
An Irregular Approach to Large-Scale
Computed Tomography on Multiple Graphics

Processors Improves Voxel Processing
Throughput

Edward S. Jimenez, Laurel J. Orr, and Kyle R. Thompson

Sandia National Laboratories
PO Box 5800

Albuquerque,NM 87185
{esjimen,ljorr,krthomp}@sandia.gov

Abstract—While much work has been done on applying
GPU technology to computed tomography (CT) recon-
struction algorithms, many of these implementations focus
on smaller datasets that are better suited for medical
applications. This paper proposes an irregular approach
to the algorithm design which utilizes the GPU hardware’s
unique cache structure and employs small x-ray image data
prefetches on the host to upload to the GPUs while the
devices are operating on large contiguous subvolumes of
the reconstruction.

This approach will improve the overall cache hit-rates
and thus improve the performance of the massively multi-
threaded environment of the GPU. Overall, utilizing small
prefetches of x-ray image data improved the volumetric
pixel (voxel) processing rate when compared to utilizing
large data prefetches which would minimize data transfers
and kernel launches. Additionally, this approach does not
sacrifice performance on small datasets and is thus suitable
for medical and industrial applications. This work utilizes
the CUDA programming environment and Nvidia’s Tesla
GPUs.

I. I NTRODUCTION

Cone-beam Computed Tomography (CT) is an indirect
3D imaging technique in which a set of 2D x-ray
projection images are used to reconstruct the internal
and external structure of the imaged object [1]. Many
industrial applications of Cone-beam Computed Tomog-
raphy aquire a very large number (usaually greater than
900) of x-ray projection images taken around an axis of
rotation [2]. Large-sized reconstructions for this work
can mean the x-ray image projections are numerous,
the x-ray projections are high-resolution, the volume to
be reconstructed is high-resolution, or any combination
thereof.

CT reconstructions require significant computation
and, in many cases, expensive computing resources. The
popular FDK (Feldkamp) 3D reconstruction algorithm
has computational complexityO(n4) [3], [4]; work by

Xiao et. al. [5] and Axelsson et. al [6] have reduced
the complexity toO(n3 log(n)), but even with this
improvement, computation for large-scale datasets can
still require days to weeks to complete using high-end
workstations.

Over the past thirty years, various methods have been
investigated to improve the computational speed of CT
reconstructions including the use of supercomputers,
dedicated hardware (ASIC, FPGA, etc), and commod-
ity graphics processing units (GPU) [7]. Currently, the
GPU is the most cost effective and versatile. Computed
Tomography can be thought of simply as a set of pixel
and voxel (volumetric pixel) operations and thus is not a
far reach to consider the massively parallel architecture
of the GPU. The GPU employs a SIMD (single instruc-
tion multiple data) programming model with large- and
small-grain parallelism [8]. Driven mainly by the Gam-
ing and CAD industry, investment in GPU-technology is
unparalleled and has exhibited performance growth that
triples Moore’s Law [7].

There has been extensive work done on applying
GPU technology to various CT algorithms [4], [7], [9],
[10] with tremendous computation time improvements
realized when compared to traditional CPU-based im-
plementations. However, much of the development of
the GPU algorithms focus on medical datasets which are
typically an order of magnitude smaller than industrial
CT datasets. The majority of medical CT datasets consist
of 1283 − 10243 voxels and 300-1000 x-ray image
projections. The number of acquired x-ray projection
images and the resolution is balanced by the need to
minimize radiation exposure to the patient.

For industrial CT applications, radiation exposure is
typically not a concern as it is with medical applications
and often object density will require long exposure times.
With the exposure constraint relaxed, it is not uncommon

SAND2012-9209C



for industrial datasets to reach40003 voxels and approx-
imately 2000 projections. Unfortunately, much of the
medical literature on GPU-based CT assume that either
the volume, x-ray projection data, or both can entirely
reside on the GPU device memory simulataneously. This
is not possible in most large-scale (i.e. industrial) recon-
structions and thus a blocking algorithm that blocks both
the volume and the x-ray projection data is necessary.

