

SAND2011-2961C

High-order AMR computations of chemically reacting flows

C. Safta, J. Ray, H.N. Najm

Sandia National Laboratories
Livermore, CA

13th International Conference on Numerical Combustion
Corfu, Greece
April 27–29, 2011

Supported by DOE SciDAC Computational Chemistry program

Motivation

Why AMR and High-Order Discretization ?

- Use AMR with a low Mach projection scheme to tackle the length-scale challenge of chemically reacting flows
- High-order (4) spatial discretizations allow same accuracy with fewer grid points as low-order
 - fewer chemical source term evaluations
 - shallower grid hierarchies; simpler load balancing

Outline

- Computational Methodology
 - Low-Mach number equations
 - Numerical construction
 - Adaptive mesh refinement
- Numerical Results
 - Flame-vortex interaction
 - Convergence rates & computational efficiency
- Summary and future work

Low-Mach Number Model

Transport equations:

$$\nabla \cdot \mathbf{v} = -\frac{1}{\rho} \frac{D\rho}{Dt}$$

$$\frac{\partial \mathbf{v}}{\partial t} = -\frac{1}{\rho} \nabla p + \mathbf{C}_U + \mathbf{D}_U$$

$$\frac{\partial T}{\partial t} = \mathbf{C}_T + \mathbf{D}_T + \mathbf{S}_T$$

$$\frac{\partial Y_k}{\partial t} = \mathbf{C}_{Y_k} + \mathbf{D}_{Y_k} + \mathbf{S}_{Y_k} \quad k = 1 \rightarrow N_s$$

- 1 Momentum transport - pressure projection
- 2 Operator-split stiff approach
- 3 Momentum transport - pressure projection

Equation of state:

$$P_0 = \frac{\rho \mathfrak{R} T}{\bar{W}} = \rho \mathfrak{R} T \sum_{k=1}^{N_s} \frac{Y_k}{W_k} = \text{const}$$

Low-Mach Number Model

Transport equations:

$$\nabla \cdot \mathbf{v} = -\frac{1}{\rho} \frac{D\rho}{Dt}$$

$$\frac{\partial \mathbf{v}}{\partial t} = -\frac{1}{\rho} \nabla p + \mathbf{C}_U + \mathbf{D}_U$$

$$\frac{\partial T}{\partial t} = \mathbf{C}_T + \mathbf{D}_T + \mathbf{S}_T$$

$$\frac{\partial Y_k}{\partial t} = \mathbf{C}_{Y_k} + \mathbf{D}_{Y_k} + \mathbf{S}_{Y_k} \quad k = 1 \rightarrow N_s$$

1 Momentum transport - pressure projection

Equation of state:

$$P_0 = \frac{\rho \mathfrak{R} T}{\bar{W}} = \rho \mathfrak{R} T \sum_{k=1}^{N_s} \frac{Y_k}{W_k} = \text{const} \rightarrow \frac{1}{\rho} \frac{D\rho}{Dt} = -\frac{1}{T} \frac{DT}{Dt} - \sum_{k=1}^{N_s} \frac{\bar{W}}{W_k} \frac{DY_k}{Dt}$$

Low-Mach Number Model

Transport equations:

$$\nabla \cdot \mathbf{v} = -\frac{1}{\rho} \frac{D\rho}{Dt}$$

$$\frac{\partial \mathbf{v}}{\partial t} = -\frac{1}{\rho} \nabla p + \mathbf{C}_U + \mathbf{D}_U$$

$$\frac{\partial T}{\partial t} = \mathbf{C}_T + \mathbf{D}_T + \mathbf{S}_T$$

$$\frac{\partial Y_k}{\partial t} = \mathbf{C}_{Y_k} + \mathbf{D}_{Y_k} + \mathbf{S}_{Y_k} \quad k = 1 \rightarrow N_s$$

- ② Operator-split stiff approach

Equation of state:

$$P_0 = \frac{\rho \mathfrak{R} T}{\bar{W}} = \rho \mathfrak{R} T \sum_{k=1}^{N_s} \frac{Y_k}{W_k} = \text{const} \rightarrow \frac{1}{\rho} \frac{D\rho}{Dt} = -\frac{1}{T} \frac{DT}{Dt} - \sum_{k=1}^{N_s} \frac{\bar{W}}{W_k} \frac{DY_k}{Dt}$$

Low-Mach Number Model

Transport equations:

$$\nabla \cdot \mathbf{v} = -\frac{1}{\rho} \frac{D\rho}{Dt}$$

$$\frac{\partial \mathbf{v}}{\partial t} = -\frac{1}{\rho} \nabla p + \mathbf{C}_U + \mathbf{D}_U$$

$$\frac{\partial T}{\partial t} = \mathbf{C}_T + \mathbf{D}_T + \mathbf{S}_T$$

$$\frac{\partial Y_k}{\partial t} = \mathbf{C}_{Y_k} + \mathbf{D}_{Y_k} + \mathbf{S}_{Y_k} \quad k = 1 \rightarrow N_s$$

