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Dynamic Random Access Memory 

10/18/2012 

• Most common memory 

• Low cost 

• ~30 nm cells in production as of 2012 

• Volatile and changes memory state if 

not refreshed periodically 

• DRAM Challenges: 

– DRAMs struggling to maintain 

reasonable equivalent oxide 

thickness 

– Dielectric for cells 30nm to 20 nm 

still TBD 

– Is scaling possible below 20 nm? 

– DDR2 interface is a power hog 

 

Micron Stacked DRAM 

Stacked DRAM Cell 

Courtesy Dieter Schroder, ASU 



3D DRAM 

• Micron/Intel Hybrid Memory Cube 

• DRAM die stacked on logic 

• Connected via through-silicon-via 

• Major energy savings 

Matthew Marinella 10/18/2012 

Micron, Hotchips 2011 



Static Random Access Memory 

• Faster than DRAM (<1ns read/write) 

• Larger cell size – requires ≥ 4 transistors 

• Lower density than DRAM; lower power dissipation 

• Set memory: WL high, BL and A high, BL and A’ low 

• WL low, cell isolated and will retain its memory as long as 

power is supplied without refresh 

10/18/2012 
Courtesy Dieter Schroder, ASU 
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NAND Flash Memories 

• Serial access; slower than NOR 

• High density: F≈20 nm in 2012 

• Low bit cost 

• Write/Erase: Fowler-Nordheim  

• Erased as blocks 

• Small cell size (5-6 F2), since no 

source contact required 

• Memory cards (USB sticks, iPad) 

• Challenges: 

– Non-scalable tunneling dielectric 

need > 6 nm for retention 

– Floating gate interference: 

capacitance coupling between 

floating gates 

– Reduced coupling ratio                     

with scaling 
10/18/2012 

Courtesy Dieter Schroder, ASU 
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NOR Flash Memories 

• Fast random access, similar to RAM 

• Lower voltage (7-10V) 

• Write: Hot electron injection, high VD 

• Erase: Fowler-Nordheim 

• Erased as blocks 

• Area: 9-11F2 (need source contact)  

• Embedded code (cellular phones, etc.) 

• Challenges: 

– More severe drain disturbance with 

continuous scaling 

– Severely limited scaling below 

32nm 
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Emerging Memory Technologies 
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ReRAM STT-MRAM Phase Change 
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Valence Change Memories 

• Type of resistive, or redox memory (a.k.a. memristor) 

• Research led by HP Labs, Jülich/Aachen, Samsung/SAIT 

• Sandia has recently established a major research program in this 

technology 

• Resistance Change Effect (polarities depend on device): 

– Positive voltage/electric field: on, “set” – O-2 anions leave oxide 

– Negative voltage/electric field: off, “reset” – anions return   

Matthew Marinella 10/18/2012 



Side Note: What is a Memristor? 

• Theoretical concept created by Leon Chua in 1971 

• 4th passive element “necessary for the sake of completeness” 

• Relatively obscure theory until 2008 

• ReRAM is a memristor! 
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Chua and Kang, IEEE Trans Circuit Theory, 1976 



CBRAM – Electrochemical 

• Pioneered by Michael Kozicki (ASU/Axon/Adesto) 

• Ions move under the influence of an electric field 
leading to electrochemical reactions 

• Electrochemistry takes place at a few 100 mV 

• The electro deposition process stops when a 
conducting link is formed 

• Metallic link reduces the resistance of the structure by 
many orders of magnitude 

• On resistance is determined by the programming 
current and is programmable 

Silver

Conductor

Solid

Electrolyte
Ag+

V = 0 V = 0V > 0

e-

http://www.axontc.com 

Courtesy D.K. Schroder (ASU) 