This paper will present a technique for large-scale
CT reconstruction that implements an irregular approach
to the pixel and voxel operations that maximizes voxel
throughput for large-scale datasets. Two large synthetic
datasets will be presented; the first consists of 1800
16-megapixel x-ray projection images reconstructed into
a 4000 × 4000 × 4000 voxel volume (64 Gigavoxels);
this case is representative of real-world industrial CT
datasets, the second consists of 10,000 100-megapixel
images reconstructed into a10000×10000×10000 voxel
volume (1 Teravoxel); this dataset was chosen to show
that this approach is capable of handling future-sized
datasets.

II. A PPROACH

When approaching a massively parallel problem, one
must be aware of the various bottlenecks that are not
typically present in single-threaded algorithms. One ma-
jor bottleneck in GPU computing is the data transfer be-
tween host and device. The typical approach to allieviate
this bottleneck is to minimize the total number of data
transfers [11].

If one were to follow this scheme for the reconstruc-
tion of a given subvolume, then it would be desirable
to fit large amounts of x-ray data per kernel launch and
thus minimizing the number of x-ray data uploads to
the GPU necessary to reconstruct the given subvolume.
Furthermore, one could utilize host pinned-memory to
maximize data transfer speeds [8]. On the surface, this
should guarantee minimal interruption during voxel pro-
cessing.

The issue with the approach described above is two-
fold. First, allocating large amounts of pinned-memory
on the host is normally not allowed by the operating
system. Second, for a given subvolume and a relatively
large amount of x-ray data, the memory access pattern on
the x-ray data may become scattered and thus hindering
kernel performance.

Much of the work done in the past has addressed
this by utilzing read-only texture memory which utilizes
texture cache and fast bilinear interpolation [9]. Utilizing
this approach for large-scale reconstruction still results
in scattered reads and poor performance as the texture
cache-hit rate is very low. Scattered memory access
patterns are mostly caused by two factors. First, if the
geometrical configuration of the imaging system is set

up for significant magnification, then the interpolation
coordinates for neighborhoods of voxels could be spread
out over a large portion of a given x-ray image. Second,
thread execution order could have a measurable effect on
computationaly efficiency as different threads in a warp
could potentially be accessing x-ray data from different
projection images.

A. Irregular Approach

The combination of large-scale data, blocked x-ray
data, and blocked subvolumes suddenly makes CT an
irregular problem. CT algorithms transfer a large number
of bytes from both the volume and the x-ray data,
but are also very computationally expensive atO(n4).
The massively parallel environment and imaging system
configuration has the potential to create little data lo-
cality. Additionally, the amount of x-ray data necessary
to reconstruct a given subvolume is dependent on the
location of the subvolume with respect to the entire
volume, and thus a dynamic approach to subvolume size
determination is necessary. Traditional CT algorithms
typically reconstruct byslices, which are defined as
coplanar sets of voxels. In this work, a subvolume is
a set of consecutively ordered slices and will be referred
to as aslice block.

The approach presented does not focus on data trans-
fer minimization, but instead, texture cache-hit rate
improvement by reducing the amount of x-ray image
data uploaded at once combined with data prefetching.
A paper by Mowry and Gupta which looked at an
irregular application showed that performance could be
improved with an intelligent data prefetching approach
which focused on improving the cache-hit rate of the
application [12]. Additionally, work done by Lam et. al.
showed that cache interference in blocked algorithms can
have a significant performance degradation for a given
machine [13]. Overall, five aspects of the algorithm de-
sign, which uses the CUDA programming environment,
will be addressed.

1) Massive Parallelism: The computational intensity
of the CT algorithm necessitates a massively parallel
environment. For this application, a slice block withs
slices andN voxels per slice will requireN compu-
tational threads, where each thread is responsible for
processings voxels in the subvolume. More specifically,
a thread is responsible for a column of voxels in the
subvolume, one on each slice. The thread will loop
over all images in the image subset present in the GPU
memory for given slice before advancing to the next
slice. This approach helps to keep the memory access
pattern somewhat coalesced, potentially increasing the
cache hit-rate, and also allows for only one voxel update
to global memory per kernel launch.



