
Abstract 

It is well known that well-mixed lean or dilute SI engine operation can provide improvements of the fuel economy (FE) relative to that of traditional well-mixed 
stoichiometric SI operation. However, the potential is limited by the onset of unstable combustion for low fuel/air-equivalence (f ) ratios. This work examines the use 
of two methods for improving combustion stability for lean operation, namely multi-pulse transient plasma ignition and intake air preheating. These two methods are 
compared to standard SI operation using a normal inductive ignition system without intake air preheating. E85 is the fuel chosen for this study. 

The experimental results from single-cylinder testing show that the FE improvement for lean operation with the regular spark system without intake air preheating 
amounts to 12% for f = 0.67. Using a combination of intake air preheating and multi-pulse ignition, the engine can be operated stably at lower f , enabling a larger 
improvement of FE, amounting to 17% for f = 0.59. This enhanced lean operation is attributed to a more stable flame initiation offered by both the increased charge 
temperature and the multi-pulse transient plasma ignition. The multi-pulse plasma ignition utilizes a specialized spark-plug geometry with a semi-open ignition cavity. 
High-speed flame imaging in the same engine reveals that this combination of multi-pulse ignition and special spark-plug geometry results in a very fast transition to 
fully turbulent deflagration, which is beneficial for stable combustion. The emissions measurements show that the combination of multi-pulse ignition and heated 
intake improves the trade-off between NOx emissions and combustion instability, reaching a fairly low indicated specific NOx (ISNOx) of 0.63 g/kWh at f = 0.48. 

Analysis of the data for even leaner operation with f down to 0.45 shows that it is possible to propagate a flame under these conditions, but that a reduction of cycle-
to-cycle variability is required. Statistical analysis of the available IMEP data suggests that FE improvements of at least 20% are possible for stabilized ultra-lean SI 
operation. 
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Introduction 

• Automotive industry is under 
strong pressure to reduce 
CO2 emissions. 

• Improved engine efficiency 
is one key factor for 
accomplishing this. 

• Well-mixed stoichiometric 
SI operation is standard 
for gasoline-type engines. 

• Lean and/or dilute well-mixed SI operation can improve fuel economy. 

• Combustion stability is one key issue. 

• The higher flame speeds of high-ethanol 
fuels are beneficial for lean operation. 
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Objectives / Scope 

• Examine lean well-mixed SI operation in terms of: 
– Its potential for improved engine efficiency. 
– Limitations due to combustion variability and combustion inefficiency. 

• Examine two factors that have potential to improve the stability of lean 
operation relative to that of regular spark (RS) operation. 

– Multi-pulse (MP) transient plasma, in collaboration with USC-LA. 
– Intake charge heating. 

• Combine: 
– All-metal performance testing with emissions measurements. 
– High-speed imaging of ignition and flame development. 

• Four main data sets that sweep fuel/air-equivalence ratio (f ): 

Data set Ignition Type Intake Air Temp. Imaging? 

RS Inductive 30°C Yes 

RS Heated Inductive 100°C 

MP Multi-pulse 30°C Yes 

MP Heated Multi-pulse 100°C 
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Approach / Research Engine 
  Two configurations of drop-down single-cylinder engine. 

  Bore = 86.0 mm, Stroke = 95.1 mm, 0.55 liter swept volume. 

• All-metal: Metal-ring pack and air/oil-jet cooling of piston. 

• Optical: Pent-roof window, piston-bowl window, and 45° Bowditch mirror. 

• Identical geometry for both configurations. 

• 8-hole injector with 60°included angle  
22° between each pair of spray center lines. 
Spark gap is in between two sprays. 
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Parameter Space Parameter This Presentation 

CR 12 

Piston Bowl  46 mm 

Valve Timings For Minimal 

Residual Level 

Injector & 

Spray Targeting 

Bosch 8 x 60° 

Straddling Spark 

Swirl Index 2.7 

Tumble Index 0.62 

Engine Speed 1000 rpm 

Injection Pressure 170 bar 

# of Injections Single 

Fuel Type E85 

Fuel Mass 21.6 mg/cycle 

EGR / [O2]in No EGR / 21% O2 

Pexhaust 100 kPa 

Tcoolant 75°C 

CA50 5°CA 

Spark Timing -58 to -15°CA 

Tin 30°C or 100°C 

f 0.91 - 0.45 

Intake Pressure 47 - 96 kPa 

• Grouped as hardware, static parameters & 
operating variables. 

• Low residual gas level, 5 – 6% by mass. 

• Constant E85 fuel mass. 

• Increase air flow to lean out mixture. 

• Target CA50 = 5°CA, as a compromise. 

• Adjust spark timing to maintain CA50. 
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f - Sweep, Regular Spark 

• IMEPn increases by 12% at f = 0.67. 

• Unacceptable cycle-to-cycle variability 
for lower f. 

• Spark – CA10 induction period 
becomes excessive. 
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Optical Diagnostics Setup 

•Dual-camera setups with Phantom v7.3 & v311 

•High-intensity LED light pulse as TDC marker/timing-check. 

•3/12 - skipfire operation for realistic residuals. 
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High-Speed Imaging, Regular Spark 
•   

 
 

 

f = 0.63              f = 0.90 
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•Flow field near spark-plug gap has cycle-to-cycle variability. 

•Evidenced by plasma-channel variations. 