- ③ Momentum transport - pressure projection

Equation of state:

$$P_0 = \frac{\rho \mathfrak{R} T}{\bar{W}} = \rho \mathfrak{R} T \sum_{k=1}^{N_s} \frac{Y_k}{W_k} = \text{const} \rightarrow \frac{1}{\rho} \frac{D\rho}{Dt} = -\frac{1}{T} \frac{DT}{Dt} - \sum_{k=1}^{N_s} \frac{\bar{W}}{W_k} \frac{DY_k}{Dt}$$

Momentum Solver

Momentum advance:

Adams-Bashforth: $\mathbf{v}^n \xrightarrow{C_U + D_U} \hat{\mathbf{v}}^{n+1}$

Momentum Solver

Momentum advance:

Adams-Bashforth: $\mathbf{v}^n \xrightarrow{C_U + D_U} \hat{\mathbf{v}}^{n+1}$

Pressure equation:

$$\nabla \cdot \left(\frac{1}{\rho^{n+1}} \nabla p \right) = \frac{1}{\Delta t} \left(\nabla \cdot \hat{\mathbf{v}}^{n+1} + \frac{1}{\rho} \frac{D\rho}{Dt} \right)^{n+1}$$

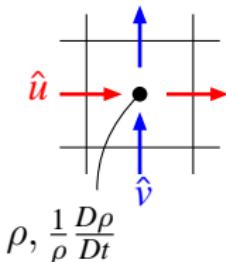
Momentum Solver

Momentum advance:

Adams-Bashforth: $\mathbf{v}^n \xrightarrow{C_U + D_U} \hat{\mathbf{v}}^{n+1}$

Pressure equation:

$$\nabla \cdot \left(\frac{1}{\rho^{n+1}} \nabla p \right) = \frac{1}{\Delta t} \left(\nabla \cdot \hat{\mathbf{v}}^{n+1} + \frac{1}{\rho} \frac{D\rho}{Dt} \right)^{n+1}$$



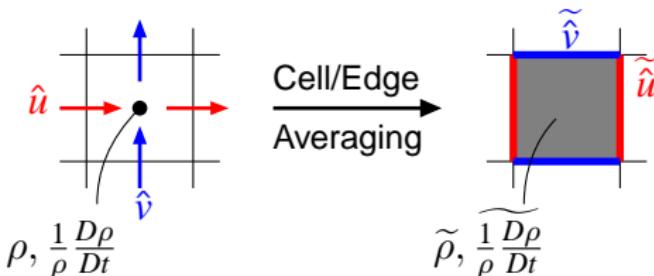
Momentum Solver

Momentum advance:

$$\text{Adams-Bashforth: } \mathbf{v}^n \xrightarrow{C_U + D_U} \hat{\mathbf{v}}^{n+1}$$

Pressure equation:

$$\nabla \cdot \left(\frac{1}{\rho^{n+1}} \nabla p \right) = \frac{1}{\Delta t} \left(\nabla \cdot \hat{\mathbf{v}}^{n+1} + \frac{1}{\rho} \frac{D\rho}{Dt} \right)^{n+1}$$



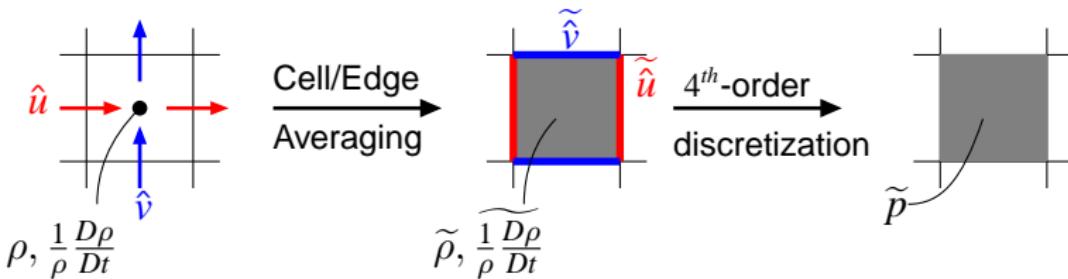
Momentum Solver

Momentum advance:

$$\text{Adams-Bashforth: } \mathbf{v}^n \xrightarrow{C_U + D_U} \hat{\mathbf{v}}^{n+1}$$

Pressure equation:

$$\nabla \cdot \left(\frac{1}{\rho^{n+1}} \nabla p \right) = \frac{1}{\Delta t} \left(\nabla \cdot \hat{\mathbf{v}}^{n+1} + \frac{1}{\rho} \frac{D\rho}{Dt} \right)^{n+1}$$