2) Texture memory/Texture cache: This approach will
utilize the Texture/L2/Global memory hierarchy avail-
able on the GPU to improve the bi-linear interpolations
on the x-ray image as this is the main computational
burden in the FDK algorithm. Utilizing texture memory
for x-ray image data is not a new idea and is key
to many GPU-based CT algorithms [4], [7], [9], [10].
However, this approach utilizes small texture memory
allocations for the x-ray data in relation to the alloca-
tions used for the subvolumes so that a larger fraction
of the texture memory fits within the texture and L2
caches. As fetches from texture and L2 cache are up to
two orders of magnitude faster than fetches from GPU
global memory, this approach will improve overall voxel
processing throughput by decreasing the time to fetch
information from the x-ray projection data as well as
reducing memory traffic on the GPU global memory
bus. Texture memory also has the benefit of allowing
one to utilize fast hardware-based low-precision bilinear
interpolation to improve computational speed.

3) Constant Memory: Constant memory on the GPU
is another type of cache specific to GPU hardware that
is user-specified. This cache is also orders of magnitude
faster than global memory and is ideal for variables
that are shared across threads. For this implementation,
geometrical information about the imaging system that is
needed for the reconstruction computation is stored here,
further reducing the demand on the global memory bus.

4) Data Prefetching to Pinned-Memory: While the
GPU device is operating on an x-ray image subset, the
CPU is prefetching the next image subset to a pinned-
memory region that will be uploaded to the GPU. The
x-ray image dataset will already be loaded in main
memory with the pinned-memory region being separate
from the global x-ray data. Smaller pinned-memory
allocations greatly increases the chance that the alloca-
tion will be successful. As mentioned earlier, pinned-
memory increases data throughput on data transfers,
and the prefetching while the kernel is executing will
guarantee that pauses between kernel launches are kept
to a minimum.

5) Dynamic Task Partioning: One desirable feature
of this algorthim is for it to be scalable with respect to
the number of GPUs present on the system. In order
for this algorithm to be scalable from one to many
GPUs, it must maximize all GPU memory resources
to ensure that the GPUs are as busy as possible. It
was mentioned above that the amount of x-ray data
varies with respect to the location of the slices in the
global reconstruction. Additionally, GPU memory values
vary greatly between GPU models and configurations.
This results in the need for a dynamic partitioning
scheme. The overall partitioning approach will maximize
the number of contiguous slices that can reside on a

particular GPU and use the remaining memory available
for the x-ray image data. This will determine the number
of kernel launches necessary to fully reconstruct the
subvolume on the GPU. If at least one x-ray projection
image does not fit on the remaining memory, then the
number of slices on the GPU is reduced by one and the
process is retried. The minimum requirement for this
algorithm is that the GPU fit at least one slice and its
x-ray subimage that contains the partial projection image
that is necessary for the computation.

6) Computation Ordering: When developing a kernel
algorithm, one needs to be aware that accessing a register
consumes zero extra clock cycles per instruction, but
latencies may occur due to register read-after-write de-
pendencies. At approximately 24 clock cycles for Nvidia
GPUs, these latencies could be very significant when
processing millions of voxels simultaneously [14]. The
massive number of threads helps to cover this latency but
may not be enough for all configurations. The instruction
ordering of the kernel is designed such that it minimizes
to the need to immediately access a variable it just
computed as well as reducing the Register pressure to
ensure that no values in regiser are being cached to the
GPU global memory.

III. I MPLEMENTATION

This GPU-based approach is implemented using
Nvidia’s CUDA programming environment and C++.
The kernels developed for this application are written
such that any Nvidia graphics processor with at least 1
GB of device memory and at least Fermi architecture is
capable of performing a reconstruction provided at least
one slice and one x-ray image subset (consisting of at
least one x-ray subimage) can reside in memory.

