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Inspired by Firesign Theater

And a sense that we need to rethink a few things
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More specifically, let’s
examine some of our
assumptions around

HPC resilience.
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What is HPC Resilience?

* We define resilient HPC as correct and efficient
computations at scale despite system
degradations and failures.

* Resilience is a cross cutting issue:
<~Hardware
<+~Operating System
+~System Management
<~Runtime (Execution Model)
<Application / Algorithms
<~Multi-layer (any/all combinations of the above)
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Assumption 1: Computers are reliable
digital machines.

Doesn’t get much more basic than this, but
it's wrong [at some scale].
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MTTI is shrinking as # cores grows

Failure at LANL: 140,000 Interrupt Events on 21
Platforms Show Remarkably Similar Trends

Application MTTI for Averages Across Platforms (2006)
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Checkpoint trend isn’t good

Percent of Execution for Checkpoints (Traditional FS)
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Effective application utilization (including checkpoint overhead) at 3 rates of
hardware failure

(Courtesy of Lucy Nowell & Sonia Sachs)
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(assuming that the number of cores per socket grows by a factor of 2
every 18, 24 and 30 months)

Machine utilization is going to zero! (Not really)
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""eheckpoint/Restart: Disproportional response to
local failures

« Single node failures account for the major HPC system
failures
= 85% on LLNL clusters (Moody et al. 2010)
= 2/3 on Titan (ORNL)

 Short MTBFs due to the increase of error-prone
components
= Titan crashes twice a day
= 2020: Every 30 minutes-1 hour?

« Hardware Solution is infeasible
» Performance loss

= Power

We seek a Local Failure Local Recovery
* Current| (LFLR) resilient programming model to [roportional
respons allow proportional response to single

= Kill all node/process failure

Robert L Clgggsggg;ent on Global File system to keep application stat S
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ol LFLR Programming Model

PO Run Kill Restart Run
P1 Run Kill Restart Run
P2 Run

Run Restart

Px Restart

Px Run as Px

Px+1
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Al Architecture of LFLR

PDE Solver Application Program

Scientific Data

Base class for
Application data

Buddy/Parity  Persistent Storage for Application State and data

in memory . Hii iH Hiii mimi“ ii iiiﬁ iiﬁiﬁii
A ﬂ

Spare Process .. )

management Similar Projects:
 LLNL
 Rutgers U

MPI-ULFM (UTK)
runs through node loss
0.
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MPI-ULFM: User Level Fault
Mitigation
* Proposed for MPI-3.1 standard
* MPI calls (recv, irecv, wait, collectives) notify errors when the peer
process(es) dies
« Healthy processes can continue
« Several MPI calls for fixing MPI communicator
= MPI_Comm_agree : Check the global status of MPI_Comm
= MPI_Comm_revoke: Invalidate MPI Communicator
= MPI_Comm_shrink: Fix MPI Communicator removing dead process
» User is responsible for the recovery after MPI_Comm_shrink call
* Prototype code is available at http://fault-tolerance.org
= Developed by U of Tennessee
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Scalable Recovery through Spare Process
Reserve

MPI processes for computation

Spare MPI Processes

* ULFM-MPI only provides minimum set of APIs for process loss

= Many apps need to remap the work after communicator shrink ®

= Vendor’s MPI (such as Cray) does not support MPI_Comm_spawn
* Allocate hot spare process to replace the lost process

= Can be used for the other resiliency features
* 3 MPI calls to perform rank re-assignment

= MPI_Comm_shrink

= MPI_Comm_create

= MPIl_comm_split
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Persistent Storage and its options

- In-memory, persistent storage XOR
- RAID-like redundancy @ °
- Performed by group (of 128 or 256) YOR

« Staging nodes @ ° @ﬂe

= Dedic

data
= We e) ]

. Cachind We employ in-memory storage of spare

. Expld Processes dedicated for checksum/parity
- Hand
+ Seala Nod Staging Nllg)

Mohror et al.) e Nodes odes

J .
J‘I >l ~ . GlobalFile
y 1 o s System
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A Scientific data structure for LFLR

= Object-oriented approach for
scientific data structure
=  Trilinos and PETSc

= Recoverable class provides

= Virtual methods for data specific
recovery

= Access to data redundancy protocol

= Coordination with the spare
process and persistent storage

= Monitor allocated data objects

= Recovery without specifying the
data to be recovered

= Simple for C++ meta-programming

= Need “Destroy” or “Free” call for
C/Fortran programming

Robert L. Clay, SOS-18

Data class for
Applications

Recoverable Registry

Persistent storage
and UCR system
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Constructing Resilient Application: Case
Study