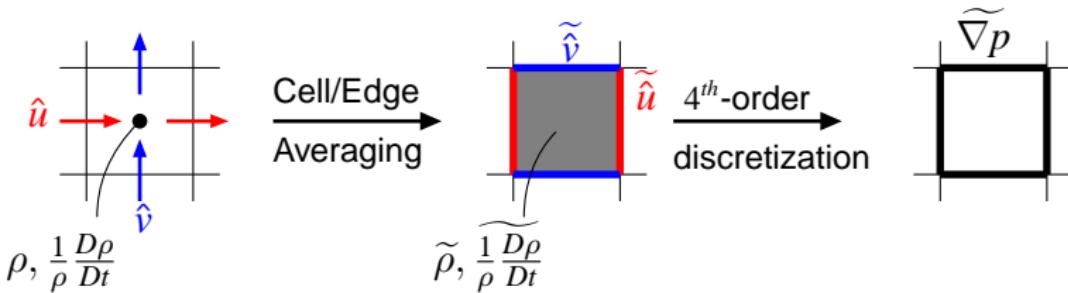
Momentum Solver

Momentum advance:

$$\text{Adams-Bashforth: } \mathbf{v}^n \xrightarrow{C_U + D_U} \hat{\mathbf{v}}^{n+1}$$

Pressure equation:

$$\nabla \cdot \left(\frac{1}{\rho^{n+1}} \nabla p \right) = \frac{1}{\Delta t} \left(\nabla \cdot \hat{\mathbf{v}}^{n+1} + \frac{1}{\rho} \frac{D\rho}{Dt} \right)^{n+1}$$



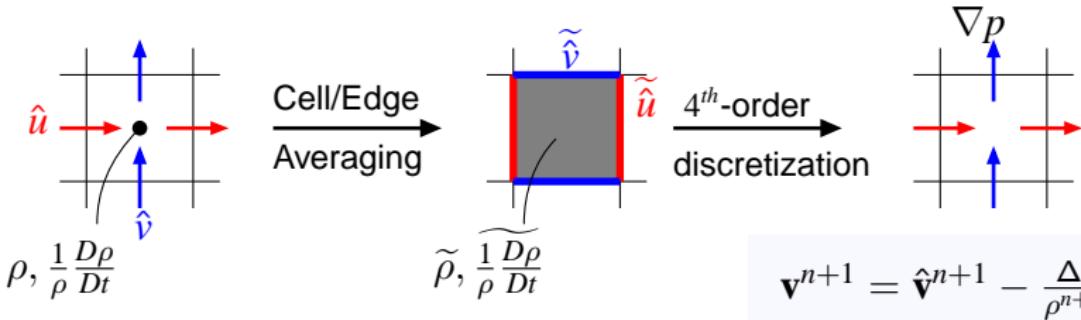
Momentum Solver

Momentum advance:

$$\text{Adams-Bashforth: } \mathbf{v}^n \xrightarrow{C_U + D_U} \hat{\mathbf{v}}^{n+1}$$

Pressure equation:

$$\nabla \cdot \left(\frac{1}{\rho^{n+1}} \nabla p \right) = \frac{1}{\Delta t} \left(\nabla \cdot \hat{\mathbf{v}}^{n+1} + \frac{1}{\rho} \frac{D\rho}{Dt} \right)^{n+1}$$



