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= Refresher on Ferroelectrics and Capacitors
= Application drivers:

= High operating temperatures, high power: low ESR, low loss
= Small volume: high energy density, low cost
= Long life, reliable operation: high resistivity, high activation energy

= Material Performance
= Demonstration MLCC Fabrication
= Mechanisms

Combines batching, processing,

|

Structure thermo/phase, kinetics, defect
= Microstructure chemistry, optical and electrical
= Processing properties, relaxor physics, field

response, characterization, etc.

Defects



Anatomy of a Typical Paper... T .

INTRODUCTION

Capacitors are some sort of magical devices that are key to solving global warming', war?3, famine*, and
delayed flights®®. Recently, other researchers have suggested that superduper capacitors may even be useful
for buzzword” and another totally made up phrase®. My funding agency is especially fond of them because
they have been funding this work for many years with nothing commercial to show for it, so these papers are
how | justify continuing the gravy train®'2. Smith and Jones have also published in this area; | disagree with
their conclusions, but I'm citing their papers because that’s the first thing they’'ll look for if they review this.3-16
The work from Andrews et al. is unrelated, but Tim will buy me a beer at the next conference if | cite him'”.

EXPERIMENTAL

Parts were formed by typical ceramic methods. Processing is boring and doesn’t matter anyway.
Measurements were made using some home-built equipment that | don’t understand and some commercial
equipment that | really don’t understand, so | pretend they’re all black boxes that give me data | like.

RESULTS

Here's some data. We don’t know what it means, but we hope that you're just looking at the figures and
title anyway. In fact, it's probably better if you don’t pore over every last word of this manuscript. It is readily
apparent from the small shoulder on the XRD peak in Fig 1 that we have formed the world’s first spontaneous
ultralattice. We didn’t do any other characterization because it's expensive and slow and never tells us what we
want to hear. In Fig 2 we show capacitance data; our instrument gave us other numbers too, but they were

weird, so we ignored them... 7
I ———————
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Capacitor Needs for Grid Storage [

Operating conditions vary!
* PVin Phoenix, AZ

Battery life

AT = * Batteries in Fairbanks, AK
Power « 72V up to 100s of kV
quality, :
smoothing / . Transportable
storage

Power electronics,
controls

Frequency
regulation

FACTS and
VAR support

Geoff Brennecka, Sandia National Laboratories



Application Space 5.
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High Energy Density Dielectrics 1) .
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High Temperature Operation 1) .
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Degradation in Ceramic Dielectrics @&

= Long-term degradation generally due to
migration of charged ionic defects

= HALT and MTTF prediction require
guantitative description of mechanisms

For excellent discussion, see:
Randall et al., J. Appl. Phys. 113, 014101 (2013) doi: 10.1063/1.4772599
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High Resistivity = Reliable Ll
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Prototype MLCCs: 200nF @ 1700V (@

BaCO, | |ZnO | |Bi,0, | | TIO,

Mix/mill, calcine @ 950°C, Mill

Single phase by XRD
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Prototype MLCCs: 200nF @ 1700V @iz,

BaCO, | |ZnO | |Bi,0, | | TIO,

Mix/mill, calcine @ 950°C, Mill
Single phase by XRD

Bind, Press,
Sinter @
1120-1180°C
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Prototype MLCCs: 200nF @ 1700V @iz,

BaCO, | |ZnO | |Bi,0, | | TIO,

Mix/mill, calcine @ 950°C, Mill

Single phase by XRD
Bind, Press, Cast and co-
Sinter @ fire with Pt

1120-1180°C @ 1120°C




Prototype MLCCs: 200nF @ 1700V (@
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Prototype MLCCs
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Sintering
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Prototype MLCCs: 200nF @ 1700V @iz,

MLCC Sintering
Cast and co-
fire with Pt
@ 1040°C

O, evolved
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Prototype MLCCs: 200nF @ 1700V (@
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= Large MLCCs retain performance across operating temperatures, electric fields.
= Mechanism(s)??




Time Domain Performance ..
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Bi-modified BaTiO, Relaxors
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xBaTiO; — (1-x)Bi(Zn, s Tig 5) O3 ) .
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xBaTiO; — (1-x)Bi(Zn, s Tig 5) O3 ) .

' ' {002} 4000
| x=1.0 | 3500
3000
x=0.95 -~
=
= 2500
x=0.93 P =
" 4 &2 o000
x=0.91 <
T 1500
B L
x=0.89 o
1000

Huang and Cann, OSU (2008)
D 1 1 1 1 1 1

-150 100 i} 0 a0 100 150 200

x=0.85

R W 500

44 445 45 455 46

26 Temperature {"C)




Calcination: BaTiO, rh) i,
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ination: iO. - Bi i ) o
Calcination: BaTiO, - Bi(Zn, < Ti, ) O,
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Complex phase evolution with at least 3 intermediate phases, but BZT
additions result in single-phase perovskite 200°C lower than pure BaTiO4
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ination: iO. - Bi i ) o
Calcination: BaTiO, - Bi(Zn, < Ti, ) O,
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Sintering
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Compositional Variation ) .
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Bi and Zn Co-segregation
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Defect Chemistry Studies ) .
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Acceptor Doped (=
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Solubility Limitation? h S,
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Sintering: Donor doped 1) .

Donor Doped: Cation Vacancies Dominate
* Bi diffuses in from g.b., out from core
 Diffusion assisted by cation vacancies

Resultant Microstructure

* Relatively homogenous

* Bi-gradient with diffuse boundary due to
ample Bi diffusion

* Electrically homogeneous microstructure
(single relaxation)

45




Sintering: Donor doped .

0 -
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1000/T
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Sintering: Acceptor doped ..

Acceptor Doped: Oxygen Vacancies Dominate

* Bi diffuses in from g.b., out from core

* Diffusion inhibited by lack of cation vacancies

* Bi-rich phase at triple points

* Bi-rich cores decompose into equilibrium
phases:  Bi,Ti;O,, +ZnO + Ba-Ti-O

Resultant Microstructure

* High-Z phase at triple points

* Well defined core boundary

* Low-Z precipitates in core region

* Electrically heterogeneous microstructure
(two relaxations)
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Sintering: Acceptor doped ) .
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Microscale Heterogeneity
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Summary ) g,

= Complex phase evolution and potential liquid phase(s) enable
reduced temperature processing

= Electrical response(s) of weakly-coupled relaxor systems tied to
multi-scale chemical heterogeneities

= Tightly bound defects enable high resistivity
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