•Example for spark timing = -48°CA. 

 

 

 

 

 

 

 

 

 

•Contributes to cyclic variability for lean operation. 

– Long induction time from spark to CA10. 

Spark Discharge Variations 
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Intake Air Heating 

• Installed a new copper intake air heater. 

• Air temperature in port estimated from three 
thermocouples. 

• Temperature rise in-cylinder only ≈40K. 
– Calculated following SAE Paper 2004-01-1900. 

– Heat-transfer during intake stroke. 

– Mixing with residuals (≈5%).  
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Regular Spark, Tin Effect 

• Higher Tin provides substantial 
improvement of lean operation. 

• Example of IMEP variations at f = 0.54. 

• Remarkable improvement for only 40K 
higher charge temperature at IVC. 
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Combined ST & Tin Effects 

•Higher Tin allows later spark. 

•Enhances effect of higher Tin. 

•Difference in charge temperature 
during spark event is ≈90K. 

•90 K leads to large relative increase 
of SL near flammability limit. 
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Multi-pulse Transient Plasma 

• Modified spark plug. 4 grounding arms. 
– Allow fuel to enter. 
– Form an semi-open cavity. 

• 10 ultra-short high-current pulses over 1 ms. 

– Ignition duration does not vary. 

• Spark duration varies for inductive system. 
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MP Example at f = 0.90. 

• Example for f = 0.90. 

• Typically only one or two anodes 
show strikes. 

– Seldom all four are active in one 
particular cycle. 

• Downward jet-effect is typically 
generated. 



Statistics:  Mean: 144.5 A;   Std Dev: 1.34 A;  Variance: 1.79 A 

Zoomed-in view shows 
first pulse in the train. 

Pulse Train at 10 kHz 

144.8 A 144.8 A 146.4 A 143.2 A 143.2 A

100 µs

144.8 A 144.8 A 146.4 A 143.2 A 143.2 A144.8 A 144.8 A 146.4 A 143.2 A 143.2 A

100 µs



Discharge Energy 

Jason M. Sanders 2/24/2014 

Pressure (bar) Discharge Energy (mJ) Number of Discharges 
Total Energy of 10 kHz Pulse 

Train (mJ) 

10 1.37 10 13.7 

11 1.16 10 11.6 

12 1.26 10 12.6 

13 1.47 10 14.7 

14 1.56 10 15.6 

15 1.00 10 10.0 

Energy Calculation Procedure  

 Pulse Energy is calculated by numerically integrating 
the instantaneous power  

 The general trend is that the discharge energy 
decreases with increasing pressure 

Waveforms at 10 bar 
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f - Sweep, Multi-Pulse 

• Multi-pulse transient plasma provides 
more stable lean operation. 

• With 5% variability limit: 

 

 

 

 

 

 

• Relative regular spark unheated: 
Improvement with MP is equivalent to 
intake air heating. 

• Spark timing and gas temperature at 
spark timing explain instability trends. 
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f - Sweep, Multi-Pulse 

• Combination of heated MP provides best 
lean operation relative non-heated RS. 

 

 

 

 

 

 

 

 

• Peak FE improvement with heated MP 
operation is similar to heated RS. 

• But MP tolerates leaner operation. 
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Dual-views at f = 0.63 
•   

 
 

 

Regular Spark             Multi-pulse 
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Factors for Improved Efficiency 

• Why does IMEP rise initially on the lean side? 

• Less pumping losses due to higher Pin. 
– 30% contribution to increased efficiency. 

• Lower combustion temperatures lead to: 
– Higher g . 

– Lower heat-transfer losses. 
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Lean Limit Issues 
• Why does not IMEP keep rising on the lean side? Low-IMEP cycles appear. 

• Low IMEP because of late burn 
or incomplete burn? 

• Drop in CE suggests incomplete burn. 
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Potential of Lean Operation 

• HR analysis supports hypothesis that low-IMEP cycles are partial burns. 

• Examine IMEP statistics for 
potential of lean operation. 

• Many cycles burn well, some too well! 

• Low IMEP cycles leave unburned fuel 
for next cycle  very high IMEP. 

• Exclude cycles that are preceded 
by lower-than-average IMEP. 
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NOx Emissions 

• Heated MP operation leads to more NOx at moderately lean conditions. 

– Higher peak temperatures. 

• Lower specific NOx can be reached with heated MP operation. 

• Better trade-off between NOx and combustion instability. 

– More stable operation allows leaner operation with lower peak temperatures. 
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Conclusions 

• Lean well-mixed operation has potential for ≈20% fuel-economy improvement. 

• Observed improvement is less due to unstable combustion and onset of 
partial-burn cycles. 

• Heated intake air and multi-pulse ignition both improve stability of lean 
operation. 

• For a given target CA50, stable combustion is promoted by: 
– Late spark timing. 

– High charge temperature at the time of spark. 

• Heated intake provides more stable lean combustion by: 
– Allowing a later spark, due to shorter spark – CA10 induction time (higher SL). 

– Increasing the charge temperature for a given spark timing. 

• Multi-pulse transient plasma ignition with a semi-open spark geometry 
provides more stable lean combustion by: 

– Ensuring a constant 1 ms time with plasma. 

– Creating a turbulent jet of ignition products that quickly deflagrates into unburned 
gas, thereby shortening the induction time from ignition to CA10. 