Scalar Advance

Symmetric Strang splitting: $\frac{R}{2}(C + D)\frac{R}{2}$

$$\Phi^* - \Phi^n = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$

$$\Phi^{**} - \Phi^* = \int_{\Delta t} (C_\Phi + D_\Phi) dt \quad (RKC2)$$

$$\Phi^{n+1} - \Phi^{**} = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$

Scalar Advance

Symmetric Strang splitting: $\frac{R}{2}$

$$\Phi^* - \Phi^n = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$

$$\Phi^{**} - \Phi^* = \int_{\Delta t} (C_\Phi + D_\Phi) dt \quad (RKC2)$$

$$\Phi^{n+1} - \Phi^{**} = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$

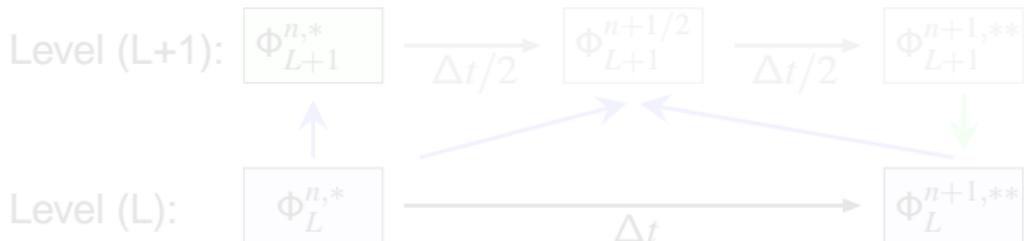
Scalar Advance

Symmetric Strang splitting: $\frac{R}{2}(C + D)$

$$\Phi^* - \Phi^n = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$

$$\Phi^{**} - \Phi^* = \int_{\Delta t} (C_\Phi + D_\Phi) dt \quad (RKC2)$$

$$\Phi^{n+1} - \Phi^{**} = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$



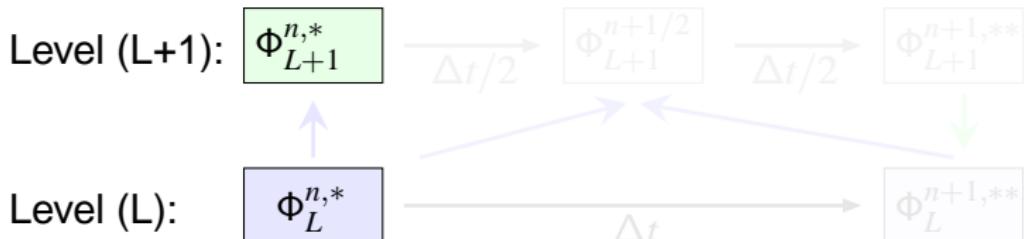
Scalar Advance

Symmetric Strang splitting: $\frac{R}{2}(C + D)$

$$\Phi^* - \Phi^n = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$

$$\Phi^{**} - \Phi^* = \int_{\Delta t} (C_\Phi + D_\Phi) dt \quad (RKC2)$$

$$\Phi^{n+1} - \Phi^{**} = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$



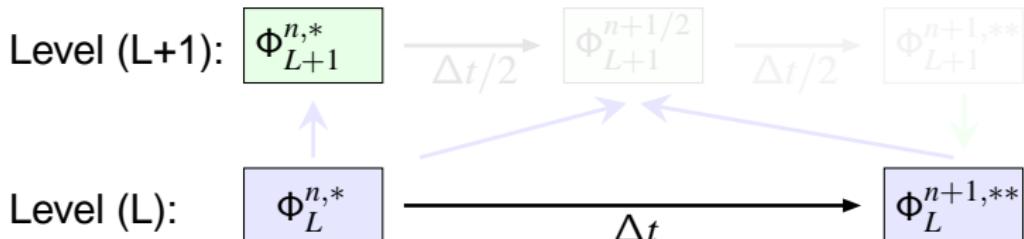
Scalar Advance

Symmetric Strang splitting: $\frac{R}{2}(C + D)$

$$\Phi^* - \Phi^n = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$

$$\Phi^{**} - \Phi^* = \int_{\Delta t} (C_\Phi + D_\Phi) dt \quad (RKC2)$$

$$\Phi^{n+1} - \Phi^{**} = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$



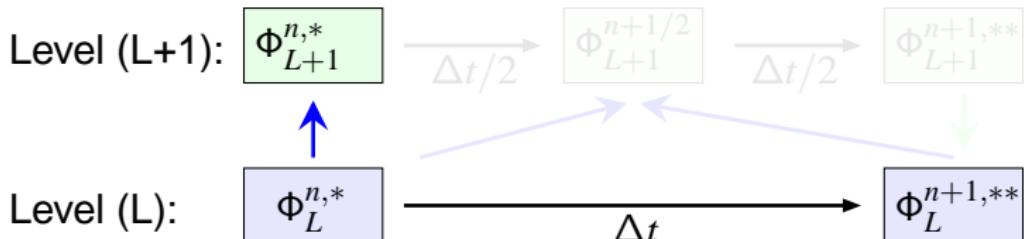
Scalar Advance

