block with image subset
information via FDK kernel
(b) CPU: Prefetch next image subset. If last
subset, free pinned-memory.
-Synchronize task&a) and (b)

end for
Sep 6: Download slice block voxel information
to host (storage optional)
« Tail-End of Reconstruction: If the remaining work Sep 7: Free GPU memory resources
left to be performed by the GPU is much smaller Step 8: Update reconstruction task queue
than what the GPU is capable of computing at once, end while
the resource maximization requirement would load
extra x-ray images onto the device memory. This

will only occur once per reconstruction and has Ver{}lgonthm 2 FPK Kemel Layou-t.
little impact on large reconstuctions. -Get threadid and voxel positiong;, . ..

. . o . onud
Algorlth_m 1 gives a general description to the dynamic if Threadid position within ROIthen
task partitioning as well the the kernel launch approach T
. : . . for Every slicej in slice blockdo
to the reconstruction of a given slice block. With the .
. -Set register value to zero
exception of Step 5a, all steps are performed by the : S
X) for Every imagei in image subsetlo
CPU. Algorithm 1 executes independently for each GPU . ; . .
) : . -Determine texture interpolation coordinate
present on the system with the only atomic operation L .
. e within images
occuring at step 8. No synchronization between CPU Undate register value with texture fetch and
threads (or between GPU threads for that matter) is pdate register
. : scaling information
necessary allowing for maximum performance.

there is still hundreds of megabytes available but yet
not enough to allow for an extra subimage and/or
volume slice.

,ps based

Algorithm 2 describes the layout of the kernel com- ?defgtre voxeb; in global memory with register
putation for a given slice block and x-ray image subset vaIFl)Je ing y 9
where the ordering of the loops provide improved cache- end for
hit rates as well as global memory traffic. end if

IV. EVALUATION

The experiments were performed on a high-end work-
station that consists of dual hexacore Intel Xeon X5690B. The L2 cache services all load, store, and texture
processors clocked at 3.46GHz with hyper-threading foperations. Each SM contains 32 compute cores, 48 KB
a total of 24 virtual CPU cores, 192 GB RAM and 2.1 cache, 8 KB constant memory cache, and 8 KB
Nvidia S2090 devices connected via 4 PCI-E 2.0 xl&xture cache. Note that for the M2090, the L1 cache
host interface cards. Each S2090 unit contains 4 Teglad shared memory are configurable to different sizes
M2090 GPUs with 6 GB of GDDR5 memory apiece. that can be determined by the user at compile time. The

Each M2090 GPU contains 16 streaming multipra-1 cache was maximized in this work (thus minimizing
cessors (SM) that share a common L2 cache of 76Bared memory) as shared memory was not utilized for

the reconstruction algorithm. realized and therefore results are not as dramatic in
Timers used to calculate voxel processing throughptitroughput as with the 64 gigavoxel dataset but are still
are CPU-based and include the time needed for all mesignificant. For 1 GPU (left plot on figure 2), voxel
ory transfers, kernel launches, and prefetching operatiahroughput peaks at just under 0.51 megavoxels per sec-
necessary to completely reconstruct the given voxehd for aSTR value of 0.52. FoIST R < 0.9, average
subvolume assigned to the task. Voxel throughput wasroughput was about 0.497 megavoxels per second and
measured using two datasets; the first(80 x 4000 x 0.471 megavoxels per second f8f"'R values greater
4000 voxel (64 Gigavoxels) volume reconstructed fronthan 0.9. On a system with 8 GPUs (right plot on figure
1800 16-megapixel x-ray projection images where th#&), the performance is more variable but performance
measurements were taken about the center 2000 slicdifferences can still be observed with respectSto R
the second i20000 x 10000 x 10000 voxel (1 Teravoxel) size. The average throughput f6"R < 0.9 was 0.46
volume reconstructed from 10000 100-megapixel x-rapjegavoxels per second and 0.40 megavoxels per second
projection images where the measurements were takeith ST R values greater than 0.9.
on the center 100 slices of the volume. MeasurementsFigure 3 shows various GPU cache hit-rate perfor-
were taken for both datasets using 1 GPU and 8 GPUsances on the 64 gigavoxel dataset for the reconstruction
The kernels were compiled using CUDA version 4.1 ankernel. The upper plot of figure 3 shows the L1 cache
the cpu-based code was written in C++ using the Visuhlt-rate performance for variouST R values. For this
Studio 2008 C++ compiler. application, L1 cache is mostly populated with voxel
The various cache hit-rates were measured usinglues as well as a few kernel input variables that are
Nvidia’s performance evalutation tool NSight. Kernelised to determine loop length. As mentioned earlier,
performance was measured on a single x-ray imagexel values are only updated once per kernel launch.
subset using the 64-Gigavoxel dataset. Cache hit-rafeegardless, the L1 cache hit-rate peaks for srAdliR
could not be measured on the 1 teravoxel dataset duevedues at 2.% and decreases 1% for STR values

