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Mesoscale

What is the mesoscale?

Mesoscale 

10 - 1000 km

Nanometer
(10-9 m)

Micron
(10-6 m)

Millimeter
(10-3 m)

Angstrom 
(10-9 m)

Mesoscale
Interlayer space
Very fine pores

Large pores
microfractures

Why mesoscale?

• Emergent properties
• Key linkage between micro to macro (e.g. Wang et al., 2012, ES&T)



Size-Dependent Material Properties

Size-dependent CdS band gap

(Lüning et al., 1999, Sold State Communication)

Photophysical/Photochemical Processes 
in Semiconductor Nanoparticles

(Roduner, 2006)
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Systematics of Nanogeochemistry

Nanopores
Nanochannels
Thin water films
Grain boundaries
Mineral interlayers

Nanostructures

Nano mineral 
phases

Nanopores 
(nanofluids)

Nanoparticles
Nanorods
Nanosheets
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Phase stability
Surface chemistry
Reaction kinetics
Transport



10 nm

Nanopores in Geologic Materials

Wang et al., 2003, Geology



Confined vs. Unconfined Surface

Unconfined
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Synthesis of TiO2 Nanotubes and nanorods

Wang et al. (2008)



Distribution of Acidity Constant
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Distribution of Acidity Constant
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Effect of Nanopore Confinement on Surface Chemistry
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Nanoporous alumina has a 
higher surface charge density, 
which is less sensitive to ionic 
strength changes.

Nanopore confinement causes a 
solid-water interface to be more 
either positively or negatively 
charged.

Wang et al., 2002, JCIS; 2003, Geology



Nanopore Confinement and Ion Sorption
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Nanopore confinement enhances ion sorption onto a solid-water interface 
for both cations and anions.

Wang et al., 2003, Mat. Res. Soc. Symp. Proc.; 2003, Geology



Effect of Nanopore Confinement on Water

Postulations:
Water molecules in nanopores are more 
restrained.
H4SiO4 = SiO2(s) + 2H2O pptn
M(H2O)n

z+ = Mz+ + nH2O inner sphere 40
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Wang et al., 2008
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Concluding Remarks
• Size matters!

– Novel mineral-fluid interface chemistry 
may emerge when the dimension of one of 
the phases is reduced to nanometers.

• Texture matters!
– Measurements on “isolated”, unconfined 

surfaces may not be representative of 
actual geologic materials.

• Perspectives
– Progress in nanoscience & technology
– Emergence of new properties through 

cooperative processes

• Geochemical implications (Wang et al., 
2011, in Frontier in Geochemistry)
– New perspectives for understanding 

fundamental geochemical processes
– Development of novel materials for 

environmental applications

Graphene sensor 

(Hadlington, 2008)
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