Symmetric Strang splitting: $\frac{R}{2}(C + D)$

$$\Phi^* - \Phi^n = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$

$$\Phi^{**} - \Phi^* = \int_{\Delta t} (C_\Phi + D_\Phi) dt \quad (RKC2)$$

$$\Phi^{n+1} - \Phi^{**} = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$



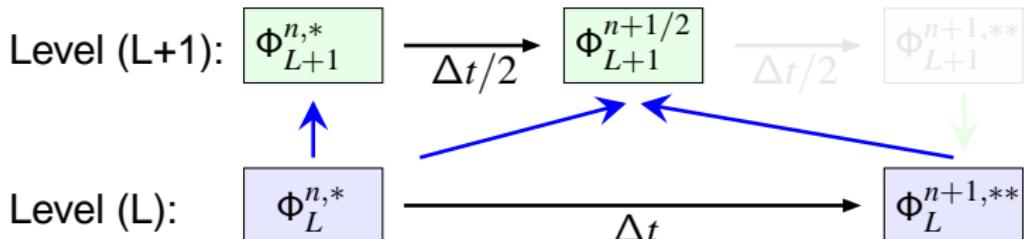
Scalar Advance

Symmetric Strang splitting: $\frac{R}{2}(C + D)$

$$\Phi^* - \Phi^n = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$

$$\Phi^{**} - \Phi^* = \int_{\Delta t} (C_\Phi + D_\Phi) dt \quad (RKC2)$$

$$\Phi^{n+1} - \Phi^{**} = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$



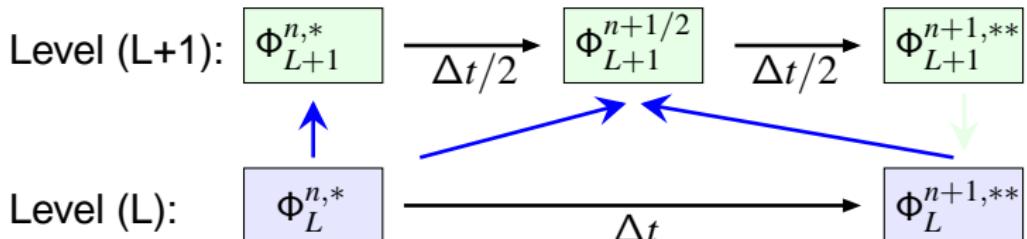
Scalar Advance

Symmetric Strang splitting: $\frac{R}{2}(C + D)$

$$\Phi^* - \Phi^n = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$

$$\Phi^{**} - \Phi^* = \int_{\Delta t} (C_\Phi + D_\Phi) dt \quad (RKC2)$$

$$\Phi^{n+1} - \Phi^{**} = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$



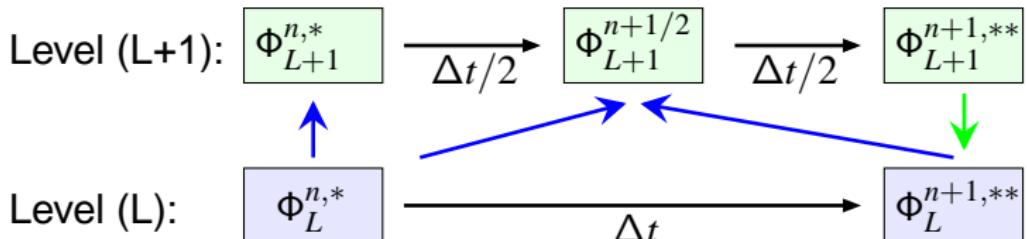
Scalar Advance

Symmetric Strang splitting: $\frac{R}{2}(C + D)$

$$\Phi^* - \Phi^n = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$

$$\Phi^{**} - \Phi^* = \int_{\Delta t} (C_\Phi + D_\Phi) dt \quad (RKC2)$$

$$\Phi^{n+1} - \Phi^{**} = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$



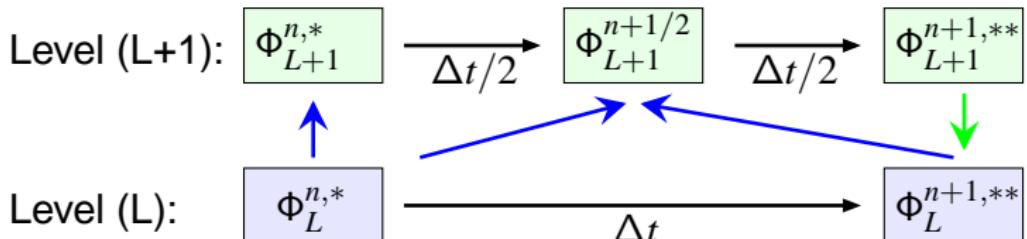
Scalar Advance

Symmetric Strang splitting: $\frac{R}{2}(C + D)\frac{R}{2}$

$$\Phi^* - \Phi^n = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$

$$\Phi^{**} - \Phi^* = \int_{\Delta t} (C_\Phi + D_\Phi) dt \quad (RKC2)$$

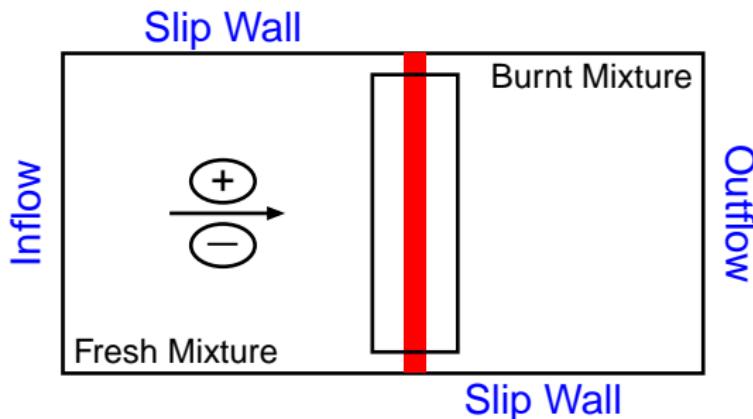
$$\Phi^{n+1} - \Phi^{**} = \int_{\Delta t/2} S_\Phi dt \quad (CVODE)$$



