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Magnetic pressure can substitute for
ablation pressure in a hohlraum.

Quasi Spherical Direct Drive
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Quasi Spherical Direct Drive capsule offers
500 MJ 1D yields with 85 MJ energy store.

2.52 mm radlus and : Many issues are mitigated with a

0.12 mm thick Beryllium ]
Conductor/Pusher higher dl/dt.

Uniform Initiation
Internal Pulse Shaping
Less growth of Magnetic
Rayleigh Taylor instability
1.8 mg Cryo DT / | Lower driver energy
0.0003 glema DT/ l Higher nG

Lower Cost of Electricity

Tapered DT cryo t=0
antl-mix layer

2D simulated yield is currently limited by a wall instability.
Three possible solutions are being examined with LASNEX.
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'AExperiments have validated LASNEX simulations of

cylindrical Magnetic Raylelgh Taylor (MRT) Instability.
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D. Sinars et al. PRL 105,
185001 (2010) and Physics of
Plasmas 18, 056301 (2011)
*Longer wavelengths compared
well.

*Shorter wavelength growth
was less than 2D predictions.
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Gorgon 3D simulations capture features of

multi-mode MRT growth

Z Experiments

Gorgon 3D Simulations

Gorgon 3D Simulations
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Timing agreement to within 1 ns




Could the excellent agreement be improved and
extended to higher convergence with better initiation?

= SCORPIO Experiment

= Vapor deposited
aluminum on parylene
on diamond turned
wax.

= R=1cmand H=2 cm
= 0.02 to 0.2 microns of

Aluminum . ;
_ Diagnosed with
= 0.0075 microns of Schlieren photography,
Al,O,4 Holography,
= Few monolayers of *Open shutter photography, and
adsorbed gas *Multiple double Langmuir probes
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The uniformity of the plasma depends on
the rate of rise of current density.

= dJ/dt =8 x 10" A/cm?/s

= Uniform discharge in 7 ns

= 0.1 microns Al at dl/dt =5 x 1072 A/s
= dJ/dt <4 x 10" A/cm?2-s

= Very non-uniform breakdown

= Azimuthally asymmetric current

= 0.03 to 0.05 microns Al showed bumps on the plasma
surface as seen with the Schlieren photography
= Thin film effects
= Defects in thinner coatings.
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Data suggest two modes of initiation.

Slow Mode Fast Mode

*Adsorbed gas *Metal becomes plasma
expands before before adsorbed gas
voltage increases expands

*Gas breakdown *Metal initiates uniformly

shunts metal ) Nona
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1D LASNEX simulations with three monolayers of
hydrogen on metal indicates Z initiation is slow mode.

dJ/dt = 8 x 107% A/cm?/s gave uniform discharge in 7 ns.

Z experiments may have too low a dJ/dt at burst

= 100 ns Z pulse with prepulse and thick Al or Be conductor:
dJ/dt ~1x 10" A/lcm?-s in 86 ns

= 100 ns Z pulse with no prepulse and thick Al or Be conductor:
dJ/dt ~5x 10" A/lcm?-s in 45 ns

= 100 ns Z pulse with no prepulse and 25 micron thick conductor:
dJ/dt ~2x 107 A/lcm?-s in 20 ns

= 100 ns Z pulse with no prepulse and 6.25 micron thick conductor:
dJ/dt ~8x 107 A/lcm?-s in 8 ns

= Possible 44 ns Z pulse with no prepulse and thick Al or Be
conductor: dJ/dt ~5x 10" A/cm?-sin 7.5 ns
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Initiation and dielectric breakdown
should be the same statistical process.