* Iterative Algorithm
= Time-stepping PDE
= Nonlinear System Solver
= Require multiple linear system solution

 ldentify appropriate granularity for persistent storage access
= Single iteration of linear system solver is too short
= A few seconds per linear system solve in Sierra on 8192 Cray XE6 nodes

* Recovery
= Crash in single linear system solve needs to recover the state outside linear system
solver
- E.g. time step, nonlinear step, mesh,

- Recovery manager can recover all data and state
- Spare process to keep chronological state
- Data specific recovery
- Matrix is regenerated from Mesh
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Resilient Time-Stepping Solver

Create Mesh M
Compute Matrix A out of M

Save M in Persistent Storage
Do until the last time step

b, and b, , in Persistent Storage

Get new b, from x, ; (Update Boundary Condition) Process loss is
Solve Ax.;=b. (Linear System Solution) ENDETEE PATTElE!Y

if the linear system solver fails, try the same iterative step
end do

* Local vector is stored with the subscript (iteration count) info

« Allow linear system solver to crash or end up with wrong solution
— Process loss
— Convergence failure due to silent data corruption

* Repeat the same iteration when linear system solver fails
— Need to get x,_; and b, ,
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Preliminary Result

* Time Stepping PDE
= 3D Finite Element
= Multiple Linear System Solution
= RHS is updated by LHS in the previous linear system solve

* Resiliency Features
= Spare Process is used for recovery
= Application info are stored only once
= Vectors are stored in every time step

 Weak scaling
= 64x64x64 for ULFM for 4 cores and increase the problem size (x*y*z) linearly
= Cray Cluster with SandyBridge (2.6Mhz) 16 cores (2CPU) per node, FDR Infiniband

= Process failure during linear system solve (2048 PEs)
« MPI-ULFM with our own fix for resilient collective
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Results with MPI-ULFM

Perfoemance Time Stepping MiniFE
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Negligible overhead for Persistent Data Store
Negligible overhead for Failure Detection
Recovery cost increases from 512 cores or larger
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e, Results with MPI-ULFM

Recovery Cost

14
12
10
w g +=Pesistent Restore
e
§ e=E=Data Regen
[}
»n 6 Comm Fix
4 e Comm_agree
Recovery All
2 W
o.¥ = i
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# of cores

* Negligible Cost for data recovery
= Very scalable

» Scalability Issues in Communicator fix
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Assumption 2: We don’t need to
change our codes much.

Also known as “MPI is fine”. Also known as
‘“MPI1 + X” where X is undefined, but it will
work itself out over time. The real question
may be whether the CSP BSP programming
model will work well at exascale.
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Existing SPMD programming models are

inherently NOT fault tolerant

Example: Systolic Matrix Multiplication

The move to exascale only oo | e [Ra] || [ aet] e
makes things worse 2 e B
- Global checkpoints no longer = =S SIS
feasible = = = = =
i GIObaI CO”eCtiveS COStIy Parallel Efficiency of the Systolic Algorithm
 Applications/runtime must e BN S — st
handle soft and hard failures o8
. 0.6
« Asynchronous execution to | — —o
. 0.4
hlde memory & I/O |atency | —o— Crossbar -O- Degraded Crossbar
i . 0.2 —o— Torus (Fast Start) Degraded Torus
« Deep memory hierarchies T i
. . 1 10 100 1000
reqUIre tunlng Number of Nodes

The implicitly synchronous systolic algorithm
cannot recover from node degradation

C. L. Janssen, H. Adalsteinsson, J. P. Kenny, Using simulation to design extreme-scale
applications and architectures: programming model exploration, ACM SIGMETRICS

Performance Evaluation Review, 38, pp. 4-8, 2011.
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Simulated timings for 16 shells on 8 processors
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Imperative Approach

Nproc Utilized
LO=2NMNWhAROONO®
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Data-driven Approach

Nproc Utilized
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Programming model exploration for

resilience with simulation
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Systolic matrix-matrix multiplication involves “synchronous’

migration of matrix blocks.

Start with MPI.
Actual MPI code

for (int iter=0; iter < niter; ++iter){

/** Prefetch next iteration */

MPI_Isend(left_block, nelems_left_block, MPI_DOUBLE,
row_send_partner, row_tag, MPI_COMM_WORLD, &reqs[@]);

MPI_Isend(right_block, nelems_right_block, MPI_DOUBLE,
col_send_partner, col_tag, MPI_COMM_WORLD, &regs[1]);

MPI_Irecv(next_left_block, nelems_left_block, MPI_DOUBLE,
row_recv_partner, row_tag, MPI_COMM_WORLD, &reqgs[2]);

MPI_Irecv(next_right_block, nelems_right_block, MPI_DOUBLE,
col_recv_partner, col_tag, MPI_COMM_WORLD, &regs[3]);