Numerical Construction - Summary

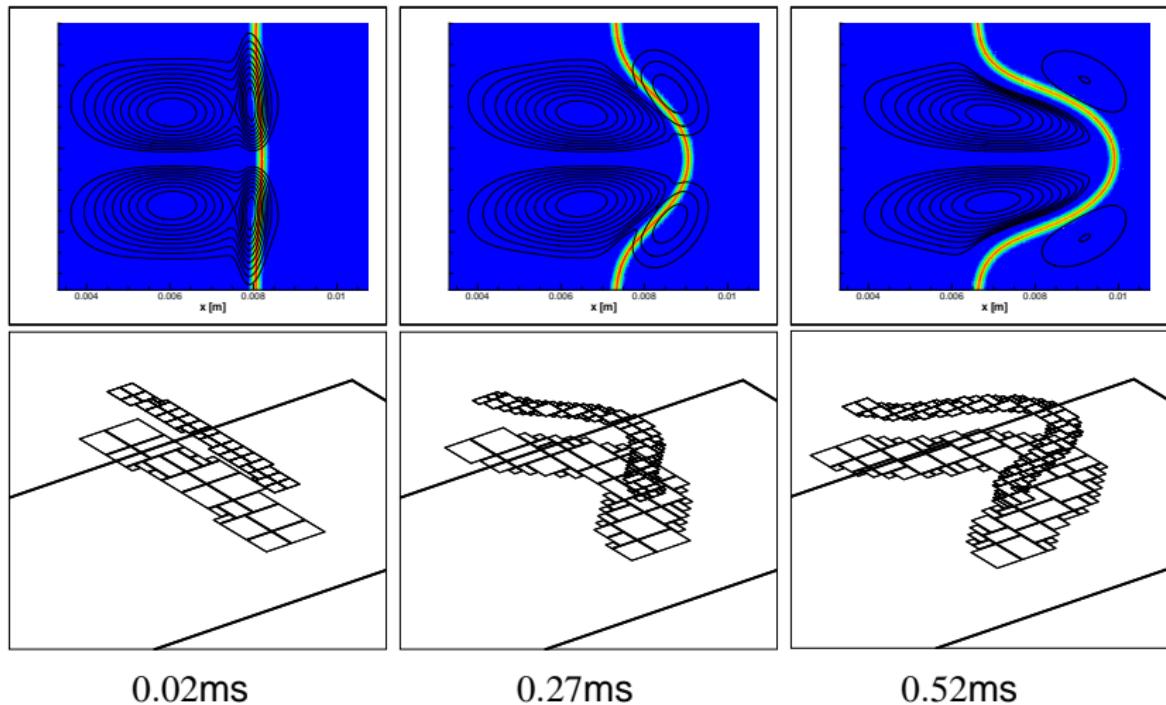
- The numerical construction uses a **hybrid approach**: momentum solved on a uniform mesh coupled with scalar transport in an AMR framework.
 - Spatial stencils: derivatives (4th order), interpolations (6th order), filters (8th order); Time stencils: 2nd order
- **Projection scheme**
 - Time integration: Adams-Bashforth
 - Variable coefficient Poisson equation: multigrid pre-conditioned CG solver (Hypre package)
- **Scalar update**: operator-split stiff approach with Berger-Colella time refinement
 - Convection/Diffusion advanced using Runge-Kutta-Chebyshev
 - Reaction advanced using BDF2 (cvode)
- **Chombo** library is used to handle the AMR infrastructure.

Flame-Vortex Dynamics



- IC: counter-rotating Lamb-Oseen vortices superimposed over a freely-propagating premixed flame (stoichiometric CH_4 -air).
- GRI-Mech v3.0 (53 species, 325 reactions).
- 3 mesh levels: coarse grid size $60\mu m$

Flame-Vortex Dynamics



Convergence Rates

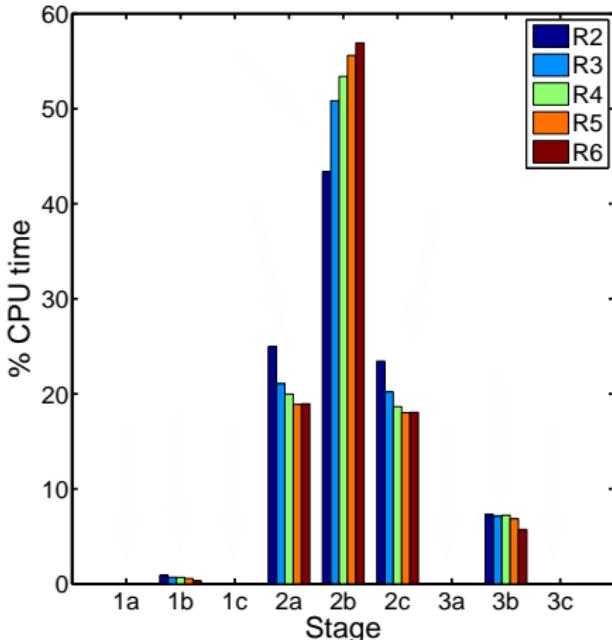
- Measured using:
 - successively refined coarse grids and time step sizes
 - 1D (freely propagating premixed flame) and 2D (flame-vortex pair) configurations
- Time Convergence: $1.5625 \times 10^{-8} \rightarrow 5 \times 10^{-7}$ s
 - Velocity field: **2.0**, Pressure: **1.8-2.0**, Scalars: **1.8-2.0**
- Spatial Convergence: $3.75 \rightarrow 30\mu\text{m}$ (on the coarse level) and 2-3 refinement levels
 - Velocity field: **3.8-3.9**, Pressure: **3.6-3.9**, Scalars **3.6-4.0**