Programmable Metallization Cell 

Write 
• Low voltage injects silver 

ions into the electrolyte 

• Ions are reduced by the 
electron current to form 
stable silver atoms 

• Information is stored by the 
presence of excess silver 

• Multiple levels possible 

Erase 
• A very small reverse voltage 

(a few hundred mV) removes 
excess silver from the 
electrolyte 

• Device is easily erased 

• Excess silver is replaced on 
the silver electrode in an 
easily reversible reaction 

Ag+

V > 0

e-

V < 0

Write            Erase 

Courtesy D.K. Schroder (ASU) 



ReRAM Endurance Improvements 

10/18/2012 

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
10

3

10
5

10
7

10
9

10
11

10
13

10
15 Entry Point for DRAM Replacement

Fujitsu Labs

Panasonic Corp.

SAIT

 

E
n

d
ru

a
n

c
e
 (

c
y

c
le

s
)

Year

HP Labs

several groups

Will this trend continue? 

Courtesy J. Joshua Yang (HP Labs) 



Select Device 

• Major open issue with ReRAM 

• I-V linearity governs array size 

• Limits the array size 

• DO NOT want a MOSFET 

– Kills scaling! 

• Solutions: 

– Bilayer Nonlinearity 

– Complementary Resistive Switch 
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E. Linn et al, Nature Mater. 9, 403-406, 2010 

J. Yang et al, APL 100, 113501, 2012. 



Current State of the Art 

• Records as of February 2012 

– Endurance 1012 (Samsung, TaOx, shown below) 

– Scalability 10x10 nm2 (1F2), (IMEC HfOx, right) 

– Switching time < 500 ps (HP Labs, TaOx) 

– Retention >> 10 y (estimate by HP Labs),  

– Switching energy < 0.1 pJ/bit (HP Labs, TaOx) 

• State of the art is rapidly advancing 

Matt Marinella, ,  10/18/2012 

IMEC 10x10 nm 
B.Govoreanu et al, IEDM 2011, 31.6.1 

M.-J. Lee, et al., Nat Mater, vol. 10, pp. 625-630, 2011. 



Courtesy Dieter Schroder, ASU 

Spin Torque Transfer MRAM 
• Spin transfer: electron current through 2 ferromagnetic layers separated by 

thin nonmagnetic spacer ; magnetization manipulation instead of long-

range Oersted field generated by remote current 

• Current spin polarized by transmission through first ferromagnetic layer 

(pinned reference layer); maintains this polarization as it passes through 

spacer and enters/interacts with second ferromagnetic layer (free layer) 

• Field switched MRAM: complex cell architecture, high write current (~ mA)  

• STT: current through MTJ, much lower switching current (~ μA) 
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Field Switched MRAM SST MRAM 
Write “0” 

Write “1” 

Current 

Current 



Courtesy Dieter Schroder, ASU 

Phase Change RAM 
• Chalcogenide alloy (Ge2Sb2Te5 (GST)) is heated and cooled 

• Heated above melting point  amorphous 

– Rewritable CD, DVD  

• Laser  low reflectance 

– Memory 

• Current  high resistance 

• Heated below melting point  crystalline 

– CD, DVD  

• Laser  high reflectance 

– Memory 

• Current  low resistance 

• Reset pulse 

– T = 650C >Tm = 620C melts and transforms the GST into high resistance 

amorphous state  

• Set pulse 

– T = 550C <Tm, crystallizes the material 
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Images courtesy Dieter Schroder, ASU 

Phase Change RAM 
• Problem 

– High reset current (~ 500 mA)  

• Solution 

– Small contact area 

– Heat confinement 
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Samsung 512 Mb Array 

Numonyx PCM cell consists of a 

layer of Ge2Sb2Te5 , embedded in a 

dielectric structure and in contact 

with two electrodes 

Liang, TED 59, 1155-1162, April 2012 



Emerging Nonvolatile Memories 
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 DRAM Flash (NOR-NAND) ReRAM/Memoristor STT-MRAM PC-RAM