Other kernels developed, but not presented in this
work, include slightly less efficient implementations that
guarantee a kernel runtime of less than two seconds to
allow GPUs that are subject to display timeout restric-
tions to run larger reconstructions. This implementation
can allow for 1 to 8 GPUs to run on a single system
using OpenMP 2.0. For this work, assume that all x-ray
image data is resident on the host memory (this work
makes no claims on disk I/O performance and will be
addressed in future work).

The dynamic task partitioning is determined by a
slice-to-texture ratio (STR) that is configured using a
parameter in an input file. This ratio tells the application
to attempt to fit the data on the device memory in such
a way that the number of simulataneously reconstructed
slices to the total number of image subsets satisfies
the given ratio as closely as possible. There are three
possible reasons why this ratio may not be satisfied
exactly:



• Resource Maximization:The partitioning function
will maximize device memory usage. Any ramain-
ing memory after allocation will be utilized for ad-
ditionaly x-ray image data. This was implemented
since some system configurations allow for multiple
GPUs to be connected to a single PCI-E bus and
therefore this approach would help allieviate the
pressure on the PCI-E bus. This will not dramat-
ically affect theSTR for most cases, therefore will
not be a significant performance hit.

• Reconstruction Size: The minimum requirement
for this application in the task partitioning phase is
that at least one x-ray subimage and one volume
slice fit on the device memory. It is possible for
the reconstruction configuration to be awkwardly
sized for a particular memory configuration of a
GPU. A simple example would be a GPU with 2GB
of available memory with a reconstruction task of
one 1 GB slice with a 700 MB x-ray subimage;
although this would easily fit within the 2GB limit,
there is still hundreds of megabytes available but yet
not enough to allow for an extra subimage and/or
volume slice.

• Tail-End of Reconstruction: If the remaining work
left to be performed by the GPU is much smaller
than what the GPU is capable of computing at once,
the resource maximization requirement would load
extra x-ray images onto the device memory. This
will only occur once per reconstruction and has very
little impact on large reconstuctions.

Algorithm 1 gives a general description to the dynamic
task partitioning as well the the kernel launch approach
to the reconstruction of a given slice block. With the
exception of Step 5a, all steps are performed by the
CPU. Algorithm 1 executes independently for each GPU
present on the system with the only atomic operation
occuring at step 8. No synchronization between CPU
threads (or between GPU threads for that matter) is
necessary allowing for maximum performance.

Algorithm 2 describes the layout of the kernel com-
putation for a given slice block and x-ray image subset
where the ordering of the loops provide improved cache-
hit rates as well as global memory traffic.

IV. EVALUATION

The experiments were performed on a high-end work-
station that consists of dual hexacore Intel Xeon X5690
processors clocked at 3.46GHz with hyper-threading for
a total of 24 virtual CPU cores, 192 GB RAM and 2
Nvidia S2090 devices connected via 4 PCI-E 2.0 x16
host interface cards. Each S2090 unit contains 4 Tesla
M2090 GPUs with 6 GB of GDDR5 memory apiece.

Each M2090 GPU contains 16 streaming multipro-
cessors (SM) that share a common L2 cache of 768

Algorithm 1 Dynamic Determination of GPU Task
while Reconstruction task queue not completedo

Step 1: Query GPU memory resources available
Step 2: Determine task partitioning given GPU
memory resources and slice-to-texture ratio
Step 3: Allocate/Initialize Memory resources on
CPU and GPU
Step 4: Upload reconstruction geometry informa-
tion to GPU constant memory
Step 5:
for all image subsetsdo

