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Abstract

It is well known that well-mixed lean or dilute SI engine operation can provide improvements of the fuel economy (FE) relative to that of traditional well-mixed
stoichiometric Sl operation. However, the potential is limited by the onset of unstable combustion for low fuel/air-equivalence (¢) ratios. This work examines the use
of two methods for improving combustion stability for lean operation, namely multi-pulse transient plasma ignition and intake air preheating. These two methods are
compared to standard Sl operation using a normal inductive ignition system without intake air preheating. E85 is the fuel chosen for this study.

The experimental results from single-cylinder testing show that the FE improvement for lean operation with the regular spark system without intake air preheating
amounts to 12% for ¢ = 0.67. Using a combination of intake air preheating and multi-pulse ignition, the engine can be operated stably at lower @, enabling a larger
improvement of FE, amounting to 17% for ¢ = 0.59. This enhanced lean operation is attributed to a more stable flame initiation offered by both the increased charge
temperature and the multi-pulse transient plasma ignition. The multi-pulse plasma ignition utilizes a specialized spark-plug geometry with a semi-open ignition cavity.
High-speed flame imaging in the same engine reveals that this combination of multi-pulse ignition and special spark-plug geometry results in a very fast transition to
fully turbulent deflagration, which is beneficial for stable combustion. The emissions measurements show that the combination of multi-pulse ignition and heated
intake improves the trade-off between NO, emissions and combustion instability, reaching a fairly low indicated specific NO, (ISNO,) of 0.63 g/kWh at ¢ = 0.48.

Analysis of the data for even leaner operation with ¢ down to 0.45 shows that it is possible to propagate a flame under these conditions, but that a reduction of cycle-
to-cycle variability is required. Statistical analysis of the available IMEP data suggests that FE improvements of at least 20% are possible for stabilized ultra-lean SI
operation.
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Introduction

2
CRE.

e Automotive industry is under
strong pressure to reduce
CO, emissions.

® Improved engine efficiency
is one key factor for
accomplishing this.

¢ Well-mixed stoichiometric
Sl operation is standard
for gasoline-type engines.
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e Lean and/or dilute well-mixed Sl operation can improve fuel economy.

e Combustion stability is one key issue.

® The higher flame speeds of high-ethanol
fuels are beneficial for lean operation.
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2N Objectives / Scope

CRE
® Examine lean well-mixed Sl operation in terms of:
— Its potential for improved engine efficiency.

— Limitations due to combustion variability and combustion inefficiency.

® Examine two factors that have potential to improve the stability of lean

operation relative to that of regular spark (RS) operation.
— Multi-pulse (MP) transient plasma, in collaboration with USC-LA.
— Intake charge heating.

e Combine:
— All-metal performance testing with emissions measurements.
— High-speed imaging of ignition and flame development.

e Four main data sets that sweep fuel/air-equivalence ratio (@):

Data set Ignition Type | Intake Air Temp. | Imaging?
RS Inductive 30°C Yes
RS Heated Inductive 100°C
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’ Approach / Research Engine

Two configurations of drop-down single-cylinder engine.

Bore = 86.0 mm, Stroke = 95.1 mm, 0.55 liter swept volume.

e All-metal: Metal-ring pack and air/oil-jet cooling of piston.

¢ Optical: Pent-roof window, piston-bow! window, and 45° Bowditch mirror.
¢ |dentical geometry for both configurations.

¢ 8-hole injector with 60°included angle =
22° between each pair of spray center lines.
Spark gap is in between two sprays.

A
CRE.
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Parameter Space

® Grouped as hardware, static parameters &
operating variables.

® Low residual gas level, 5 — 6% by mass.

e Constant E85 fuel mass.

® Increase air flow to lean out mix
e Target CA50 = 5°CA, as a compromise.

® Adjust spark timing to maintain CA50.

Parameter This Presentation
CR 12
Piston Bowl & 46 mm
Valve Timings For Minimal

Residual Level

Injector & Bosch 8 x 60°
Spray Targeting Straddling Spark
Swirl Index 2.7
Tumble Index 0.62
Engine Speed 1000 rpm
Injection Pressure 170 bar
# of Injections Single
Fuel Type E85

~ Fuel Mass

21.6 mg/cycle

EGR/[O,];, No EGR / 21% O,
P axhaust 100 kPa
Teoolant 75°C
—— CA50 5°CA
Spark Timing -58 to -15°CA
T, 30°C or 100°C
¢ 0.91 - 0.45
Intake Pressure 47 - 96 kPa

COMBUSTION RESEARCH FACILITY 5
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CSD of IMEP,, [%)]

20

[ERN
a1

=
o

ol

o

¢ - Sweep, Regular Spark
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2\\’ Optical Diagnostics Setup

® Dual-camera setups with Phantom v7.3 & v311
/e High-intensity LED light pulse as TDC marker/timing-check.
¢ 3/12 - skipfire operation for realistic residuals.
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High-Speed Imaging, Regular Spark

$=0.63 $=0.90
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A\ Spark Discharge Variations

y . Flow field near spark-plug gap has cycle-to-cycle variability.
¢ Evidenced by plasma-channel variations.

® Example for spark timing = -48°CA.

e Contributes to cyclic variability for lean operation.
— Long induction time from spark to CA10.
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Intake Air Heating

| ﬁi

® Installed a new copper intake air heater.
e Air temperature in port estimated from three
thermocouples.
® Temperature rise in-cylinder only =40K.
— Calculated following SAE Paper 2004-01-1900.
— Heat-transfer during intake stroke.
— Mixing with residuals (=5%).
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Regular Spark, T, Effect

CRE.