2012 Maturity Production (30 nm) Production (18 nm) Development Production (65 nm) Production (45 nm)

Min device size (nm) 20 18 <10 16 <10

Density (F2) 6 4 4 8-20 4F2

Read Time (ns) < 10 105 2 10 20

Write Time (ns) < 10 106 2 13 50

Write Energy (pJ/bit) 0.005 100 <1 4 6

Endurance (W/E Cycles) >10
16

10
4

10
12

10
12

>10
9

Retention 64 ms > 10 y > 10 y weeks > 10 y

BE Layers FE FE 4 10-12 4

Process complexity High/FE High/FE Low/BE High/BE Low/BE

The infamous comparison chart 

Biggest challenge for PCM: 

High erase current 

Biggest challenge for STT-MRAM: 

Retention/Scaling/Temperature 

Biggest challenge for ReRAM: 

Catch-up 



A More Subjective Survey 
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Prototypical (Table ERD3) Emerging (Table ERD5)

Parameter FeRAM STT-MRAM PCRAM

Emerging 

ferroelectric 

memory

Nanomechanical 

memory
Redox memory Mott Memory

Macromolecular 

memory

Molecular 

Memory

Scalability

MLC

3D integration

Fabrication cost

Endurance

?

?

?

?

?

?

?

Scalability Fmin >45 nm

MLC difficult

3D integration difficult

Fabrication cost high

Endurance ≤1E5 write cycles demonstrated

Scalability Fmin=10-45 nm

MLC feasible

3D integration feasible

Fabrication cost medium

Endurance ≤1E10 write cycles demonstrated

Scalability Fmin <10 nm

MLC solutions anticipated

3D integration difficult

Fabrication cost potentially low

Endurance >1E10 write cycles demonstratedITRS ERD 2011 



Universal/Storage Class Memory: 

A Game Changer 

Matt Marinella 10/18/2012 

L1  

SRAM 

 

DRAM 

Magnetic/Flash 

Archive: Tape (& paper files) 

SRAM 

Storage Class 

Memory: 

Emerging NVM 

Archive: Magnetic Disks 

L2/L3  

Cache 

• Very fast 

• Large area 

• Volatile 

• Expensive 

• Volatile 

• Inexpensive 

• Nonvolatile 

• Slow 

• High power 

• Inexpensive 

Very slow, nonvolatile 

• Nonvolatile 

• Scalable 

• Fast 

• Low power 

• Inexpensive 



ITRS Requirements for SCM 
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HDD [B] NAND flash [C] DRAM
Memory-type 

SCM
Storage-type SCM

~100ms

(block erase ~1 ms)

Endurance (cycles) unlimited 10
4
-10

5 unlimited >10
9

>10
6

Retention >10 years ~10 years 64 ms >5 days ~10 years

ON power (W/GB) ~0.04 ~0.01-0.04 0.4 <0.4 <0.04

Standby power ~20% ON power <10% ON power ~25% ON power <1% ON power <1% ON power

Areal density ~ 10
11

 bit/cm
2

~ 10
10 

bit/cm
2

~ 10
9 
bit/cm

2
>10

10
 bit/cm

2
>10

10
 bit/cm

2

Cost ($/GB) 0.1 2 10 <10 <3-4

Parameter

Target

Read/Write latency 3-5 ms <100 ns <100 ns 1-10ms

Benchmark [A]

ITRS ERD 2011 



3D Stack Addressing 

• How do we control many layers with a CMOS base layer? 

Matthew Marinella 10/18/2012 

Strukov et al, PNAS, 2009 



What will Universal Memory Look Like? 
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Optical Interconnects

Off-chip and long-

distance on-chip
Logic

< 7nm

Si CMOS?

RF & Power Circuitry

Integrated GaN HEMTs 

(Graphene FETs?)