-Upload image subset data from host to device
texture memory
-Upon completion of upload, execute(a) and
(b) simultaneously:
(a) GPU: Update slice block with image subset
information via FDK kernel
(b) CPU: Prefetch next image subset. If last
subset, free pinned-memory.
-Synchronize tasks(a) and (b)

end for
Step 6: Download slice block voxel information
to host (storage optional)
Step 7: Free GPU memory resources
Step 8: Update reconstruction task queue

end while

Algorithm 2 FDK Kernel Layout
-Get threadid and voxel positionsp1, . . . , ps based
on id

if Threadid position within ROIthen
for Every slicej in slice blockdo

-Set register value to zero
for Every imagei in image subsetdo

-Determine texture interpolation coordinate
within imagei
-Update register value with texture fetch and
scaling information

end for
-Update voxelpj in global memory with register
value

end for
end if

KB. The L2 cache services all load, store, and texture
operations. Each SM contains 32 compute cores, 48 KB
L1 cache, 8 KB constant memory cache, and 8 KB
texture cache. Note that for the M2090, the L1 cache
and shared memory are configurable to different sizes
that can be determined by the user at compile time. The
L1 cache was maximized in this work (thus minimizing
shared memory) as shared memory was not utilized for



the reconstruction algorithm.
Timers used to calculate voxel processing throughput

are CPU-based and include the time needed for all mem-
ory transfers, kernel launches, and prefetching operations
necessary to completely reconstruct the given voxel
subvolume assigned to the task. Voxel throughput was
measured using two datasets; the first is4000× 4000×
4000 voxel (64 Gigavoxels) volume reconstructed from
1800 16-megapixel x-ray projection images where the
measurements were taken about the center 2000 slices,
the second is10000×10000×10000 voxel (1 Teravoxel)
volume reconstructed from 10000 100-megapixel x-ray
projection images where the measurements were taken
on the center 100 slices of the volume. Measurements
were taken for both datasets using 1 GPU and 8 GPUs.
The kernels were compiled using CUDA version 4.1 and
the cpu-based code was written in C++ using the Visual
Studio 2008 C++ compiler.

The various cache hit-rates were measured using
Nvidia’s performance evalutation tool NSight. Kernel
performance was measured on a single x-ray image
subset using the 64-Gigavoxel dataset. Cache hit-rates
could not be measured on the 1 teravoxel dataset due to
NSight software limitations.

V. RESULTS

Figure 1 illustrates voxel processing throughput of
various subvolumes in the 64 gigavoxel dataset for
various given slice-to-texture ratios (STR). The plot on
the left shows that for one GPU, voxel throughput clearly
benefits from smallSTR values with throughput peaking
atSTR ≈ 1.8 with a throughput of 17.5 megavoxels per
second. The average voxel throughput forSTR ≤ 10
is 15.84 megavoxels per second and the average voxel
throughput forSTR values greater than 10 was 10.21
megavoxels. The plot on the right side of figure 1 shows
voxel throughput for a various subvolumes on an 8 GPU
system. On average, voxel throughput still benefits from
smallerSTR values with an average voxel throughput
of 13.11 megavoxels per second forSTR ≤ 10; for
STR > 10, voxel throughput dramatically decreases to
4.54 megavoxels per second for a subvolume. Note that
for the 8 GPUs case that with largeSTR values the com-
putation time for a subvolume is highly variable when
compared to smallerSTR values so the average values
are not necessarily representative of typical performance.
It is likely that the observed variance in datapoints in
figures 1 and 2 are due to various systems sources such
as thread context switching, PCI-E bus pressure, and the
GPUs themselves.

Figure 2 shows voxel processing throughput for sub-
volumes of the teravoxel dataset using variousSTR

values. Since this dataset is extremely large (both in
projections and volume), fewerSTR values could be

realized and therefore results are not as dramatic in
throughput as with the 64 gigavoxel dataset but are still
significant. For 1 GPU (left plot on figure 2), voxel
throughput peaks at just under 0.51 megavoxels per sec-
ond for aSTR value of 0.52. ForSTR ≤ 0.9, average
throughput was about 0.497 megavoxels per second and
0.471 megavoxels per second forSTR values greater
than 0.9. On a system with 8 GPUs (right plot on figure
2), the performance is more variable but performance
differences can still be observed with respect toSTR

size. The average throughput forSTR ≤ 0.9 was 0.46
megavoxels per second and 0.40 megavoxels per second
with STR values greater than 0.9.

