

Exceptional service in the national interest

Review of Central Receiver Designs for High-Temperature Power Cycles

Clifford K Ho and Brian D. Iverson

Introduction

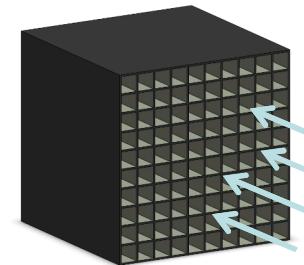
- Higher-efficiency, higher-temperature power cycles are being pursued
 - US DOE SunShot goal of \$0.06/kWh (with storage)
- Need high efficiency, high-temperature receivers
 - $T_{HTF,out} \geq 650^\circ\text{C}$
 - $\eta_{annual} \geq 90\%$
 - Lifetime $\geq 10,000$ thermal cycles
 - Cost $\leq \$150/\text{kW}_{\text{th}}$

Objective

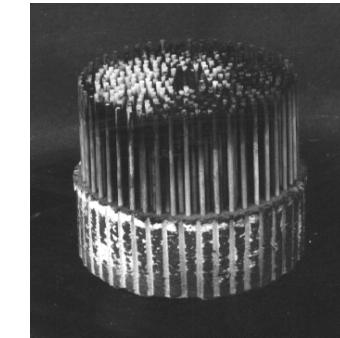
- Review central receiver designs for DOE SunShot goals
 - General principle
 - Review of tests and analyses
 - Outlet temperature and thermal efficiency
 - Benefits, challenges, and needs

- Gas-Based Central Receivers
- Liquid-Based Central Receivers
- Solid-Particle Central Receivers

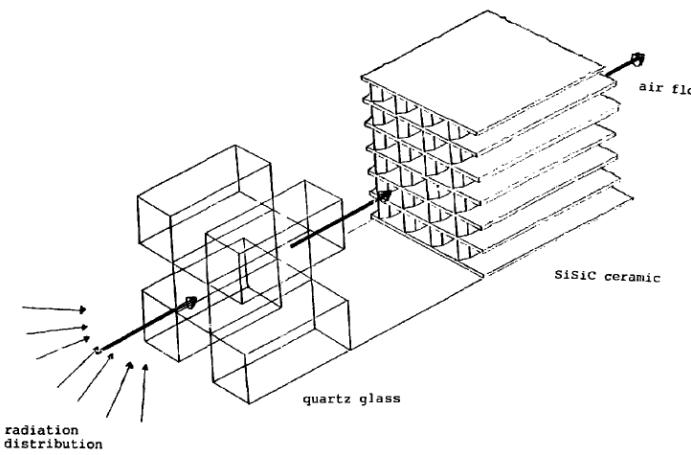
Gas-Based Central Receivers


■ Volumetric Air Receivers

■ Benefits


- $T > 700 \text{ }^{\circ}\text{C}$
- Demonstrated technology

■ Challenges


- Flow instabilities
- Material durability
- Low efficiency (50 – 60%)
- Heat storage and heat exchange

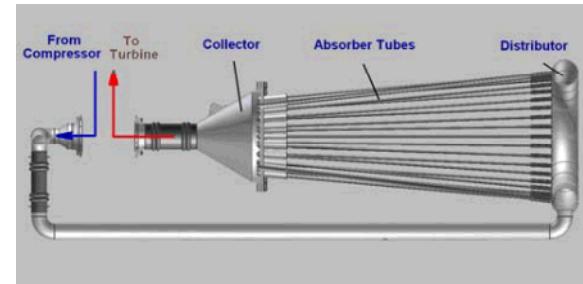
Airflow and Irradiance

“Porcupine”
(Karni et al., 1998)

Selective volumetric receivers

- (Left image) Pitz-Paal et al. (1991)
- Menigault et al. (1991)

Gas-Based Central Receivers


- Tubular gas receivers

- Benefits

- $T > 700 \text{ }^{\circ}\text{C}$
 - Can heat working fluid directly (e.g., Brayton cycles)