NSight software limitations. greater than 7.
The lower plot on figure 3 shows L2 and texture cache
V. RESULTS hit-rate performance. Although the texture cache hit-rate

Figure 1 illustrates voxel processing throughput dfoes not vary much with varyingT'R, it does peak at
various subvolumes in the 64 gigavoxel dataset fgP.4% for the smallest achieveabkI'R of about 0.47.
various given slice-to-texture ratioSTR). The plot on The L2 cache clearly suffers from larg8fl'R values,
the left shows that for one GPU, voxel throughput clearffpr ST R values less than 1, L2 hit-rates are between 75
benefits from smalbT R values with throughput peakingand 604 and as low ag0% for an ST'R value of 10.
at ST R =~ 1.8 with a throughput of 17.5 megavoxels per
second. The average voxel throughput 8ifR < 10
is 15.84 megavoxels per second and the average voxeWhen viewed from a traditional approach, CT recon-
throughput forST R values greater than 10 was 10.25ktruction is not an irregular problem and has excellent
megavoxels. The plot on the right side of figure 1 showspatial locality. However, when utilizing GPU technol-
voxel throughput for a various subvolumes on an 8 GPtgy, one can lose spatial locality if the reconstruction is
system. On average, voxel throughput still benefits frotarge and entire subvolumes are simulaneously recon-
smaller ST R values with an average voxel throughpustructed. This is due to the geometrical configuration
of 13.11 megavoxels per second fSf'R < 10; for of the imaging system and the unpredicable thread
STR > 10, voxel throughput dramatically decreases texecution ordering. This work has shown that a CT
4.54 megavoxels per second for a subvolume. Note thratonstruction algorithm for GPUs can clearly benefit
for the 8 GPUs case that with largd’ R values the com- from an irregular approach for large-scale datasets by
putation time for a subvolume is highly variable whemprefetching small batches of x-ray projection data and
compared to smallesT'R values so the average valuesaunching many kernels. This approach increases voxel
are not necessarily representative of typical performand¢bBroughput when compared to a partitioning method that
It is likely that the observed variance in datapoints ionly seeks to minimize data transfer uploads and kernel
figures 1 and 2 are due to various systems sources stlainches as is the common practice when creating GPU-
as thread context switching, PCI-E bus pressure, and th@sed algorithms.

GPUs themselves. The main goal was to improve cache hit-rates to

Figure 2 shows voxel processing throughput for sulimprove kernel performance. Utilizing texture cache
volumes of the teravoxel dataset using varig®§R exclusively for x-ray projection data as well as uti-
values. Since this dataset is extremely large (both lizing hardware-based interpolation improves compu-
projections and volume), fewe$T'R values could be tational performance dramatically but performance is

VI. CONCLUSION

Voxel Throughput (4? Voxels/1 GPU) Voxel Throughput (4kq’ Voxels/8 GPUs)

18 T T 18
&
16
164 1
14 *
14 1
*
o L o 12 *
& & *
o 123 3"& » 2 10T *
9 o 9 *eow § t
o Hog H ook ok o * $
2 .|]
o 10 =)
) »* D
= = * " ¥ *
6 4 *
8r #*
4 * * ¥0&
*
6l * x ¥ *
#*
2 T * * * %
i *
rh o i
4 0
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Slice to Texture Ratio Slice to Texture Ratio

Fig. 1. Left: Reconstructed Voxel Throughput for 64 GigaeoRataset using 1GPU, Right: Throughput using 8 GPUs

Voxel Throughput (10k3 Voxels/1 GPU) Voxel Throughput (10l§ Voxels/8 GPUs)

051 —3— 05

F ¥
o5f * 0.45} l §
*
* * * *
0.491 1 0.4F *
* L
o o
8 & . ¥
S 0481 % 0.35F
Q [}
X x
S g §
S 0.47f S 03l *
@ 151 ¥
= = i
*
0.46 * 0.25
% *
% *
0.451 0.2
* *
0.44
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Slice to Texture Ratio Slice to Texture Ratio

