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Computational Methodology Numerical Results Summary

Motivation

Why AMR and High-Order Discretization ?

Use AMR with a low Mach projection scheme to tackle the
length-scale challenge of chemically reacting flows

High-order (4) spatial discretizations allow same accuracy
with fewer grid points as low-order

fewer chemical source term evaluations

shallower grid hierarchies; simpler load balancing
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Outline

Computational Methodology

Low-Mach number equations

Numerical construction

Adaptive mesh refinement

Numerical Results

Flame-vortex interaction

Convergence rates & computational efficiency

Summary and future work
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Low-Mach Number Model

Transport equations:

∇ · v = −
1
ρ

Dρ

Dt
∂v
∂t

= −
1
ρ
∇p + CU + DU

∂T
∂t

= CT + DT + ST

∂Yk

∂t
= CYk + DYk + SYk k = 1 → Ns

1 Momentum transport -
pressure projection

2 Operator-split stiff
approach

3 Momentum transport -
pressure projection

Equation of state:

P0 =
ρℜT

W̄
= ρℜT

Ns∑

k=1

Yk

Wk
= const
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Momentum Solver
Momentum advance:

Adams-Bashforth: vn CU+DU
−−−−→ v̂n+1
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û

v̂
ρ, 1

ρ
Dρ
Dt

Cell/Edge

Averaging

ρ̃, 1̃
ρ

Dρ
Dt

˜̂v
˜̂u 4th-order

discretization

∇p

vn+1 = v̂n+1 − ∆t
ρn+1∇p

SNL Safta High-Order AMR for Reacting Flows 5 / 13



Computational Methodology Numerical Results Summary

Scalar Advance

Symmetric Strang splitting: R
2 (C + D)R

2

Φ∗
− Φn =

∫

∆t/2
SΦdt (CVODE)

Φ∗∗
− Φ∗ =

∫

∆t
(CΦ + DΦ) dt (RKC2)

Φn+1
− Φ∗∗ =

∫

∆t/2
SΦdt (CVODE)

Level (L):

Level (L+1):

Φn,∗
L

Φn,∗
L+1

∆t Φn+1,∗∗
L

∆t/2
Φ

n+1/2
L+1 ∆t/2

Φn+1,∗∗
L+1
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Numerical Construction - Summary

The numerical construction uses a hybrid approach: momentum
solved on a uniform mesh coupled with scalar transport in an
AMR framework.

Spatial stencils: derivatives (4th order), interpolations (6th order),
filters (8th order); Time stencils: 2nd order

Projection scheme
Time integration: Adams-Bashforth
Variable coefficient Poisson equation: multigrid pre-conditioned
CG solver (Hypre package)

Scalar update: operator-split stiff approach with Berger-Colella
time refinement

Convection/Diffusion advanced using Runge-Kutta-Chebyshev
Reaction advanced using BDF2 (cvode)

Chombo library is used to handle the AMR infrastructure.
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Flame-Vortex Dynamics

+
_

Fresh Mixture

Burnt Mixture

In
flo

w

O
utflow

Slip Wall

Slip Wall

IC: counter-rotating Lamb-Oseen vortices superimposed
over a freely-propagating premixed flame (stoichiometric
CH4-air).

GRI-Mech v3.0 (53 species, 325 reactions).

3 mesh levels: coarse grid size 60µm
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Flame-Vortex Dynamics

x [m]
0.004 0.006 0.008 0.01

x [m]
0.004 0.006 0.008 0.01

x [m]
0.004 0.006 0.008 0.01

0.02ms 0.27ms 0.52ms
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Convergence Rates

Measured using:

succesivelly refined coarse grids and time step sizes

1D (freely propagating premixed flame) and 2D
(flame-vortex pair) configurations

Time Convergence: 1.5625 × 10−8 → 5 × 10−7s

Velocity field: 2.0, Pressure: 1.8-2.0, Scalars: 1.8-2.0

Spatial Convergence: 3.75 → 30µm (on the coarse level)
and 2-3 refinement levels

Velocity field: 3.8-3.9, Pressure: 3.6-3.9, Scalars 3.6-4.0

(Safta, Ray, Najm, JCP 2010, vol. 229)
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Computational Expense of Algorithm Components

Stages

1 Momentum Projection

Velocity Predictor/Corrector
Pressure Solve

2 Scalar Advance

Reaction
Convection + Diffusion

3 Momentum Projection

Velocity Predictor/Corrector
Pressure Solve

1a 1b 1c 2a 2b 2c 3a 3b 3c
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10
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R2
R3
R4
R5
R6

C1 chemistry and mixture averaged transport properties
R2 - uniform level run (512× 256)
R3-R6 - 2 level runs; fine level covers 5-30% of the coarse level
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Computational Efficiency

Preliminary results with small computational meshes. Tests with
larger mesh sizes are ongoing.

AMR vs Uniform Mesh (UM)

1 2 Level Mesh
- Fine Level covers 5-30% of
the Coarse Level
- CPU AMR/UM = 17-37%

2 3 Level Mesh
- Finest Level covers 5-7% of
the Coarse Level
- CPU AMR/UM = 8-12%  0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300

P
ar

al
le

l E
ffi

ci
en

cy

No. of processors

ran out of
mesh blocks

256
2
 Coarse Grid 162

322

GRI-Mech 3.0 and mixture averaged transport properties
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Summary and Future Work

We have presented a high-order AMR construction for low
Mach number reacting flow

Using a hybrid approach: pressure projection scheme on a
uniform mesh coupled with a operator-split scalar transport
on a AMR hierarchy
2nd order time convergence and 4th-order spatial accuracy

Future work

Continue working on improving the computational
efficiency

Study 2D laminar jet flames in laboratory-scale geometry
with complex fuels.

Couple this numerical construction with CSP-based time
integration, adaptively reducing chemical stiffness and
potentially eliminating operator-splitting.
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