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= Geothermal tracer studies

= Materials compatibility
challenges

= Current downhole
measurement capabilities

= |nvestigation into high
temperature ion selective
electrodes and reference
electrodes
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Red is hot, high geothermal potential
Blue is cold, lower potential
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Enhanced Geothermal Systems (EGS) @,

* * ‘ —— Water vapor from
» A cooling facility

Fluid is recycled to
the reservoir through
the injection well to
complete the loop

Electricity

/Injected fluid enhances
’ the permeability of
“.the rock

Fluid is pumped to
the surface through
production wells

http://www1.eere.energy.gov/geothermal/presentations.html (Eric Haas, Geothermal Technology Office Review)



Why Collect Downhole Tracer Data? ) i,

L Current Method
TracerInjection o -
Injection of Water Measure integrated tracer
_— Producti concentration at the
\'&’m / ts. v@l/ surface

Heservoir.

New Method

Measure tracer
concentration in each
fracture zone C/IC,

| depth

Hydro-fractures

= The location of the injection well with respect to the production well is critical to
the efficient operation of a geothermal power plant

= |nformation related to the reservoir fracture network plays a key role in planning
well locations

= Tracer tests provide a great way to learn about flow patterns in the reservoir
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= Develop a downhole instrument that will measure tracer
concentration, pH, temperature and pressure in wells up to
225 °C and 5000 psi

= Want to generate tracer concentration (and pH) versus depth
and time inside geothermal wells

= Which tracers?
= |nitial goals include: Li* Cs* F I
= How will it work?

= We are developing a series of high temperature and pressure ion selective
electrodes to work in conjunction with pH, T, and P probes to enable the
generation of tracer concentration and pH versus depth and time




Materials Compatibility Challenges ) i,

= Brine temperatures from 100 — 350 °C

= Pressuresin the 5000 psi range

= Depthsin the 1000 - 10,000 ft range

= Brine pH 2-11, with many in the 6 — 7 range
= Well operators....

,J o ——
Consequences B p ;}5 )
= We can’t use most organic ionophores CEQI_BUFIEEU 2107
. . . - -Bu t Hi.. *w/?
= Teflon will likely be too soft, need PEEK or ceramics N gt e
. . © L L o
* Need high temperature epoxies and solder O S

= Have to use specialty electronics for data acquisition

. : Cs ionophore |l
= No fun collecting data over 5,000 feet of wire.... Sigma-:ldrich
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Current Downhole Diagnhostics Wi

= Nuclear well logging
= Seismic and ultrasonic analysis
= Borehole imaging

= Temperature, pressure, and flowrate

T and P Tool
240 °C unshielded
- — i s=— 400 °C shielded

— g = 0|




lodide lon Selective Electrode ) s

= Qur goalis to use an all solid state design to enable stability at
temperatures greater than 100 °C

= Chose Agl-Ag,S pellet as the ion selective material
= Working on optimizing membrane dimensions

10 — 12 cm length
Electrode body is a 3/8” piece of stainless steel tubing

6.5 mm_]
o.d.
lon conductor Electron conductor Wire I
Agl-Ag,S  graphite, W, or Ni Pressure Fitting
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Solid State I-ISE Construction ) e

lon selective membrane: Agl-Ag,S (50/50), 0.5g total
Electrode body: Stainless steel

Epoxy: Silver two part mix and high temperature ceramic adhesive

Electron Conductor: Nickel rod (3 mm diameter) to nickel wire
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Thermal Analysis of Agl-Ag,S ) i

33.00 200.00
—
3Loo
150.00
29.00
27.00
= 100.00
-g- 25.00 E_
2 73.00 &
@A 5000
21.00
12.00
0.00
17.00
149°C 177 °C

15.00 + -50.00

0.0o 200.00 A400.00 a00.00 200.00 1000.00 1200.00
Temperature (deg C)

=—Tah =—D5C

Agl polymorphs: B-phase and y-phase (<149 °C) and a—phase (>149 °C)
Ag,S polymorphs: a-phase (< 179 °C) and B-phase (179 — 586 °C)



Solid State I-ISE Response 1) .
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Solid State Cs-ISE Construction ) e

= Goal was to make a Cs-12-molybdophosphate phase identified in the
literature and determine if it would work at high temperature
= Synthesis: CsNO; + H;Mo,,PO,, = Cs;Mo0,,PO, 5+ 3 HNO,
= C.J. Coetzee; A.J. Basson; Anal. Chim. Acta; 56, (1971), 321-324.

= QOptions for the ion selective membrane include pellets and coatings
= Tried pressing pellets with and without using any binder with no success

= We have been making membranes using a procedure developed by Arida’s
group at the Egyptian Atomic Energy Authority

= 10 mg Cs-12-MPO + 350 mg dibutylphthalate + 190 mg PVCin 6 mL THF
= Makes a yellow membrane when cast or dip coated onto a rod
= Made thin disks that withstand brine at 120 °C in an autoclave

= Made electrodes using graphite rods and a tungsten rods. These were then
loaded into a Teflon body and connected via Ni wires.




Cs-ISE Material: Thermal Stability ) i,

Selective Material:
Nominally Cs;PMo,,0,4

Electrode Membrane:

Cs;PMo,,0,,— dibutylphthalate-PVC
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The selective material is stable to > 225 °C but the membrane is only stable to 150 °C




Solid State Cs-ISE Response in Water ()&=,
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New High Temperature Reference Electrode [,

= Given the high pressure and temperature

<«———— AgCl coated Ag wire

found in geothermal wells we want to avoid  pq < prreoutershel

liquid based electrodes

= Using epoxies at high temperatures is tricky
as well

Found that an alumina potting compound L

Ceramic body set w/ KCl
solution

«— Frit

works at these high temperatures




Reference Electrode Data
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High Temperature pH Electrode ) i,

= Based on the design developed by L.W. Niedrach

= Uses either a Cu/CuO or Ni/NiO metal/metal oxide pair inside
a YSZ tube

= Waiting on autoclave to become operational for testing, do
not work very well below 100 C




Summary )

= We have developed a series of iodide and cesium solid state ion
selective electrodes that should be stable at 225 °C and 5000 psi

= |-ISE data at 70 °C shows good stability, waiting on high temperature
autoclave to be approved for operation

= Demonstrated construction of a solid state reference electrode
that is relatively stable to at least 90 °C without using epoxies that
run and outgas

= Working on selective materials for Li+ and F- that work in brine

= LiMn,0O, and nano-LaF;:EuF,

= Future work:

= testing at high temperature and pressure in an autoclave »
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