Figure 3 shows various GPU cache hit-rate perfor-
mances on the 64 gigavoxel dataset for the reconstruction
kernel. The upper plot of figure 3 shows the L1 cache
hit-rate performance for variousSTR values. For this
application, L1 cache is mostly populated with voxel
values as well as a few kernel input variables that are
used to determine loop length. As mentioned earlier,
voxel values are only updated once per kernel launch.
Regardless, the L1 cache hit-rate peaks for smallSTR

values at 2.1% and decreases to0.1% for STR values
greater than 7.

The lower plot on figure 3 shows L2 and texture cache
hit-rate performance. Although the texture cache hit-rate
does not vary much with varyingSTR, it does peak at
70.4% for the smallest achieveableSTR of about 0.47.
The L2 cache clearly suffers from largerSTR values,
for STR values less than 1, L2 hit-rates are between 75
and 60% and as low as10% for anSTR value of 10.

VI. CONCLUSION

When viewed from a traditional approach, CT recon-
struction is not an irregular problem and has excellent
spatial locality. However, when utilizing GPU technol-
ogy, one can lose spatial locality if the reconstruction is
large and entire subvolumes are simulaneously recon-
structed. This is due to the geometrical configuration
of the imaging system and the unpredicable thread
execution ordering. This work has shown that a CT
reconstruction algorithm for GPUs can clearly benefit
from an irregular approach for large-scale datasets by
prefetching small batches of x-ray projection data and
launching many kernels. This approach increases voxel
throughput when compared to a partitioning method that
only seeks to minimize data transfer uploads and kernel
launches as is the common practice when creating GPU-
based algorithms.

The main goal was to improve cache hit-rates to
improve kernel performance. Utilizing texture cache
exclusively for x-ray projection data as well as uti-
lizing hardware-based interpolation improves compu-
tational performance dramatically but performance is



0 10 20 30 40 50 60 70
4

6

8

10

12

14

16

18
Voxel Throughput (4k3 Voxels/1 GPU)

Slice to Texture Ratio

M
eg

aV
ox

el
s/

S
ec

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18
Voxel Throughput (4k3 Voxels/8 GPUs)

Slice to Texture Ratio

M
eg

aV
ox

el
s/

S
ec

Fig. 1. Left: Reconstructed Voxel Throughput for 64 Gigavoxel Dataset using 1GPU, Right: Throughput using 8 GPUs

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51
Voxel Throughput (10k3 Voxels/1 GPU)

Slice to Texture Ratio

M
eg

aV
ox

el
s/

S
ec

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Voxel Throughput (10k3 Voxels/8 GPUs)

Slice to Texture Ratio

M
eg

aV
ox

el
s/

S
ec

Fig. 2. Left: Reconstructed Voxel Throughput for TeravoxelDataset using 1GPU, Right: Throughput using 8 GPUs

highly dependent on the cache hit-rates. This method
can be used for large and small CT reconstruction
tasks and maximizes performance for arbitrarily sized
datasets. This work shows that smallerSTR values are
preferrable over larger values; however, arbitrarySTR

values are not acheivable due to various geometrical
configurations as well as varying datasets sizes. It is
possible to contrive a diabolical set in which only larger
STR values (≥ 1) are possible, however has not seemed
to appear frequently in practice. In practice, maximizing
the slice block in device memory tends to create the
lowestSTR values.

This work did not present any comparisons of ”med-
ical scale” datasets to other systems since much of the
literature on GPU-based medical CT tended to either
use older generation GPU hardware or the algorithms

implemented were not the traditional FDK algorithm
used for this work (much of the medical datasets are
helical scans). Our algorithm is able to reconstruct sub-
gigabyte datasets (≈ 8003 voxels using 720 projections)
at a rate of 30 slices per second per GPU.

For the general GPGPU community, this work has
shown that regular CPU algorithms that are ported over
to GPU environments may not result in an regular GPU
algorithm. Although it is generally recognized that port-
ing software for GPGPU application does not guarantee
optimal performance, much of the literature suggests
broad recommendations, such as minimizing memory
transfers, when in fact one should consider possibly
entirely different approaches that may have previously
considered inefficient for CPU-based environments.