~® Higher T, provides substantial
improvement of lean operation.

® Example of IMEP variations at ¢ = 0.54.
e Remarkable improvement for only 40K

higher charge temperature at IVC.

Regular Spark, T;, = 100°C
ST =-42°CA, ¢ =0.54

Regular Spark, T;, = 30°C
ST =-50°CA, ¢ =0.54

-100

100 200 300 400 500
Cycle number [-]

FE Improvement [%]

CSD of IMEP,, [%]

N
o

[N
a1

=
o

ul

N
o O

20

O§ RS}, T,, = 30°C or
O |
C ¥ \Q\
o/ e
)
o
= 420
O o—0
S 4 e 400
/ I
O
+—t NO 380
Q@ 360
LR
C
340
OO\Q
04 05 06 07 08 09 1

Equivalence Ratio [¢]

IMEP,, [kPa]

COMBUSTION RESEARCH FACILITY

@ Sandia National Laboratories



2N Combined ST & T, , Effects
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| A’ Multi-pulse Transient Plasma

[ e Modified spark plug. 4 grounding arms.
— Allow fuel to enter.

— Form an semi-open cavity.

® 10 ultra-short high-current pulses over 1 ms.
— Ignition duration does not vary.

e Spark duration varies for inductive system.
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N MP Example at ¢ = 0.90.

”%\

® Example for ¢ = 0.90.
* Typically only one or two anodes
show strikes.

— Seldom all four are active in one
particular cycle.

e Downward jet-effect is typically
generated.
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Pulse Train at 10 kHz
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Zoomed-in view shows
first pulse in the train.

Statistics: Mean: 144.5 A; Std Dev: 1.34 A; Variance: 1.79 A



Discharge Energy

Waveforms at 10 bar Energy Calculation Procedure
250 — —
200, E‘%‘rf;enetl 0 > Pulsg Energy is calculated by numerically integrating
50 the instantaneous power
< 100- 10 2 Epuise = f v(t) *i(t) dt
E 50 %
3 0 -0 § » The general trend is that the discharge energy
-501 decreases with increasing pressure
-100 L-10
-500 0 500 1000
Time (ns)
10 1.37 10 13.7
11 1.16 10 11.6
12 1.26 10 12.6
13 1.47 10 14.7
14 1.56 10 15.6
15 1.00 10 10.0
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CRE.
~® Multi-pulse transient plasma provides

more stable lean operation.
e \With 5% variability limit:

Operation Lean Limit
RS ¢ = 0.565

RS Heated ¢ =0.508

MP Heated ¢ = 0.480

¢ Relative regular spark unheated:
Improvement with MP is equivalent to
intake air heating.

¢ Spark timing and gas temperature at
spark timing explain instability trends.
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¢ - Sweep, Multi-Pulse

(2
CRE
e Combination of heated MP provides best
lean operation relative non-heated RS.

30
| MP, T, = 100°C |
25 -
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0 .
-5

-40 -30 -20 -10 0 10 20 30 40 50 60 70
Crank Angle [°CA]

® Peak FE improvement with heated MP
operation is similar to heated RS.

® But MP tolerates leaner operation.
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Dual-views at ¢ =0.63

Regular Spark Multi-pulse

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



v .. B

N Factors for Improved Efficiency
. CRE
® \Why does IMEP rise initially on the lean side?
® Less pumping losses due to higher P, .
— 30% contribution to increased efficiency.
® Lower combustion temperatures lead to:
— Higher vy .
— Lower heat-transfer losses.
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Lean Limit Issues
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e Low IMEP because of late burn 500

e Why does not IMEP keep rising on the lean side? Low-IMEP cycles appear.

: 450 - | =091, MP, T,, = 100°C |
or incomplete burn? 200
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CRE.

e HR analysis supports hypothesis that low-IMEP cycles are partial burns.

Potential of Lean Operation

® Examine IMEP statistics for
potential of lean operation.

® Many cycles burn well, some too well!

® Low IMEP cycles leave unburned fuel

for next cycle = very high IMEP.
® Exclude cycles that are preceded

by lower-than-average IMEP.
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NO, Emissions

— Higher peak temperatures.

* Better trade-off between NO, and combustion instability.
— More stable operation allows leaner operation with lower peak temperatures.
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* Lower specific NO, can be reached with heated MP operation.

® Heated MP operation leads to more NO, at moderately lean conditions.
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N Conclusions

CRE.
® Lean well-mixed operation has potential for =20% fuel-economy improvement.

® Observed improvement is less due to unstable combustion and onset of
partial-burn cycles.

® Heated intake air and multi-pulse ignition both improve stability of lean
operation.

® For a given target CA50, stable combustion is promoted by:
— Late spark timing.
— High charge temperature at the time of spark.

® Heated intake provides more stable lean combustion by:
— Allowing a later spark, due to shorter spark — CA10 induction time (higher S,).
— Increasing the charge temperature for a given spark timing.

e Multi-pulse transient plasma ignition with a semi-open spark geometry
provides more stable lean combustion by:
— Ensuring a constant 1 ms time with plasma.

— Creating a turbulent jet of ignition products that quickly deflagrates into unburned
gas, thereby shortening the induction time from ignition to CA10.
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