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Enhanced Geothermal Systems (EGS) 
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http://www1.eere.energy.gov/geothermal/presentations.html (Eric Haas, Geothermal Technology Office Review)



Why Collect Downhole Tracer Data?

 The location of the injection well with respect to the production well is critical to 
the efficient operation of a geothermal power plant

 Information related to the reservoir fracture network plays a key role in planning 
well locations

 Tracer tests provide a great way to learn about flow patterns in the reservoir 
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Goals

 Develop a downhole instrument that will measure tracer 
concentration, pH, temperature and pressure in wells up to      
225 C and 5000 psi

 Want to generate tracer concentration (and pH) versus depth 
and time inside geothermal wells

 Which tracers?

 Initial goals include: Li+ Cs+ F- I-

 How will it work?
 We are developing a series of high temperature and pressure ion selective 

electrodes to work in conjunction with pH, T, and P probes to enable the 
generation of tracer concentration and pH versus depth and time



Materials Compatibility Challenges

 Brine temperatures from 100 – 350 C 

 Pressures in the 5000 psi range

 Depths in the 1000 – 10,000 ft range

 Brine pH 2 – 11, with many in the 6 – 7 range

 Well operators….

Consequences

 We can’t use most organic ionophores

 Teflon will likely be too soft, need PEEK or ceramics

 Need high temperature epoxies and solder

 Have to use specialty electronics for data acquisition

 No fun collecting data over 5,000 feet of wire….
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Current Downhole Diagnostics

 Nuclear well logging

 Seismic and ultrasonic analysis

 Borehole imaging

 Temperature, pressure, and flowrate
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T and P Tool
240 C unshielded
400 C shielded



Iodide Ion Selective Electrode

 Our goal is to use an all solid state design to enable stability at 
temperatures greater than 100 C

 Chose AgI-Ag2S pellet as the ion selective material

 Working on optimizing membrane dimensions
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Ion conductor
AgI-Ag2S

Electron conductor
graphite, W, or Ni

Wire

Pressure Fitting

Electrode body is a 3/8” piece of stainless steel tubing

6.5 mm
o.d.

10 – 12 cm length



Solid State I-ISE Construction

Ion selective membrane: AgI-Ag2S (50/50), 0.5g total

Electrode body: Stainless steel

Epoxy: Silver two part mix and high temperature ceramic adhesive

Electron Conductor: Nickel rod (3 mm diameter) to nickel wire



Thermal Analysis of AgI-Ag2S

AgI polymorphs: β-phase and γ-phase (<149 C) and α–phase (>149 C)
Ag2S polymorphs: α-phase (< 179 C) and β-phase (179 – 586 C)

149 C   177 C



Solid State I-ISE Response
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I-ISE Temperature Stability
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0.001M KI in DI water
+44.6mV over 60C increase



Solid State Cs-ISE Construction

 Goal was to make a Cs-12-molybdophosphate phase identified in the 
literature and determine if it would work at high temperature
 Synthesis: CsNO3 + H3Mo12PO40 Cs3Mo12PO40 + 3 HNO3

 C.J. Coetzee; A.J. Basson; Anal. Chim. Acta; 56, (1971), 321-324.

 Options for the ion selective membrane include pellets and coatings
 Tried pressing pellets with and without using any binder with no success

 We have been making membranes using a procedure developed by Arida’s
group at the Egyptian Atomic Energy Authority

 10 mg Cs-12-MPO + 350 mg dibutylphthalate + 190 mg PVC in 6 mL THF
 Makes a yellow membrane when cast or dip coated onto a rod

 Made thin disks that withstand brine at 120 C in an autoclave

 Made electrodes using graphite rods and a tungsten rods. These were then 
loaded into a Teflon body and connected via Ni wires. 

H.A. Arida, R.F. Aglan, S.A. El-Reefy; Analytical Letters; V37, no1, (2004), 21-33.



Cs-ISE Material: Thermal Stability

Selective Material:
Nominally Cs3PMo12O40

Electrode Membrane:
Cs3PMo12O40 – dibutylphthalate-PVC

The selective material is stable to > 225 C but the membrane is only stable to 150 C



Solid State Cs-ISE Response in Water
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New High Temperature Reference Electrode

 Given the high pressure and temperature 
found in geothermal wells we want to avoid 
liquid based electrodes

 Using epoxies at high temperatures is tricky 
as well

 Found that an alumina potting compound 
works at these high temperatures
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Reference Electrode Data
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Unfortunately, we still have a weak [Cl-] and pH dependence…



High Temperature pH Electrode

 Based on the design developed by L.W. Niedrach

 Uses either a Cu/CuO or Ni/NiO metal/metal oxide pair inside 
a YSZ tube

 Waiting on autoclave to become operational for testing, do 
not work very well below 100 C 
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L.W. Niedrach; et. al; J. Electrochem. Soc.; V127, (1980); 2122



Summary
 We have developed a series of iodide and cesium solid state ion 

selective electrodes that should be stable at 225 C and 5000 psi
 I-ISE data at 70 C shows good stability, waiting on high temperature 

autoclave to be approved for operation

 Demonstrated construction of a solid state reference electrode 
that is relatively stable to at least 90 C without using epoxies that 
run and outgas

 Working on selective materials for Li+ and F- that work in brine
 LiMn2O4 and nano-LaF3:EuF3

 Future work:
 testing at high temperature and pressure in an autoclave
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