
Robert L. Clay, SOS-18

“Everything You Know
Is Wrong”  

(Reflections On a Few Basic Assumptions)  
 
 

Robert L. Clay, Ph.D.
Manager, Scalable Modeling and Analysis Systems

Sandia National Laboratories

SOS-18 Workshop
March 18, 2014

St. Moritz, Switzerland

"

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-AC04-94AL85000. !

SAND2014-2182C

Robert L. Clay, SOS-18

Inspired by Firesign Theater"

And a sense that we need to rethink a few things

Robert L. Clay, SOS-18

More specifically, let’s
examine some of our
assumptions around

HPC resilience."

Robert L. Clay, SOS-18

What is HPC Resilience?"

• We define resilient HPC as correct and efficient
computations at scale despite system
degradations and failures.

• Resilience is a cross cutting issue:
² Hardware
² Operating System
² System Management
² Runtime (Execution Model)
² Application / Algorithms
² Multi-layer (any/all combinations of the above)

Robert L. Clay, SOS-18

Assumption 1: Computers are reliable
digital machines."

Doesn’t get much more basic than this, but
it’s wrong [at some scale].

Robert L. Clay, SOS-18

MTTI is shrinking as # cores grows"

(Courtesy of John Daly)

Robert L. Clay, SOS-18

Oldfield et al., Modeling the Impact of Checkpoints on Next-Generation
Systems. MSST, 2007

Checkpoint trend isn’t good "

 Machine utilization is going to zero! (Not really)

(Courtesy of Lucy Nowell & Sonia Sachs)

Schroeder and Gibson, Understanding Failures in Petascale
Computers. Journal of Physics, 2007

(assuming that the number of cores per socket grows by a factor of 2
every 18, 24 and 30 months)

Robert L. Clay, SOS-18

Checkpoint/Restart: Disproportional response to
local failures"

•  Single node failures account for the major HPC system
failures
§  85% on LLNL clusters (Moody et al. 2010)
§  2/3 on Titan (ORNL)

•  Short MTBFs due to the increase of error-prone
components
§  Titan crashes twice a day
§  2020: Every 30 minutes-1 hour?

•  Hardware Solution is infeasible
§  Performance loss
§  Power budget (20MW per system)

•  Current practice of Checkpoint/Restart is a disproportional
response to single node failure
§  Kill all processes (global terminate)
§  Recovery involves global restart
§  Dependent on Global File system to keep application state

We seek a Local Failure Local Recovery
(LFLR) resilient programming model to
allow proportional response to single

node/process failure

8

Robert L. Clay, SOS-18

LFLR Programming Model"

9

Run

Run

Run

P0

P1

P2

Run Px Kill

Kill

Kill

Kill

Restart

Restart

Restart

Restart

Run

Run

Run

Run Crash

Run P0

P1

P2

Run Px

Run

Crash

Notify Error to
everybody

Stand by Px+1 Join

Run as Px

Wait

Notify Error

Run

Run

Checkpoint Restart

Our Approach

Robert L. Clay, SOS-18

Architecture of LFLR "

10

Process Manager

Sparse
Matrix Vector Mesh

Recovery Manager

Parallel Execution Runtime

Persistent Storage

Application Program

Buddy/Parity
in memory

PDE Solver

•  Detect and notify process failure(s)
•  Continue program execution with a presence of process failure

•  Query for process status
•  Manage process assignment for lost work

•  Persistent Storage for Application State and data
•  Use on node memory of spare process

•  Restore the application state and data from process failure

•  Provides API for writing resilient application with ease

MPI-ULFM (UTK)
runs through node loss

Spare Process
management

Base class for
Application data

Scientific Data

Similar Projects:
•  LLNL
•  Rutgers U

Robert L. Clay, SOS-18

MPI-ULFM: User Level Fault
Mitigation"

•  Proposed for MPI-3.1 standard
•  MPI calls (recv, irecv, wait, collectives) notify errors when the peer

process(es) dies
•  Healthy processes can continue
•  Several MPI calls for fixing MPI communicator