V(t) = Voltage , ¢ = channel length, N = number of channels

o(V)/V ~ 0.3% for fast discharges in solids, liquids, and gases

AT =2 [c(M/V IV
[dV/dt]

= 2 sigma timing of channel formation

= Transit time isolation + inductive time +

resistive time for channel heating

=0.81r,/NC+ y, €n(r, ] 1)INZ
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Fig. 10c-10 Multichannel breakdown
entry in Table 10c-XII.

corresponding to ~

140 channel

J. C. Martin,
"Multichannel
Gaps" J. C.
Martin on Pulsed
Power, Vol 3, pp
295-333 edited
by T. H. Martin,
A. H. Guenther
and M.
Kristiansen,
Plenum Press,
New York, (1996)

Compute V, dV/dt, p with LASNEX and solve for N. ) e,
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Calculation has one empirical parameter.

= Radius = 0.0025 m for QSDD

. Z=L_h =13nHBns=260mmss | i
= |=0.0025m :
= o(V)V =0.18 to 0.3% from J.C. Martin : e

S et
= Vary metal thickness b 10 L
= 0 or 2 micron coating of Polyimide

from Sinars and from Sarkisov, et al. {
= |(t) from Z with and without prepulse \*P”‘“’t E’E
O Edge - Ve
0.1 B smapane e iinl
10 100 1,000 10,000

t_eff (nd)
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- ~Computed number of channels indicates
Z liners initiate in slow mode.

o(V)/V =0.18%

Number of Initiation Channels versus Metal
Thickness with and without Prepulse

1000000 /\
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10000 /
with Polyimide
S R@{o /

1909 N without Prepulse
\\ / but with Polyimide
100 NS ——N without Prepulse

K and without Polyimide
10 2 —Nwith Prepulse but
without Polyimide
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Increasing o(V)/V to 0.3 % gives a similar conclusion.

Number of Initiation Channels versus Metal
Thickness with and without Prepulse

1000000

[~
100000 \
/ N with Prepulse and

10000
/ with Polyimide

1000 -+ “— N without Prepulse
SCOR\QO but with Polyimide
100

——N without Prepulse
and without Polyimide
10 N ——N with Prepulse but

1 without Polyimide
l |

1 10 100

Number of Channels at Initiation

Metal Thickness (Microns)
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The calculations suggest a path forward.

5 microns Al works a bit better than 100 microns Al,
but not as good as 1 micron

* 1 micron Al with 2 micron coating of polyimide gives
best initiation

 Reduce prepulse—which is especially detrimental
without polyimide

- Polyimide may be able to give adequate initiation
even with prepulse and with 100 microns of Al—but
this depends on LASNEX being right in an unusual
application.
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Scorpio team and Mike Cuneo
independently found >10ns requirement.
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Initiation Time for Metal versus Metal Thickness

with and without Polyimide and Prepulse

—T _initiation with
Prepulse and with

/

Polyimide

/

—T _initiation with
Prepulse but without

/ _

Polyimide

s

—T_initiation without

-

Prepulse and without
Polyimide

—

T initiation without
Prepulse but with

1

10 100

Metal Thickness (Microns)

Polyimide

*Prepulse
precludes
<10 ns
initiation
*Usel
micron Al.
*Use 2
microns of
polyimide—
especially if
we have to
use 5 micron
Al.
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'Gas initiation time <10 ns relies on LASNEX

being right in unusual application.

Time from 400 deg Cto 1 eV
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Initiation Time for Air Layer versus Metal Thickness
with and without Polyimide and Prepulse

Metal Thickness (Microns)

100

—T _initiation with
Prepulse and with
Polyimide

—T initiation with
Prepulse but without
Polyimide

T _initiation without
Prepulse but with
Polyimide

—T __initiation without
Prepulse and without
Polyimide

1 micron Al is
required.

2 microns
polyimide
coating
reduces risk

If we have
prepulse,
polyimide
coating may
be
insufficient.
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3 monolayer coating of air is modeled
as hydrogen in 1D runs with LASNEX.