(Safta, Ray, Najm, JCP 2010, vol. 229)

Computational Expense of Algorithm Components

Stages

- ① Momentum Projection
 - Velocity Predictor/Corrector
 - Pressure Solve
- ② Scalar Advance
 - Reaction
 - Convection + Diffusion
- ③ Momentum Projection
 - Velocity Predictor/Corrector
 - Pressure Solve

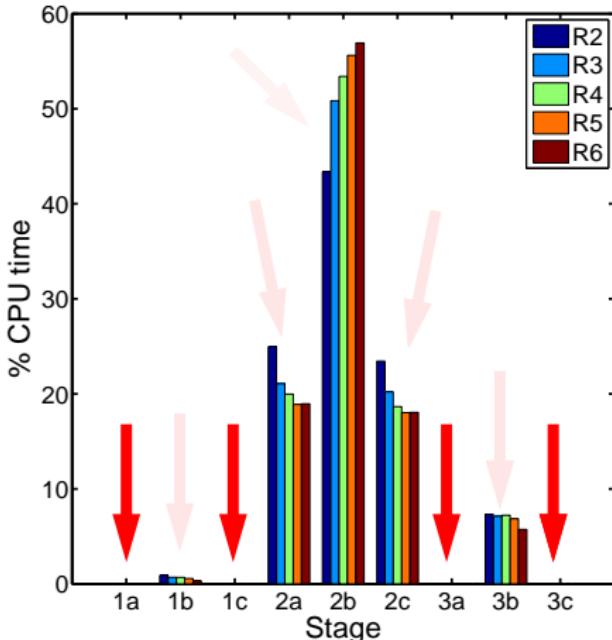


- C1 chemistry and mixture averaged transport properties
- R2 - uniform level run (512×256)
- R3-R6 - 2 level runs; fine level covers 5-30% of the coarse level

Computational Expense of Algorithm Components

Stages

- ① Momentum Projection
 - Velocity Predictor/Corrector
 - Pressure Solve
- ② Scalar Advance
 - Reaction
 - Convection + Diffusion
- ③ Momentum Projection
 - Velocity Predictor/Corrector
 - Pressure Solve

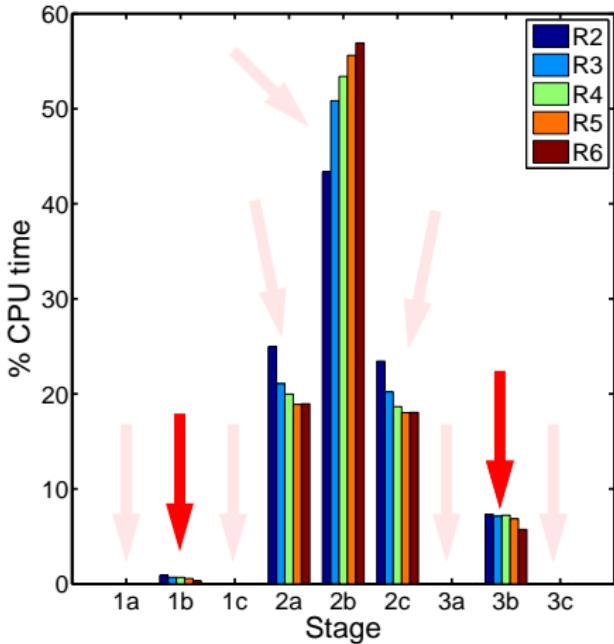


- C1 chemistry and mixture averaged transport properties
- R2 - uniform level run (512×256)
- R3-R6 - 2 level runs; fine level covers 5-30% of the coarse level

Computational Expense of Algorithm Components

Stages

- ① Momentum Projection
 - Velocity Predictor/Corrector
 - Pressure Solve
- ② Scalar Advance
 - Reaction
 - Convection + Diffusion
- ③ Momentum Projection
 - Velocity Predictor/Corrector
 - Pressure Solve

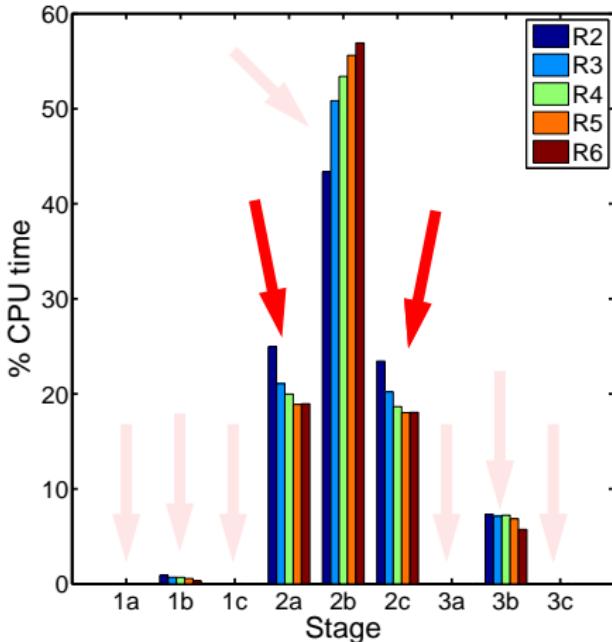


- C1 chemistry and mixture averaged transport properties
- R2 - uniform level run (512×256)
- R3-R6 - 2 level runs; fine level covers 5-30% of the coarse level

