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Inspired by Firesign Theater"

And a sense that we need to rethink a few things 
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More specifically, let’s 
examine some of our 
assumptions around 

HPC resilience."
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What is HPC Resilience?"

• We define resilient HPC as correct and efficient 
computations at scale despite system 
degradations and failures.  

• Resilience is a cross cutting issue: 
² Hardware 
² Operating System 
² System Management 
² Runtime (Execution Model) 
² Application / Algorithms 
² Multi-layer (any/all combinations of the above) 
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Assumption 1: Computers are reliable 
digital machines."

Doesn’t get much more basic than this, but 
it’s wrong [at some scale]. 
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MTTI is shrinking as # cores grows"

(Courtesy of John Daly) 
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Oldfield et al., Modeling the Impact of Checkpoints on Next-Generation 
Systems.  MSST, 2007 

Checkpoint trend isn’t good "

  Machine utilization is going to zero!  (Not really) 

(Courtesy of Lucy Nowell & Sonia Sachs) 

Schroeder and Gibson, Understanding Failures in Petascale 
Computers.  Journal of Physics, 2007 
 
(assuming that the number of cores per socket grows by a factor of 2 
every 18, 24 and 30 months) 
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Checkpoint/Restart: Disproportional response to 
local failures"

•  Single node failures account for the major HPC system 
failures 
§  85% on LLNL clusters (Moody et al. 2010) 
§  2/3 on Titan (ORNL) 

•  Short MTBFs due to the increase of error-prone 
components 
§  Titan crashes twice a day   
§  2020: Every 30 minutes-1 hour? 

•  Hardware Solution is infeasible 
§  Performance loss 
§  Power budget (20MW per system) 

•  Current practice of Checkpoint/Restart is a disproportional 
response to single node failure 
§  Kill all processes (global terminate)  
§  Recovery involves global restart  
§  Dependent on Global File system to keep application state  

We seek a Local Failure Local Recovery 
(LFLR) resilient programming model to 
allow proportional response to single 

node/process failure 
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LFLR Programming Model"
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Architecture of LFLR "
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Process Manager 

Sparse 
Matrix Vector Mesh 

Recovery Manager 

Parallel Execution Runtime 

Persistent Storage 

Application Program 

Buddy/Parity 
in memory 

PDE Solver 

•  Detect and notify process failure(s) 
•  Continue program execution with a presence of process failure 

•  Query for process status 
•  Manage process assignment for lost work 

•  Persistent Storage for Application State and data 
•  Use on node memory of spare process 

•  Restore the application state and data from process failure 

•  Provides API for writing resilient application with ease 

MPI-ULFM (UTK) 
runs through node loss 

Spare Process 
management 

Base class for  
Application data 

Scientific Data 

Similar Projects: 
•  LLNL 
•  Rutgers U 
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MPI-ULFM: User Level Fault 
Mitigation"

•  Proposed for MPI-3.1 standard 
•  MPI calls (recv, irecv, wait,  collectives) notify errors when the peer 

process(es) dies 
•  Healthy processes can continue 
•  Several MPI calls for fixing MPI communicator 

§  MPI_Comm_agree : Check the global status of MPI_Comm 
§  MPI_Comm_revoke: Invalidate MPI Communicator 
§  MPI_Comm_shrink: Fix MPI Communicator removing dead process 

•  User is responsible for the recovery after MPI_Comm_shrink call 
•  Prototype code is available at http://fault-tolerance.org 

§  Developed by U of Tennessee 
 

 

11 
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Scalable Recovery through Spare Process 
Reserve"

•  ULFM-MPI only provides minimum set of APIs for process loss 
§  Many apps need to remap the work after communicator shrink L 
§  Vendor’s MPI (such as Cray) does not support MPI_Comm_spawn  

•  Allocate hot spare process to replace the lost process 
§  Can be used for the other resiliency features 

•  3 MPI calls to perform rank re-assignment 
§  MPI_Comm_shrink 
§  MPI_Comm_create 
§  MPI_comm_split 

12 

MPI processes for computation 

Spare MPI Processes 
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Persistent Storage and its options"

•  In-memory, persistent storage 
§  RAID-like redundancy 
§  Performed by group (of 128 or 256) 

•  Staging nodes 
§  Dedicated nodes to store temporary 

data 
§  We exploit spare nodes 

•  Caching by compute node  
§  Exploit all available I/O resources 
§  Handles more catastrophic faults 
§  Scalable Checkpoint and Restart (by 

Mohror et al.) 
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Scientific data structure for LFLR"
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§  Object-­‐oriented	
  approach	
  for	
  
scien3fic	
  data	
  structure	
  
§  Trilinos	
  and	
  PETSc	
  

§  Recoverable	
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  provides	
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  specific	
  

recovery	
  
§  Access	
  to	
  data	
  redundancy	
  protocol	
  

§  Coordina3on	
  with	
  the	
  spare	
  
process	
  and	
  persistent	
  storage	
  	
  

§  Monitor	
  allocated	
  data	
  objects	
  
§  Recovery	
  without	
  specifying	
  the	
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  to	
  be	
  recovered	
  