§  MPI_Comm_agree : Check the global status of MPI_Comm
§  MPI_Comm_revoke: Invalidate MPI Communicator
§  MPI_Comm_shrink: Fix MPI Communicator removing dead process

•  User is responsible for the recovery after MPI_Comm_shrink call
•  Prototype code is available at http://fault-tolerance.org

§  Developed by U of Tennessee

11

Robert L. Clay, SOS-18

Scalable Recovery through Spare Process
Reserve"

•  ULFM-MPI only provides minimum set of APIs for process loss
§  Many apps need to remap the work after communicator shrink L
§  Vendor’s MPI (such as Cray) does not support MPI_Comm_spawn

•  Allocate hot spare process to replace the lost process
§  Can be used for the other resiliency features

•  3 MPI calls to perform rank re-assignment
§  MPI_Comm_shrink
§  MPI_Comm_create
§  MPI_comm_split

12

MPI processes for computation

Spare MPI Processes

Robert L. Clay, SOS-18

Persistent Storage and its options"

•  In-memory, persistent storage
§  RAID-like redundancy
§  Performed by group (of 128 or 256)

•  Staging nodes
§  Dedicated nodes to store temporary

data
§  We exploit spare nodes

•  Caching by compute node
§  Exploit all available I/O resources
§  Handles more catastrophic faults
§  Scalable Checkpoint and Restart (by

Mohror et al.)

13

P1

P0 P2 P1 Spare

P0 P2 P1 Spare

XOR

XOR

Global File
System

Staging
Nodes

Computing
Nodes

I/O
Nodes

We employ in-memory storage of spare
processes dedicated for checksum/parity

Robert L. Clay, SOS-18

Scientific data structure for LFLR"

14

§  Object-­‐oriented	
 approach	
 for	

scien3fic	
 data	
 structure	

§  Trilinos	
 and	
 PETSc	

§  Recoverable	
 class	
 provides	

§  Virtual	
 methods	
 for	
 data	
 specific	

recovery	

§  Access	
 to	
 data	
 redundancy	
 protocol	

§  Coordina3on	
 with	
 the	
 spare	

process	
 and	
 persistent	
 storage	
 	

§  Monitor	
 allocated	
 data	
 objects	

§  Recovery	
 without	
 specifying	
 the	

data	
 to	
 be	
 recovered	

§  Simple	
 for	
 C++	
 meta-­‐programming	

§  Need	
 “Destroy”	
 or	
 “Free”	
 call	
 for	

C/Fortran	
 programming	

Persistent storage
and UCR system

Data class for
Applications

Recoverable Registry

Robert L. Clay, SOS-18

Constructing Resilient Application: Case
Study"

•  Iterative Algorithm
§  Time-stepping PDE
§  Nonlinear System Solver
§  Require multiple linear system solution

•  Identify appropriate granularity for persistent storage access
§  Single iteration of linear system solver is too short
§  A few seconds per linear system solve in Sierra on 8192 Cray XE6 nodes

•  Recovery

§  Crash in single linear system solve needs to recover the state outside linear system
solver

•  E.g. time step, nonlinear step, mesh,
§  Recovery manager can recover all data and state

•  Spare process to keep chronological state
•  Data specific recovery

• Matrix is regenerated from Mesh

15

Robert L. Clay, SOS-18

Resilient Time-Stepping Solver"

Create Mesh M
Compute Matrix A out of M
Save M in Persistent Storage
Do until the last time step

 bi and bi-1 in Persistent Storage
 Get new bi from xi-1 (Update Boundary Condition)
 Solve Axi=bi (Linear System Solution)

 if the linear system solver fails, try the same iterative step
end do
�

�•  Local vector is stored with the subscript (iteration count) info
•  Allow linear system solver to crash or end up with wrong solution

–  Process loss
–  Convergence failure due to silent data corruption

•  Repeat the same iteration when linear system solver fails
–  Need to get xi-1 and bi-1