0 2 4 6 8 10
10

−1

10
0

10
1

Slice to Texture Ratio

C
ac

he
 H

it−
ra

te
 P

er
ce

nt
ag

e L1 Cache Hit−rate

0 2 4 6 8 10
0

20

40

60

80

Slice to Texture Ratio

C
ac

he
 H

it−
ra

te
 P

er
ce

nt
ag

e L2 and Texture Cache Hit−rate

 

 

Texture Cache
L2 Cache

Fig. 3. Upper: L1 Cache hit-rate for reconstruction kernel.Lower: L2 and Texture Cache hit-rate for reconstruction kernel

VII. A CKNOWLEDGEMENTS

Sandia National Laboratories is a multi-program lab-
oratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corpo-
ration, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-
AC04-94AL85000.

REFERENCES

[1] H. H. Barrett and K. J. Myers,Foundations of Image Science.
Wiley-Interscience, 2004.

[2] S. Izumi, S. Kamata, K. Satoh, and H. Miyai, “High energy x-
ray computed tomography for industrial applications,”Nuclear
Science, IEEE Transactions on, vol. 40, no. 2, pp. 158 –161, apr
1993.

[3] L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam
algorithm,” Journal of the Optical Society of America A, vol. 1,
no. 6, pp. 612–619, 1984.

[4] F. Xu and K. Mueller, “Ultra-fast 3d filtered backprojection on
commodity graphics hardware,” inBiomedical Imaging: Nano to
Macro, 2004. IEEE International Symposium on, april 2004, pp.
571 – 574 Vol. 1.

[5] S. Xiao, Y. Bresler, and J. Munson, D.C., “Fast feldkamp
algorithm for cone-beam computer tomography,” inImage Pro-
cessing, 2003. ICIP 2003. Proceedings. 2003 International Con-
ference on, vol. 2, sept. 2003, pp. II – 819–22 vol.3.

[6] C. Axelsson and P. Danielsson, “Three-dimensional
reconstruction from cone-beam data in o(n 3 logn) time,”Physics
in Medicine and Biology, vol. 39, no. 3, p. 477, 1994. [Online].
Available: http://stacks.iop.org/0031-9155/39/i=3/a=013

[7] F. Xu and K. Mueller, “Accelerating popular tomographicre-
construction algorithms on commodity pc graphics hardware,”
Nuclear Science, IEEE Transactions on, vol. 52, no. 3, pp. 654
– 663, june 2005.

[8] J. Sanders and E. Kandrot,CUDA By Example: An Introduction
to General-Purpose GPU Programming. Addison-Wesley, 2011.

[9] W. mei W. Hwu, Ed.,GPU Computing Gems - Emerald Edition.
Morgan Kaufmann, 2011.

[10] F. Xu and K. Mueller, “Real-time 3d computed tomographic
reconstruction using commodity graphics hardware,”Physics in
Medicine and Biology, vol. 52, no. 12, pp. 3405–3419, 2007.

[11] N. Corporation, CUDA C Programming Guide v5.0.
http://www.nvidia.com, 2012.

[12] T. Mowry and A. Gupta, “Tolerating latency through software-
controlled prefetching in shared-memory multiprocessors,”
Journal of Parallel and Distributed Computing, vol. 12,
no. 2, pp. 87 – 106, 1991. [Online]. Available:
www.sciencedirect.com/science/article/pii/074373159190014Z

[13] M. D. Lam, E. E. Rothberg, and M. E. Wolf,
“The cache performance and optimizations of blocked
algorithms,” in Proceedings of the fourth international
conference on Architectural support for programming languages
and operating systems, ser. ASPLOS-IV. New York,
NY, USA: ACM, 1991, pp. 63–74. [Online]. Available:
http://doi.acm.org/10.1145/106972.106981

[14] N. Corporation, Nvidia CUDA C Best Practices Guide v5.0.
http://www.nvidia.com, 2012.


