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A Challenge of Renewable Fuels  

 Multiple stressors 

 Response to single stressor is still 

poorly understood, yet multivariate 

interactions are likely to be key 

 Species diversity: even similar 

species can possess distinct 

responses 

 

 

Dynamic response to environment is temporally 

escalated compared to agricultural crops 

 Monocultures are unnatural 

 Difficult to maintain 

 Natural variations with 

season and stress 

 

 

Individual Cell Response Dynamics Population Dynamics 



Monitoring is a Vital Component of 

Large-Scale Algal Production 

NEED:  Sensitive, selective, 

automated methods for early 

detection of fluctuations in 

algal communities 

But, major gaps in knowledge of fundamental 

algal biology limit our ability to “engineer” a solution 

Composition? 

Health/growth? 

Productivity? 

Inexpensive, 

rapid  

technology 

 

Decision 

 



Innovative, Differentiating  Approach 

Benchtop Stress Expts 
• Basic science on cell level 

physiological  & molecular 
responses 

• Determine cell & culture 
spectral  signatures 

Spectrometer 

Greenhouse Stress Expts 
•  Validate algal function at 

meso-scale outside of lab 
•  Test spectral signatures 
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Computational Model 
•  Translate experimental work into 

a scalable mathematical model for 
in silico testing of concepts 

Mechanistic, multi-scale 
understanding of algal productivity 

Stressors 
• CO2 
• Light 
• Temperature 
• Predators 
• Salt 

Raceway Verification 
•  Demonstrate validity of 

approach at raceway scale 

Algal Physiology 

Molecular Biology 

Chemical Imaging / Analysis 

Bioanalytical Spectroscopy 

Computational Modeling 

Remote Sensing 

Statistics 



Goals Encompass Multiple Scales 

Single cell Ensemble Subcellular  
nm µm m 

Lab scale 

0.01 – 3 gal 

Greenhouse scale 

100 – 150 gal 

Raceways* 

1000 – 10,000 gal 

Biomarker Discovery & Validation 

Technology Optimization & Validation 

 * photo courtesy of collaborators at ASU 



Chemical Imaging =  

Unprecedented View of Cell Processes 
5 m 

Pretty picture Each pixel in the image is a 

combination of 3 (RGB) colors 

(morphology, refractive properties) 

 

Light Microscopy 

Detailed chemical  

information 

Each pixel in the image is a 

spectrum relating to chemical 

and/or molecular structure within 

 

Spectral Imaging 

5 m 

Limited chemical 

information 
Each pixel in the image corresponds to 

integrated bandpass within fluorescence 

emission (chloroplast, lipid with stain) 

 

Fluorescence Microscopy 



Chemical Imaging in Algal Research 
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Hyperspectral Confocal 

Fluorescence 

Microscopy 

Subcellular 

localization, 

quantification of lipid 

and chlorophyll 

Two-Photon 

Hyperspectral 

Fluorescence Microscopy 

Discrimination 

between cell death 

mechanisms at early 

stage 

Healthy PCD Necrosis 

Hyperspectral 

Raman 

Microscopy  

Subcellular localization, 

discrimination of 

carotenoid, lipids, and 

precursors 
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Experimental Design 

• Variation in CO2 delivery, 

crash induced at end of 

experiment 

• Automated measurements: 
− pH, salinity, temperature 

− Downwelling irradiance 

− Upwelling radiance 

• Daily measurements: 
− pH, absorbance 

− Flow rates 

• At key time points: 
− Hyperspectral confocal 

fluorescence microscopy 

− C:N:P analysis 



Hyperspectral Imaging Results 

Spatially and Temporally Resolved 

Biochemical Response of an 

Organism to Its Environment 
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Single Cell Analysis  

Predictive Capability of Identified 

Spectral Biomarkers 

C D 

A B 

• Increased lipid production 

evident 

• Health monitored through 

autofluorescence 

• Clear segregation between 

healthy and unhealthy 

• Differences between ponds 
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Mean Concentration Scatter Plot 
(mean cell intensities) 

A) 1 wk post pond inoculation 

B) 2 wks post pond inoculation 

C) Induced pond crash day 1 

D) Induced pond crash day 2 

o - east pond 

* - west pond 



Ensemble Measurements 

Enable Real-time Monitoring 

Reichardt, TA, Collins, AM, Garcia, OF, 

Ruffing, AM, Jones, HDT, Timlin, JA, 

“Spectroradiometric Monitoring of N. salina 
Growth”, Algal Research, 1(1), 22-31, 2012. 

• Recent publication 
• Laboratory-scale 

• Real-time measure of growth rate 

and Chl content 

• Extension to greenhouse-

scale 
• Presented later in this session 

• “Remote spectroradiometric 

monitoring of N. salina in a fluidically 

mixed pond” 

• Currently performing outdoor 

raceway trials 

• Additional spectroscopic method: measure bulk optical 

properties via reflected sunlight  



Experimental Data Refines 

Predictive CFD Model 

James, SC, Boriah, V, “Modeling algae growth in an open-channel raceway,” 

J Comp Bio, 17 (4), 1-11, 2010 

Dynamic Simulations 
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B(x,t):spatio-temporal algal 

biomass (gC/m3) 

P:  production rate (1/day)  

BM: basal metabolism rate (1/day)  

PR: predation rate (1/day)  



Experimental Data Refines 

Predictive CFD Model 

• Recent efforts focus on incorporating pH effects into the CFD model 

• Work presented by Scott James on Monday 



Conclusions 

 Novel, integrated approach addresses scale-up challenges 

− Multi-scale experiments inform model, develop optical signatures 

grounded in understanding of algal response 

− CFD model can reduce experimental burden 

 Real-time monitoring of algal culture health at benchtop 

and greenhouse scales 

− Fluorescence and reflectivity 

− Detection based-on optical/spectral properties of photosynthetic 

pigments and algae 

 Early detection of change in health, culture composition is 

feasible w/ low-cost optical methods 

− Specificity yet to be determined 

 Future outlook - Raceway scale demonstration  

 



Acknowledgements 

This work was supported by the 

Laboratory Directed Research and 

Development program at Sandia 

National Laboratories.  

 

 Aaron Collins 

 Brian Dwyer 

 Omar Garcia 

 Lindsey Gloe 

 Scott James 

 Vijay Janardhanam 

 Howland Jones 

 Todd Lane 

 Kylea Parchert 

 Amy Powell 

 Tom Reichardt 

 Anne Ruffing 

 Christine Trahan 

 

 
 Hanson Lab, UNM Biology 

 Hu Lab, ASU’s Laboratory for Algae 

Research & Biotechnology 

 

 

http://www.asu.edu/