DGEMM('T', 'T', nrows, ncols, nlink, 1.0, left_block, nrows,
220 Fight_block, ncols, @, product_block, nrows); 220

Simulator code

for (int iter=0; iter < niter; ++iter){

/** Prefetch next iteration */

MPI_Isend(left_block, nelems_left_block, MPI_DOUBLE,
row_send_partner, row_tag, MPI_COMM_WORLD, &reqgs[@]);
MPI_Isend(right_block, nelems_right_block, MPI_DOUBLE,
col_send_partner, col_tag, MPI_COMM_WORLD, &regs[1]);
MPI_Irecv(next_left_block, nelems_left_block, MPI_DOUBLE,
row_recv_partner, row_tag, MPI_COMM_WORLD, &regs[2]);
MPI_Irecv(next_right_block, nelems_right_block, MPI_DOUBLE,
col_recv_partner, col_tag, MPI_COMM_WORLD, &regs[3]);

DGEMM('T', 'T', nrows, ncols, nlink, 1.0, left_block, nrows,
fight_block, ncols, @, product_block, nrows);

With a few linker tricks, you get direct compilation of source code. No DSL! Only

one source to maintain!

Robert L. Clay, SOS-18
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Programming model exploration for

resilience : simulator results

Synchronous MPI

data exchange
App A ioy AQtivity Over Time

If all nodes the same
speed...

If one node
overheats or has
bad DIMM and

slows down...

Robert L. Clay, SOS-18

— Memor¥
— Compu e

E Fixed-time quanta (FTQ) shows
3 where app is spending time. Here
w MPI “stutters” during synchronous
v exchange
o 6‘0 ‘20 Jd‘ v’o v’\y ")0 u’d\ Yo ¥
o o, 0 o, o, o, o,
'f’lme(msg e © @ o
Application Activity Over Time
— Memor¥
mmm Compute
MPI

Slow node gradually chokes off
computation due to MPI
synchronization...

% of total
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" Programming model exploration:

asynchronous, task-DAG model

Application Activity Over Time

mem Sleep ) ) .
== Compute  Termination detection/

[ .
Server work stealing needs to

—~ be optimized
If all nodes the same i P
(0]
speed... S
W .
0 Data movement service
oe is constant overhead —
single thread dedicated
to communication
o Ky g — N Y, 4
2, 000 "\5‘0.0 9, 6\00 000 6\00 000
Tlme(ﬁ{s)
If node slows down... With load balancing...
Application Activity Over Time Application Activity Over Time

msm Sleep
=== Compute
mmm Server

msm Sleep
=== Compute
mmm Server

% of total
% of total
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Asynchronous many-task programming
models are fault tolerant!

Actor Model Matrix Multiplication
(asynchronous, many task)

Parallel Efficiency Comparison

« Simulation permits straightforward io
investigation of alternative | K///J
programming models " //-/

* Work-stealing approaches will R
play a role in dealing with large- 0.4
scale machines lacking perfect 0.2 = Systatic Algorithm
homogenelty ] ] — Perfect Load Balancing

14 140 100 1000
Number of Nodes

* Research Questions:
- Is MPI+X (global checkpoint/restart) enough?
- If not, what programming models can reach what scales?
- If no programming model can reach scales of interest for a given application
without algorithmic changes, how might algorithms be adapted?
- Co-design of architecture tradeoffs between memory, I/O, power, and application
performance
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SST Experiment: Actor Load Balancing

Legend

Black - initializing
Green — working

. — prefetching
Red —idle
Purple — work stealing

Asynchronous, task-
based programming
model with work stealing
balances load under
dynamic conditions,
including faults and
degradation.
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Can asynchronous, many-task programming models
facilitate scalable resilience on extreme-scale systems?

* Our approach:

- Dynamically scheduled, asynchronous tasks: maximize use of resources by
load balancing and redistributing work from failed nodes

= Locality and minimal data movement: move work to data; multithreaded,

NUMA-aware scheduling on each node in distributed environment

- Automatic data repair: silent data corruption is detected and repaired using triple
modular redundancy or 2D checksums

- Automatic task recovery: transaction-like semantics allow task replay after data
is corrected

Example

Dot prog
over-de(

AMT programming models enable marching toward
the correct solution in the face of both soft and
hard faults without checkpoint/restart.

and B to produce result R

Robert L. Clay, SOS-18 & qthreads

T

A: ChunkN
DPTaskN C
B: ChunkN
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Demonstrated resilience to silent data corruption In

our on-node, task-based conjugate gradient solver
driven by miniFE proxy app

« Automatically detected/corrected multi-bit silent data corruption in user
data structures using triple-modular redundancy for scalars and 2D
checksums for vectors and matrices (application/algorithm agnostic)

Strong Scalability of CG Solve ' . .
1000 = Technique applied selectively by

self-stabilizing CG algorithm in
order to lower protection cost

M
©
5 0% = 0.8% memory overhead on
(]
e protected data structures
£ : : :
= 0 = 20% increase in runtime due
2 ¢ —
+=NUMA-aware OpenMP | to checksum validation on
«@=Non-resilient FTPM . .
=®=Resilient FTPM every 20% jteration
1
1 2 4 8 16 32

Threads

Benchmarks from SGI Altix UV 10 with four 8-core Nehalem EX and 512 GB globally-shared memory
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Assumption 3: Well, at least the
algorithms will work.