Run
CyllmicAl
Cylsmical

Cyl100micAl
Cylimical
Cylsmical

Cyl100micAl

CylimicAl_poly
CylSmicAl_poly
Cyl100micAl_paly
CyllmicAl_poly
CylSmicAl_poly
Cyl100micAl_poly

Cyl5micCu_poly
Cyl5micCu_poly

o(V)/V =0.18 %

Metal Delta_t
Thickness ™~ Half teff (ns) from 400 degC
of Metal Voltage across (time to peak rho/rho({STP tolev for
{microns})  Prepulse 2.5mm dv/dt (V/ns) only) mmHg] Initiation (ns)
1 N 3.40E+04 14706 0.9 26.32 2
5 N 2.10E+04 4348 3.5 0.84 16
100 N 1.80E+04 769 10 15.79 53
1 ¥ 3.20E+04 10000 1 3.53 19
5 ¥ 1.65E+04 1563 4 5.26 64
100 ¥ 1.65E+04 741 3 5.26 70
1 N 1.00E+04 2000 1.5 10.53 &t
5 N 1.50E+04 1176 4.5 7.83 12.5
100 N 1255 93 11 0.42 424
1 ¥ 6.20E+03 1333 1.5 2.63 23
5 ¥ 500 20 13 2.63 45
100 ¥ 925 45 5 2.47 120
5 N 500 10 5 2.37 48
5 ¥ 500 10 5 2.37 a7

Air Layer Delta_t
from 400 degC to
1 eV for Initiation

{ns)
g2
12
20
5]
32
13
3
16
57
31
31
23

30
33

DeltaT (s)
8.32E-12
1.74E-11
8.42E-11
1.15E-11
3.80E-11
8.02E-11
1.80E-11
4.59E-11
4.84E-11
1.67E-11
9.00E-11
7.32E-11

1.80E-10
1.80E-10

N
1350
25
15
73
a1
7
6000
i
1oooo
6300
906000
135000

103000
103000

Aluminum and copper conductors behaved
somewhat differently in the details.
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3 monolayer coating of air is modeled
as hydrogen in 1D runs with LASNEX.

Run
Cylimical
Cylsmical
Cyl100micAl
CylimicAl
CylsmicAl
Cyl100mical
CyllmicAl_poly
CylsmicAl_paly
Cyl100micAl_poly
CyllmicAl_paly
Cyl5micAl_paly
Cyl100micAl_poly

CylsmicCu_poly
CylSmicCu_poly

o(V)/V=0.3%

Metal Delta_t  Air Layer Delta_t

Thickness from 400 degC  from 400 degC to
of Metal Voltage across rho/rho(STP toleVfor 1 eV for Initiation
(microns]  Prepulse 2.5 mm dv/dt (v/ns) teff (ns) mmHg) Initiation {ns) (ns) DeltaT (5] M
1 N 3.40E+04 14706 0.9 26.32 2 2 1.35E-11 420
E N 2.10E+04 4348 2.5 0.84 16 12 2.90E-11 11
100 N 1.80E+04 769 10 15.79 33 20 1.40E-10 g
1 Y 3.20E+04 10000 1 3.53 13 6 1.92E-11 25
5 ¥ 1.65E+04 1563 a 5.26 64 32 6.34E-11 12
100 ¥ 1.65E+04 741 8 5.26 70 13 1.34E-10 3
1 N 1.00E+04 2000 1.5 10.53 5.7 3 3.00E-11 1300
5 ™ 1.50E+04 1176 4.5 7.89 13.5 16 7.65E-11 15
100 N 1255 93 11 0.42 42.4 57 8.07E-11 2150
1 ¥ 6.20E+03 1333 1.5 2.63 23 31 2.79e-11 1370
5 Y 500 20 13 2.63 45 31 1.50E-10 206000
100 Y 925 45 3 2.47 120 53 1.22E-10 30000
B N 500 10 5 2.37 438 30 3.00E-10 22000
B ¥ 500 10 5 2.37 a7 33 3.00E-10 22000
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