Process loss is
checked periodically

Robert L. Clay, SOS-18

Preliminary Result"

•  Time Stepping PDE
§  3D Finite Element
§  Multiple Linear System Solution
§  RHS is updated by LHS in the previous linear system solve

•  Resiliency Features

§  Spare Process is used for recovery
§  Application info are stored only once
§  Vectors are stored in every time step

•  Weak scaling
§  64x64x64 for ULFM for 4 cores and increase the problem size (x*y*z) linearly
§  Cray Cluster with SandyBridge (2.6Mhz) 16 cores (2CPU) per node, FDR Infiniband
§  Process failure during linear system solve (2048 PEs)

•  MPI-ULFM with our own fix for resilient collective

17

Robert L. Clay, SOS-18

Results with MPI-ULFM"

18

•  Group size = 128
•  Negligible overhead for Persistent Data Store
•  Negligible overhead for Failure Detection
•  Recovery cost increases from 512 cores or larger

200

250

300

350

400

450

500

550

600

0 512 1024 1536 2048

Se
co

nd
s

of Cores

Performance of Time Stepping MiniFE

All Solve+Failure All Solve (No Failure)

Store Detection

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0 512 1024 1536 2048

Se
co

nd
se

of Cores

Perfoemance Time Stepping MiniFE

All Solve+Failure

All Solve (No
Failure)
Store

Detection

Comm_agree

Robert L. Clay, SOS-18

Results with MPI-ULFM"

•  Negligible Cost for data recovery
§  Very scalable

•  Scalability Issues in Communicator fix

19

0

2

4

6

8

10

12

14

0 512 1024 1536 2048

Se
co

nd
s

of cores

Recovery Cost

Pesistent Restore

Data Regen

Comm Fix

Comm_agree

Recovery All

Robert L. Clay, SOS-18

Assumption 2: We don’t need to
change our codes much."

Also known as “MPI is fine”. Also known as
“MPI + X” where X is undefined, but it will
work itself out over time. The real question
may be whether the CSP BSP programming
model will work well at exascale.

Robert L. Clay, SOS-18

Existing SPMD programming models are
inherently NOT fault tolerant"

The move to exascale only
makes things worse
•  Global checkpoints no longer

feasible
•  Global collectives costly
•  Applications/runtime must

handle soft and hard failures
•  Asynchronous execution to

hide memory & I/O latency
•  Deep memory hierarchies

require tuning

A01,B01A00,B00 A02,B02

A11,B11

A21,B21

A12,B12

A22,B22

A10,B10

A20,B20

Node (0,0) Node (0,1) Node (0,2)

Node (1,0) Node (1,1) Node (1,2)

Node (2,0) Node (2,1) Node (2,2)

S
et

up

A01B11A00B00 A02B22

A12B21

A20B01

A10B02

A21B12

A11B10

A22B20

Node (0,0) Node (0,1) Node (0,2)

Node (1,0) Node (1,1) Node (1,2)

Node (2,0) Node (2,1) Node (2,2)C
om

pu
te

Example: Systolic Matrix Multiplication

0

0.2

0.4

0.6

0.8

1.0

Number of Nodes
1 10 100 1000

Parallel Efficiency of the Systolic Algorithm

Crossbar
Torus (Fast Start)
Torus

Degraded Crossbar
Degraded Torus

C. L. Janssen, H. Adalsteinsson, J. P. Kenny, Using simulation to design extreme-scale
applications and architectures: programming model exploration, ACM SIGMETRICS
Performance Evaluation Review, 38, pp. 4-8, 2011.

The implicitly synchronous systolic algorithm
cannot recover from node degradation

Robert L. Clay, SOS-18

Simulated timings for 16 shells on 8 processors"

Robert L. Clay, SOS-18

Programming model exploration for
resilience with simulation"

X

X

X

X

=

=

=

=

X

X

X

X

=

=

=

=

X

X

X

X

=

=

=

=

1

Systolic matrix-matrix multiplication involves “synchronous”
migration of matrix blocks.