Computational Expense of Algorithm Components

Stages

- ① Momentum Projection
 - Velocity Predictor/Corrector
 - Pressure Solve
- ② Scalar Advance
 - Reaction
 - Convection + Diffusion
- ③ Momentum Projection
 - Velocity Predictor/Corrector
 - Pressure Solve

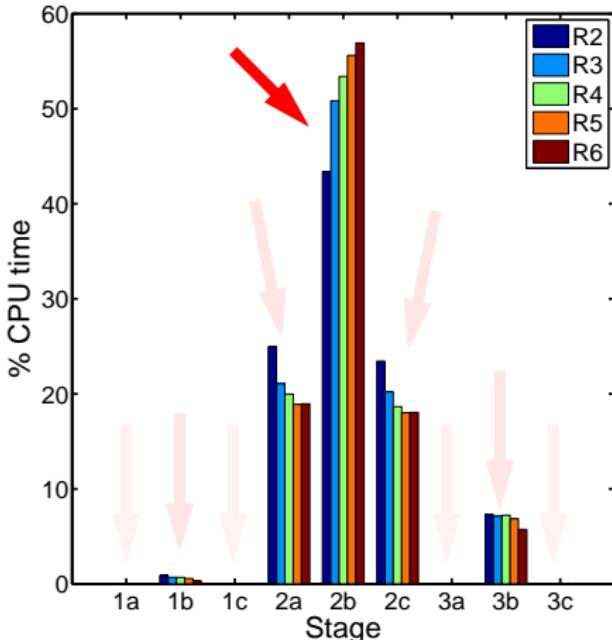


- C1 chemistry and mixture averaged transport properties
- R2 - uniform level run (512×256)
- R3-R6 - 2 level runs; fine level covers 5-30% of the coarse level

Computational Expense of Algorithm Components

Stages

- ① Momentum Projection
 - Velocity Predictor/Corrector
 - Pressure Solve
- ② Scalar Advance
 - Reaction
 - **Convection + Diffusion**
- ③ Momentum Projection
 - Velocity Predictor/Corrector
 - Pressure Solve



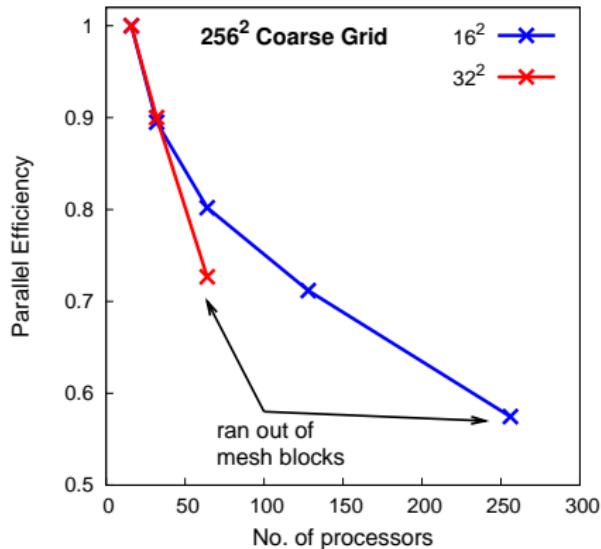
- C1 chemistry and mixture averaged transport properties
- R2 - uniform level run (512×256)
- R3-R6 - 2 level runs; fine level covers 5-30% of the coarse level

Computational Efficiency

- Preliminary results with small computational meshes. Tests with larger mesh sizes are ongoing.

AMR vs Uniform Mesh (UM)

- 1 2 Level Mesh
 - Fine Level covers **5-30%** of the Coarse Level
 - CPU AMR/UM = **17-37%**
- 2 3 Level Mesh
 - Finest Level covers **5-7%** of the Coarse Level
 - CPU AMR/UM = **8-12%**



- GRI-Mech 3.0 and mixture averaged transport properties

Summary and Future Work

- We have presented a high-order AMR construction for low Mach number reacting flow
 - Using a hybrid approach: pressure projection scheme on a uniform mesh coupled with a operator-split scalar transport on a AMR hierarchy
 - 2nd order time convergence and 4th-order spatial accuracy

Future work

- Continue working on improving the computational efficiency
- Study 2D laminar jet flames in laboratory-scale geometry with complex fuels.
- Couple this numerical construction with CSP-based time integration, adaptively reducing chemical stiffness and potentially eliminating operator-splitting.