§  Simple	
  for	
  C++	
  meta-­‐programming	
  
§  Need	
  “Destroy”	
  or	
  “Free”	
  call	
  for	
  

C/Fortran	
  programming	
  

Persistent storage 
and UCR system 

Data class for 
Applications 

Recoverable Registry 
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Constructing Resilient Application: Case 
Study"

•  Iterative Algorithm 
§  Time-stepping PDE 
§  Nonlinear System Solver 
§  Require multiple linear system solution 

•  Identify appropriate granularity for persistent storage access  
§  Single iteration of linear system solver is too short 
§  A few seconds per linear system solve in Sierra on 8192 Cray XE6 nodes 

 
•  Recovery 

§  Crash in single linear system solve needs to recover the state outside linear system 
solver 

•  E.g. time step, nonlinear step, mesh,  
§  Recovery manager can recover all data and state 

•  Spare process to keep chronological state 
•  Data specific recovery 

• Matrix is regenerated from Mesh 

15 
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Resilient Time-Stepping Solver"

Create Mesh M 
Compute Matrix A out of M  
Save M in Persistent Storage 
Do until the last time step 

 bi and bi-1 in Persistent Storage 
 Get new bi from xi-1 (Update Boundary Condition) 
 Solve Axi=bi (Linear System Solution) 

 if the linear system solver fails, try the same iterative step 
end do 
�

�•  Local vector is stored with the subscript (iteration count) info 
•  Allow linear system solver to crash or end up with wrong solution 

–  Process loss 
–  Convergence failure due to silent data corruption  

•  Repeat the same iteration when linear system solver fails 
–  Need to get xi-1 and bi-1  

Process loss is 
checked periodically 



Robert L. Clay, SOS-18 

Preliminary Result"

•  Time Stepping PDE 
§  3D Finite Element 
§  Multiple Linear System Solution 
§  RHS is updated by LHS in the previous linear system solve 

 
•  Resiliency Features 

§  Spare Process is used for recovery 
§  Application info are stored only once  
§  Vectors are stored in every time step 

•  Weak scaling 
§  64x64x64 for ULFM for 4 cores and increase the problem size (x*y*z) linearly 
§  Cray Cluster with SandyBridge (2.6Mhz) 16 cores (2CPU) per node, FDR Infiniband 
§  Process failure during linear system solve (2048 PEs) 

•  MPI-ULFM with our own fix for resilient collective 

17 
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Results with MPI-ULFM"

18 

•  Group size = 128 
•  Negligible overhead for Persistent Data Store 
•  Negligible overhead for Failure Detection 
•  Recovery cost increases from 512 cores or larger  
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Results with MPI-ULFM"

•  Negligible Cost for data recovery 
§  Very scalable 

•  Scalability Issues in Communicator fix  
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Assumption 2: We don’t need to 
change our codes much."

Also known as “MPI is fine”.  Also known as 
“MPI + X” where X is undefined, but it will 
work itself out over time.  The real question 
may be whether the CSP BSP programming 
model will work well at exascale.  
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Existing SPMD programming models are 
inherently NOT fault tolerant"

The move to exascale only 
makes things worse 
•  Global checkpoints no longer 

feasible 
•  Global collectives costly 
•  Applications/runtime must 

handle soft and hard failures 
•  Asynchronous execution to 

hide memory & I/O latency 
•  Deep memory hierarchies 

require tuning 
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Example: Systolic Matrix Multiplication 
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C. L. Janssen, H. Adalsteinsson, J. P. Kenny, Using simulation to design extreme-scale 
applications and architectures: programming model exploration, ACM SIGMETRICS 
Performance Evaluation Review, 38, pp. 4-8, 2011. 

The implicitly synchronous systolic algorithm 
cannot recover from node degradation 
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Simulated timings for 16 shells on 8 processors"
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Programming model exploration for 
resilience with simulation"
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Systolic matrix-matrix multiplication involves “synchronous” 
migration of matrix blocks.  

Start with MPI. 

Actual MPI code Simulator code 

With a few linker tricks, you get direct compilation of source code. No DSL! Only 
one source to maintain! 
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Programming model exploration for 
resilience : simulator results"

Fixed-time quanta (FTQ) shows 
where app is spending time. Here 
MPI “stutters” during synchronous 
exchange 
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Slow node gradually chokes off 
computation due to MPI 
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If all nodes the same 
speed… 

If one node 
overheats or has 
bad DIMM and 
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Synchronous MPI 
data exchange 
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Programming model exploration: 
asynchronous, task-DAG model"

If all nodes the same 
speed… 

Termination detection/ 
work stealing needs to 
be optimized 

Data movement service 
is constant overhead – 
single thread dedicated 
to communication 

If node slows down… With load balancing… 
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Asynchronous many-task programming 
models are fault tolerant!"