Start with MPI.

Actual MPI code Simulator code

With a few linker tricks, you get direct compilation of source code. No DSL! Only
one source to maintain!

Robert L. Clay, SOS-18

 0 500
 1000

 1500
 2000

 2500
 3000

 3500
 4000

 4500

%
of
 t
ot
al

Time(ms)

Application Activity Over Time

MPI
Compute
Memory

Programming model exploration for
resilience : simulator results"

Fixed-time quanta (FTQ) shows
where app is spending time. Here
MPI “stutters” during synchronous
exchange

 0 1000
 2000

 3000
 4000

 5000
 6000

 7000
 8000

%
of

 t
ot

al

Time(ms)

Application Activity Over Time

MPI
Compute
Memory

Slow node gradually chokes off
computation due to MPI
synchronization…

If all nodes the same
speed…

If one node
overheats or has
bad DIMM and
slows down…

Synchronous MPI
data exchange

Robert L. Clay, SOS-18

Programming model exploration: 
asynchronous, task-DAG model"

If all nodes the same
speed…

Termination detection/
work stealing needs to
be optimized

Data movement service
is constant overhead –
single thread dedicated
to communication

If node slows down… With load balancing…

Robert L. Clay, SOS-18

Asynchronous many-task programming
models are fault tolerant!"

Actor Model Matrix Multiplication
(asynchronous, many task)

0

0.2

0.4

0.6

0.8

1.0

Number of Nodes
1 10 100 1000

Parallel Efficiency Comparison

Actor Model
Systolic Algorithm
Perfect Load Balancing

•  Simulation permits straightforward
investigation of alternative
programming models

•  Work-stealing approaches will
play a role in dealing with large-
scale machines lacking perfect
homogeneity

•  Research Questions:
-  Is MPI+X (global checkpoint/restart) enough?
-  If not, what programming models can reach what scales?
-  If no programming model can reach scales of interest for a given application

without algorithmic changes, how might algorithms be adapted?
-  Co-design of architecture tradeoffs between memory, I/O, power, and application

performance

Robert L. Clay, SOS-18

SST Experiment: Actor Load Balancing"

Legend

•  Black - initializing
•  Green – working

– prefetching
•  Red – idle
•  Purple – work stealing

Asynchronous, task-
based programming
model with work stealing
balances load under
dynamic conditions,
including faults and
degradation.

Robert L. Clay, SOS-18

Can asynchronous, many-task programming models
facilitate scalable resilience on extreme-scale systems?"

•  Our approach:
§  Dynamically scheduled, asynchronous tasks: maximize use of resources by

load balancing and redistributing work from failed nodes
§  Locality and minimal data movement: move work to data; multithreaded,

NUMA-aware scheduling on each node in distributed environment
§  Automatic data repair: silent data corruption is detected and repaired using triple

modular redundancy or 2D checksums
§  Automatic task recovery: transaction-like semantics allow task replay after data

is corrected

Example (right):
Dot product tasks operate on
over-decomposed vectors A
and B to produce result R

R

DPTask1

DPTask2
SumTask …

DPTaskN

A: Chunk1

A: Chunk2

A: ChunkN

B: Chunk1

B: Chunk2

B: ChunkN

…

…

AMT programming models enable marching toward
the correct solution in the face of both soft and

hard faults without checkpoint/restart.