Fig. 2. Left: Reconstructed Voxel Throughput for TeravoReltaset using 1GPU, Right: Throughput using 8 GPUs

highly dependent on the cache hit-rates. This methadplemented were not the traditional FDK algorithm
can be used for large and small CT reconstructiarsed for this work (much of the medical datasets are
tasks and maximizes performance for arbitrarily sizeloelical scans). Our algorithm is able to reconstruct sub-
datasets. This work shows that smallsF R values are gigabyte datasets{800% voxels using 720 projections)
preferrable over larger values; however, arbitr&R at a rate of 30 slices per second per GPU.
values are not acheivable due to various geometrical
configurations as well as varying datasets sizes. It isFor the general GPGPU community, this work has
possible to contrive a diabolical set in which only largeshown that regular CPU algorithms that are ported over
STRvalues & 1) are possible, however has not seemettd GPU environments may not result in an regular GPU
to appear frequently in practice. In practice, maximizinglgorithm. Although it is generally recognized that port-
the slice block in device memory tends to create thag software for GPGPU application does not guarantee
lowest ST R values. optimal performance, much of the literature suggests
This work did not present any comparisons of "medsroad recommendations, such as minimizing memory
ical scale” datasets to other systems since much of ttransfers, when in fact one should consider possibly
literature on GPU-based medical CT tended to eithentirely different approaches that may have previously
use older generation GPU hardware or the algorithnesnsidered inefficient for CPU-based environments.

Sandia National Laboratories is a multi-program lab-
oratory managed and operated by Sandia CorporatidH]
a wholly owned subsidiary of Lockheed Martin CorporI12

L1 Cache Hit-rate

(N

=
o

T

T T

Cache Hit-rate Percentage
BC)

Slice to Texture Ratio
L2 and Texture Cache Hit-rate

T T

(o2}
o

N
o

Cache Hit-rate Percentage
o
o

o

T T

—<— Texture Cache
—*— L2 Cache

0 2 4

6 8 10

Slice to Texture Ratio

Fig. 3. Upper: L1 Cache hit-rate for reconstruction kerm@wer: L2 and Texture Cache hit-rate for reconstructionnkér

VIlI. ACKNOWLEDGEMENTS

ration, for the U.S. Department of Energy’s Nationa
Nuclear Security Administration under contract DE-
AC04-94AL85000.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]
El

[13]

REFERENCES

H. H. Barrett and K. J. MyersFoundations of Image Science.
Wiley-Interscience, 2004.

S. Izumi, S. Kamata, K. Satoh, and H. Miyai, “High energy x
ray computed tomography for industrial applicationbliclear

Science, IEEE Transactions on, vol. 40, no. 2, pp. 158 —161, apr [14]

1993.

L. Feldkamp, L. Davis, and J. Kress, “Practical conerbea
algorithm,” Journal of the Optical Society of America A, vol. 1,
no. 6, pp. 612—-619, 1984.

F. Xu and K. Mueller, “Ultra-fast 3d filtered backprojemt on
commaodity graphics hardware,” Biomedical Imaging: Nano to
Macro, 2004. |IEEE International Symposium on, april 2004, pp.
571 — 574 Vol. 1.

S. Xiao, Y. Bresler, and J. Munson, D.C., “Fast feldkamp
algorithm for cone-beam computer tomography,”linage Pro-
cessing, 2003. ICIP 2003. Proceedings. 2003 International Con-
ference on, vol. 2, sept. 2003, pp. Il — 819-22 vol.3.

C. Axelsson and P. Danielsson, “Three-dimensional
reconstruction from cone-beam data in o(n 3 logn) tinRkysics

in Medicine and Biology, vol. 39, no. 3, p. 477, 1994. [Online].
Available: http://stacks.iop.org/0031-9155/39/i=3043

F. Xu and K. Mueller, “Accelerating popular tomographie-
construction algorithms on commodity pc graphics hardyvare
Nuclear Science, IEEE Transactions on, vol. 52, no. 3, pp. 654
— 663, june 2005.

J. Sanders and E. Kandr@@UDA By Example: An Introduction

to General-Purpose GPU Programming. Addison-Wesley, 2011.
W. mei W. Hwu, Ed.,GPU Computing Gems - Emerald Edition.
Morgan Kaufmann, 2011.

[10] F. Xu and K. Mueller, “Real-time 3d computed tomographi

reconstruction using commodity graphics hardwarysics in
Medicine and Biology, vol. 52, no. 12, pp. 3405-3419, 2007.
N. Corporation, CUDA C Programming Guide V5.0.
http://www.nvidia.com, 2012.

] T. Mowry and A. Gupta, “Tolerating latency through sedtre-

in shared-memory multiprocessors
Journal of Parallel and Distributed Computing, vol. 12,
no. 2, pp. 87 - 106, 1991. [Online]. Available:
www.sciencedirect.com/science/article/pii/0743731%5W14Z

M. D. Lam, E. E. Rothberg, and M. E. Wolf,
“The cache performance and optimizations of blocked
algorithms,” in Proceedings of the fourth international
conference on Architectural support for programming languages
and operating systems, ser. ASPLOS-IV. New York,
NY, USA: ACM, 1991, pp. 63-74. [Online]. Available:
http://doi.acm.org/10.1145/106972.106981

N. Corporation, Nvidia CUDA C Best Practices Guide v5.0.
http://www.nvidia.com, 2012.

controlled prefetching