Integrated Si/Ge 

Photon source

Memory: Terabit cm
-2 

Densities

ReRAM 3D Layered

Multiple Levels Per Cell (MLC)
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• Microsystems and Engineering Sciences Applications 

– Largest single Federal investment in microtechnology 

– $462M capital line item; completed in 2008 

– 391,000 square feet of fab, lab, and office space 

• Useful to create any hardware imaginable 

 

 

 

 

Sandia MESAFab 



MESA Complex 

Silicon Fab Micro Fab 

//Dlhethe/Presentations/MDL_Layout_043007.pdf
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Memristors + CMOS 

• Sandia CMOS7 Process 

– 3.3V, 350 nm, 

MOSFETs 

– Rad-hard 

• Baseline for memristor 

integration 
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Memristor Fabrication Process 

Matt Marinella 

J. Nickel et al, Microelectron Eng, 2012 



Film Development 

• Creating exact 

stoichiometry is key 

• Substoichiometric 

tantalum oxide: TaOx 

– x ≈ 2 

Matthew Marinella 10/18/2012 
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Novel Materials: AlOxNy 

• We recently discovered the AlOxNy Memristor 

• May be promising for rad-hard applications 

Matthew Marinella 10/18/2012 
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Adesto Commercial CBRAM Product 
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adesto.com 
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Space Computing 

• Sensors can collect terabytes of data 

• Stringent computer/memory requirements 

– Radiation-hard: Total dose, single event, etc. 

– High reliability (10-15 year missions) 

– Low energy 

• Desired 

– High density 

– Fast read/write 

• Ideal solution not yet available… 
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Orbital.com 



Rad-Hard Nonvolatile Memory 

• Commercially available rad-hard nonvolatile memories 

• NG EEPROM: 1Mbit, 100ms write, 104 cycles, 1.25µm RHCMOS 

• BAE C-RAM: 4Mbit (planned 20 Mbit), 70ns write 

• Honeywell MRAM: 16Mbit die, 140ns write, 1012 cycles 

• Rad-hard memory requires a rad-hard CMOS base process 

 

Matthew Marinella 10/18/2012 

BAE C-RAM 

baesystems.com 

NG Rad-hard EEPROM 

northropgrumman.com 

Honeywell M-RAM 

honeywell.com 



Rad Hard Memory Requirements 

• Space and supercomputing stand to benefit from 

commercial progress in emerging NVMs: 

– Low power 

– Fast read/write 

– High endurance 

– High density 

– Long retention 

– Non-volatility 

• Resiliency and fault-tolerance 

• HPC and space benefit from radiation hard 

– SEU is a problem for supercomputers 
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Previous Rad-Effects Work 

Matt Marinella 10/18/2012 Barnaby et al., Trans Nuclear Sci, vol. 

58, pp. 2838-2844, 2011. 

• TiO2 memristors 

– Aerospace: no degradation under 45 Mrad(Si) γ-rays and 

23 Mrad(Si) Bi ions 

– Arizona State University: Significant changes in ROFF 

after fluence of 1014 cm-2 alpha particles 

• HfO memristors 

– He et al: Little degradation after 5 Grad(Si) 1 MeV protons 

 

Tong et al., Trans Nuclear Sci, vol. 57, 

pp. 1640-1643, 2010. 



Recent Work at Sandia 

• All samples use same stack: 

– Si/SiO2(substrate)/Ti/TaOx/Ta/Pt 

• TaOx (x<2.5) sputtered from substoichiometric target 

• Random “dogbone” shadow mask 

Matthew Marinella 10/18/2012 



Electrical Characterization 

• Devices initially 

cycled several times 

• Write Voltages: 

– Set (on): 800 mV 

– Reset (off): -1.5 V 

• Typical Resistances: 

– RON ≈ 30-150 Ω 

– ROFF ≈ 300-5k Ω 

• Grounded during 

irradiation 

• Read after each shot 

• Cycle after series of 

shots  
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Initial Results: X-ray 