Maybe, maybe not.
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Error-Correcting Algorithms Can Mitigate

Silent Errors & Offer New Co-design Options

* Even at commodity scale, ECC memory & ECC processors show

the rising need for error correction
, ECC memory

- With increasing scale and with power limitations, errors can occur
“silently” without indication that something is wrong

* Numerical algorithms already deal with error from truncation, etc.;
specially designed algorithms can mitigate silent bit flips as well

Error Stable Correction

Interpolation
x-2 | x-1| X |x+1|x+2|—> x-2 X Ix+1|x+2 X-2 | x-1| X |x+1|x+2|—| x-2| x-1| X |x+1|x+2

® i .
.- ‘m . .- ¢ ‘® . . - ‘® . . -
" ®

* These robust stencil algorithms not only address scale-up of
current silent-error rates, but may enable new “lossy” architecture
options with more power-efficient accelerators or reduced latency
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Robust stencils can discard outliers
to mitigate bit flips in PDE solving

- A simple 1D advection
equation dul/ot = dulox
illustrates the behavior
of finite-difference
schemes

 The robust stencil here
computes a second-order u
at position i from
one of these subsets after
discarding the most
extreme value:

- {i-3, i-1, i+1,
e i-2, i j+2
- i-1, i, i+1

Robert L. Clay, SOS-18

Average glitches
per time step

0.1

Lax—Wendroff
with viscosity

Lax—Wendroff Robust stencil

N\
v/

Va\
V\

V/

Simple demo in
Mathematica
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Bit-flip Injection at Machine Level Confirms
Effectiveness of Our Robust Stencil

Focus on silent-error models affecting floating-point

= Relaxing FP correctness may benefit designs (e.g., GPUs)

bit flips in the FP solution array
= Can also be a proxy for processor bit flips that corrupt FP ops

Relative memory use

3 I
1

Standard Robust

—iN

Relative runtime

Standard Robust

O—‘I\)(A)AUIO')

Robert L. Clay, SOS-18

90%ile RMS deviation
from exact solution

0.001

Compare brute-force triple modular redundancy (TMR)

Standard Robust

/
Acceptable (3% intrinsic discretization error)

10710 10 10® 1077 107°
Error probability per bit per standard time step

Test: During C++ PDE simulation, asynchronously perform raw memory

Here, the robust
stencil provides
substantial bit-flip
tolerance at lower
cost than TMR
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Preliminary Weak-Scaling Experiments
Show Favorable Trends for Robust Stencil

* As a research tool for ongoing use, we have implemented a
modular C++/MPI framework for explicit Cartesian PDE solvers

= Captures “halo exchange” pattern in generic form
* Preliminary results from many short runs, 10° grid cells per core

28 19-5

3.0 ~—x 'S = --g“'_"' 1077 o * * 7'} —o
i ) s Robust S8 . Robust
= 2. s= 107 ,
5 2.0 ~3x runtime S ~o000x Increasing
€2 s 9 resilience ~106x
© ec 10
= 15 v 8 advantage
m . 4 . 2 . J -

o - - —

-.(% 1.0 Standard g g 10 M .V -
205 Manageable overhead £3 Standard
0.0 — R R ‘“‘0_-‘10_13 . R . .

1 5 10 50 100 5001000 =G 1 5 10 50 100 500 1000
Cores Cores

* Further questions:
- How does resilience scale with longer runs and more realistic PDEs?
- How realistic is our way of emulating memory bit flips?
- What happens if bit flips also occur in message communication?
Robert L. Clay, SOS-18

Sandia
m National

Laboratories




Acknowledgements

* Rob Armstrong (Robust Stencils)
= Janine Bennett (pmodels)

» Gilbert Hendry (SST/macro)

* Mike Heroux (LFLR)

* Hemanth Kolla (pmodels)

» Jackson Mayo (Robust Stencils)
* Philippe Pebay (SST/macro)

* Nicole Slattengren (pmodels)

= Keita Teranishi (LFLR)

= Jeremiah Wilke (SST/macro)

Robert L. Clay, SOS-18




Thank You
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