Actor Model Matrix Multiplication 
(asynchronous, many task) 
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•  Simulation permits straightforward 
investigation of alternative 
programming models 

•  Work-stealing approaches will 
play a role in dealing with large-
scale machines lacking perfect 
homogeneity 

•  Research Questions: 
-  Is MPI+X (global checkpoint/restart) enough? 
-  If not, what programming models can reach what scales? 
-  If no programming model can reach scales of interest for a given application 

without algorithmic changes, how might algorithms be adapted? 
-  Co-design of architecture tradeoffs between memory, I/O, power, and application 

performance 
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SST Experiment: Actor Load Balancing"

Legend 
 
•  Black - initializing 
•  Green – working 

– prefetching 
•  Red – idle 
•  Purple – work stealing 
 

Asynchronous, task-
based programming 
model with work stealing 
balances load under 
dynamic conditions, 
including faults and 
degradation. 
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Can asynchronous, many-task programming models 
facilitate scalable resilience on extreme-scale systems?"

•  Our approach: 
§  Dynamically scheduled, asynchronous tasks: maximize use of resources by 

load balancing and redistributing work from failed nodes 
§  Locality and minimal data movement: move work to data; multithreaded, 

NUMA-aware scheduling on each node in distributed environment 
§  Automatic data repair: silent data corruption is detected and repaired using triple 

modular redundancy or 2D checksums 
§  Automatic task recovery: transaction-like semantics allow task replay after data 

is corrected 

Example (right): 
Dot product tasks operate on 
over-decomposed vectors A 
and B to produce result R 

R

DPTask1 

DPTask2 
SumTask …

 

DPTaskN 

A: Chunk1 

A: Chunk2 

A: ChunkN 

B: Chunk1 

B: Chunk2 

B: ChunkN 

…
 

…
 

AMT programming models enable marching toward 
the correct solution in the face of both soft and 

hard faults without checkpoint/restart. 
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Demonstrated resilience to silent data corruption in 
our on-node, task-based conjugate gradient solver 

driven by miniFE proxy app"
•  Automatically detected/corrected multi-bit silent data corruption in user 

data structures using triple-modular redundancy for scalars and 2D 
checksums for vectors and matrices (application/algorithm agnostic) 

§  Technique	
  applied	
  selec3vely	
  by	
  
self-­‐stabilizing	
  CG	
  algorithm	
  in	
  
order	
  to	
  lower	
  protec3on	
  cost	
  
§  0.8%	
  memory	
  overhead	
  on	
  

protected	
  data	
  structures	
  
§  20%	
  increase	
  in	
  run3me	
  due	
  

to	
  checksum	
  valida3on	
  on	
  
every	
  20th	
  itera3on	
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Benchmarks from SGI Altix UV 10 with four 8-core Nehalem EX and 512 GB globally-shared memory 
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Assumption 3: Well, at least the 
algorithms will work."

Maybe, maybe not. 
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Error-Correcting Algorithms Can Mitigate 
Silent Errors & Offer New Co-design Options"

•  Even at commodity scale, ECC memory & ECC processors show 
the rising need for error correction 
 

•  With increasing scale and with power limitations, errors can occur 
“silently” without indication that something is wrong 

•  Numerical algorithms already deal with error from truncation, etc.; 
specially designed algorithms can mitigate silent bit flips as well 
 
 
 
 
 

•  These robust stencil algorithms not only address scale-up of 
current silent-error rates, but may enable new “lossy” architecture 
options with more power-efficient accelerators or reduced latency 

ECC memory 



Robert L. Clay, SOS-18 

Robust stencils can discard outliers  
to mitigate bit flips in PDE solving"

•  A simple 1D advection 
equation ∂u/∂t = ∂u/∂x 
illustrates the behavior 
of finite-difference 
schemes 

•  The robust stencil here 
computes a second-order update 
at position i from 
one of these subsets after 
discarding the most 
extreme value: 
§  { i − 3, i − 2, i − 1,  i,  i + 1, i + 2, i + 3 } 
§  { i − 3, i − 2, i − 1,  i,  i + 1, i + 2, i + 3 } 
§  { i − 3, i − 2, i − 1,  i,  i + 1, i + 2, i + 3 } 

Simple demo in 
Mathematica 
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•  Focus on silent-error models affecting floating-point 
§  Relaxing FP correctness may benefit designs (e.g., GPUs) 

•  Test: During C++ PDE simulation, asynchronously perform raw memory 
bit flips in the FP solution array 
§  Can also be a proxy for processor bit flips that corrupt FP ops 

•  Compare brute-force triple modular redundancy (TMR) 

Here, the robust 
stencil provides 
substantial bit-flip 
tolerance at lower 
cost than TMR 

Acceptable (3× intrinsic discretization error) 

Bit-flip Injection at Machine Level Confirms 
Effectiveness of Our Robust Stencil"
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Preliminary Weak-Scaling Experiments  
Show Favorable Trends for Robust Stencil"

•  As a research tool for ongoing use, we have implemented a 
modular C++/MPI framework for explicit Cartesian PDE solvers 
§  Captures “halo exchange” pattern in generic form 

•  Preliminary results from many short runs, 106 grid cells per core 

•  Further questions: 
•  How does resilience scale with longer runs and more realistic PDEs? 
•  How realistic is our way of emulating memory bit flips? 
•  What happens if bit flips also occur in message communication? 

~3× runtime 
~5000× 

~106× 

Manageable overhead 

Increasing 
resilience 
advantage 
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