• Aracor 4100 10 keV X-ray 

System 

• All pins grounded during 

irradiation 

• Sample removed and replaced 

to measure resistance change 

• Ionization only 

• RON lowered after less than 10 

krad(Si)  
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Dose Rate (rads/s) 1667 1667 166.7 166.7 166.7

Total Dose (krads) 10 20 21 22 23

Incremental Dose (krads) 10 10 1 1 1

DUT 1 R (ohms) 919 (reset) 74.3 628 223 713 832 871 11.5 *

DUT 2 R (ohms) 176 (set) 93.5 1940 129 1770 362 248 0.84 *

DUT 3 R (ohms) 1660 (reset) 88.5 1900 206 1500 1900 2070 40.3 485

DUT 5 R (ohms) 113 (set) 113 731 834 766 880 918 81.6 756

DUT 6 R (ohms) 1120 (reset) 26.9 439 80.4 354 56.4 56.7 16 *
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Initial Results: High Energy Protons 

• 105 MeV and 480 MeV proton beam at TRIUMF Proton 

Irradiation Facility 

• Tended to cause change from high to low resistance 

• Results not consistent – possible single event effect 

Matthew Marinella 10/18/2012 
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γ-rays 

• Sandia Cobalt-60 Radiation Source, 53 rad/s 

• In situ electrical testing, all pins grounded during irradiation 

• ROFF measured between shots, full curve after 500 krad(Si) 

• No significant change in ROFF due to irradiation 

• Little changes in write characteristics  
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4.5 MeV Protons 

• 4.5 MeV proton irradiation at Sandia’s IBL 

• In situ electrical testing in 10-5 torr vacuum 

• 1 µm beam rastered across 25x25 µm area 

• Little change up to 5 Mrad(Si) 
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800 keV Silicon  

• 800 keV Si beam at Sandia’s Ion Beam Laboratory 

• All contacts grounded during irradiation 

• Device with high ROFF/RON was not affected by similar 

fluence 
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800 keV Silicon  

• Drop in resistance expected from TaOx switching theory 

• Off-Resistance decrease exhibits a 1/R dependence 

• May give insight as to vacancy concentrations needed for 

switching 

• Effect varies greatly, even in one device   
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Proposed Mechanism 

• Si ions: 

– Assume displacement damage dominated 

– Increase in oxygen vacancies expected to 

lower resistance 

– Fluence may vary with size of channel – 

indicated by device on/off resistance 

• Ionization damage: 

– Mechanism less clear 

– Radiation induced photocurrent might 

create strong enough potential for shift 

– Could explain why higher dose rate X-ray 

alter devices, low dose rate sources do not  

Matthew Marinella 10/18/2012 
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Image Recognition Problem 
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Major DoD Problem 

• “The DoD has become increasingly reliant on Intelligence, Surveillance 

and Reconnaissance (ISR) applications to accomplish their mission. 

Currently there is a pressing need to dramatically expand the DoD’s 

capabilities into the real-time processing of wide-area, high resolution 

video imagery, with systems performing target recognition and tracking 

over large numbers of objects. Not only is the volume of sensor data 

increasing exponentially, there is also a dramatic increase in the 

complexity of analysis, reflected in the number of operations per pixel per 

second. These expanding processing requirements for ISR missions, as 

well as other DoD sensor applications, are quickly outpacing the 

capabilities of existing and projected computing platforms.” 

– DARPA UPSIDE BAA, September 2012 
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New Architectures 

• Neural networks implemented with memristors may enable 

pattern recognition at new performance levels 
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Memron 

• Requires 3 Memrons can learn XOR 
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Conclusions 

• Novel memory technologies are emerging to 

replace traditional magnetic hard drives, flash, 

DRAM, and SRAM 

• ReRAM or Memristor technology is especially 

promising 

• Sandia is working to integrate state of the art 

TaOx memristor technology with rad-hard CMOS7 

• Many of these new technologies may be rad-hard 

• Novel architectures based on these devices may 

solve tough DoD problems 
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Questions 
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