- Challenges

- Heat transfer to gas
 - Material durability
 - Low efficiency (50 – 60%)
 - Heat storage

Copper in
between Inconel
to increase heat
transfer

Segmented glass to form window to reduce
heat losses

Amsbeck et al. (2009, 2010), Heller et al. (2009)

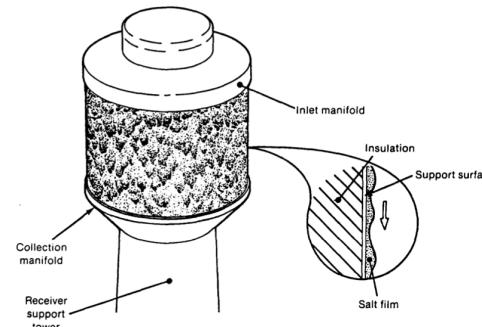
Gas-Based Central Receivers

- Small Particle Air Receiver
 - Hunt (1978, 1983)
 - Miller and Koenigsdorff (1991)

Liquid-Based Central Receivers

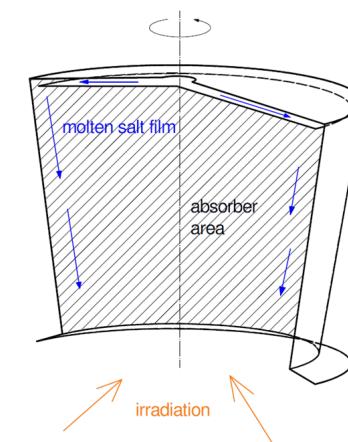
- Tubular liquid receivers

- Benefits


- Good efficiency (up to 90%)
 - Storage (molten salt)

- Challenges

- Limited temperature with existing nitrate salts ($T < 650 \text{ }^{\circ}\text{C}$)
 - Material durability


Liquid sodium (Falcone, 1986) or fluoride salt receiver (Forsberg et al., 2007)

External direct absorption falling film (Bohn & Green, 1989)

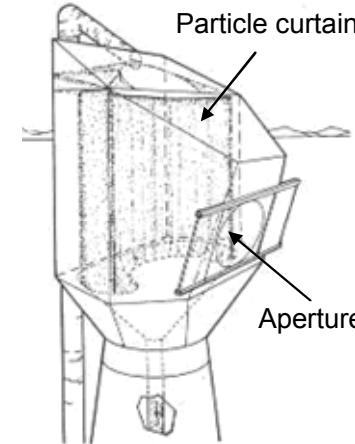
Solar Two Molten Salt Receiver (Pacheco, 2002)

Internal direct absorption falling film (Wu et al., 2011)

Solid Particle Central Receivers

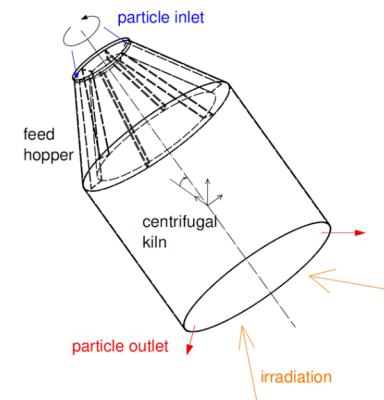
■ Falling Particle Receivers

■ Benefits


- High temperatures ($T > 700 \text{ }^{\circ}\text{C}$)
- Storage
- Increased flux capability

■ Challenges

- Need to increase thermal efficiency (prototype 50%)
- Particle attrition
- Particle/fluid heat exchange


Face-down falling particle receiver with recirculation (Roger et al., 2011; Khalsa et al., 2011)

Falling particle receiver (Falcone et al., 1985)

On-sun prototype test and analysis (Siegel and Kolb, 2008; Ho et al., 2009)

Falling particle rotating kiln (Wu et al., 2011)

Summary

- Gas-Based Central Receivers
 - Volumetric
 - Tubular
 - Small particle
- Liquid-Based Central Receivers
 - Tubular
 - Falling film
- Solid-Particle Central Receivers
 - Recirculation
 - Rotating