Robert L. Clay, SOS-18

Demonstrated resilience to silent data corruption in
our on-node, task-based conjugate gradient solver

driven by miniFE proxy app"
•  Automatically detected/corrected multi-bit silent data corruption in user

data structures using triple-modular redundancy for scalars and 2D
checksums for vectors and matrices (application/algorithm agnostic)

§  Technique	
 applied	
 selec3vely	
 by	

self-­‐stabilizing	
 CG	
 algorithm	
 in	

order	
 to	
 lower	
 protec3on	
 cost	

§  0.8%	
 memory	
 overhead	
 on	

protected	
 data	
 structures	

§  20%	
 increase	
 in	
 run3me	
 due	

to	
 checksum	
 valida3on	
 on	

every	
 20th	
 itera3on	

1

10

100

1000

1 2 4 8 16 32

W
al

lti
m

e
(s

ec
on

ds
)

Threads

Strong Scalability of CG Solve

NUMA-aware OpenMP
Non-resilient FTPM
Resilient FTPM

Benchmarks from SGI Altix UV 10 with four 8-core Nehalem EX and 512 GB globally-shared memory

Robert L. Clay, SOS-18

Assumption 3: Well, at least the
algorithms will work."

Maybe, maybe not.

Robert L. Clay, SOS-18

Error-Correcting Algorithms Can Mitigate
Silent Errors & Offer New Co-design Options"

•  Even at commodity scale, ECC memory & ECC processors show
the rising need for error correction

•  With increasing scale and with power limitations, errors can occur
“silently” without indication that something is wrong

•  Numerical algorithms already deal with error from truncation, etc.;
specially designed algorithms can mitigate silent bit flips as well

•  These robust stencil algorithms not only address scale-up of
current silent-error rates, but may enable new “lossy” architecture
options with more power-efficient accelerators or reduced latency

ECC memory

Robert L. Clay, SOS-18

Robust stencils can discard outliers  
to mitigate bit flips in PDE solving"

•  A simple 1D advection
equation ∂u/∂t = ∂u/∂x
illustrates the behavior
of finite-difference
schemes

•  The robust stencil here
computes a second-order update
at position i from
one of these subsets after
discarding the most
extreme value:
§  { i − 3, i − 2, i − 1, i, i + 1, i + 2, i + 3 }
§  { i − 3, i − 2, i − 1, i, i + 1, i + 2, i + 3 }
§  { i − 3, i − 2, i − 1, i, i + 1, i + 2, i + 3 }

Simple demo in
Mathematica

Robert L. Clay, SOS-18

•  Focus on silent-error models affecting floating-point
§  Relaxing FP correctness may benefit designs (e.g., GPUs)

•  Test: During C++ PDE simulation, asynchronously perform raw memory
bit flips in the FP solution array
§  Can also be a proxy for processor bit flips that corrupt FP ops

•  Compare brute-force triple modular redundancy (TMR)

Here, the robust
stencil provides
substantial bit-flip
tolerance at lower
cost than TMR

Acceptable (3× intrinsic discretization error)

Bit-flip Injection at Machine Level Confirms
Effectiveness of Our Robust Stencil"

Robert L. Clay, SOS-18

Preliminary Weak-Scaling Experiments  
Show Favorable Trends for Robust Stencil"

•  As a research tool for ongoing use, we have implemented a
modular C++/MPI framework for explicit Cartesian PDE solvers
§  Captures “halo exchange” pattern in generic form

•  Preliminary results from many short runs, 106 grid cells per core

•  Further questions:
•  How does resilience scale with longer runs and more realistic PDEs?
•  How realistic is our way of emulating memory bit flips?
•  What happens if bit flips also occur in message communication?

~3× runtime
~5000×

~106×

Manageable overhead

Increasing
resilience
advantage

Robert L. Clay, SOS-18

Acknowledgements"

§ Rob Armstrong (Robust Stencils)
§  Janine Bennett (pmodels)
§ Gilbert Hendry (SST/macro)
§ Mike Heroux (LFLR)
§ Hemanth Kolla (pmodels)
§  Jackson Mayo (Robust Stencils)
§  Philippe Pebay (SST/macro)
§ Nicole Slattengren (pmodels)
§  Keita Teranishi (LFLR)
§  Jeremiah Wilke (SST/macro)

Robert L. Clay, SOS-18

Thank You 
 
 

Robert L. Clay  
rlclay@sandia.gov 
+1 (209) 610-2929"

