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Why AMR and High-Order Discretization ?

@ Use AMR with a low Mach projection scheme to tackle the
length-scale challenge of chemically reacting flows

@ High-order (4) spatial discretizations allow same accuracy
with fewer grid points as low-order

@ fewer chemical source term evaluations

@ shallower grid hierarchies; simpler load balancing
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@ Computational Methodology

@ Low-Mach number equations
@ Numerical construction
@ Adaptive mesh refinement

@ Numerical Results

@ Flame-vortex interaction
@ Convergence rates & computational efficiency

@ Summary and future work
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Computational Methodology
Low-Mach Number Model

Transport equations:
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Computational Methodology
Low-Mach Number Model

Transport equations:

© Momentum transport -
pressure projection
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Equation of state:
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Computational Methodology
Low-Mach Number Model

Transport equations:
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Computational Methodology
Low-Mach Number Model

Transport equations:
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Equation of state:
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Computational Methodology

Momentum Solver

Momentum advance:

Adams-Bashforth: v S4PY, gn+1
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Computational Methodology

Momentum Solver

Adams-Bashforth: v S4PY, gn+1
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Pressure equation:
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Computational Methodology

Momentum Solver
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Computational Methodology

Momentum Solver

Momentum advance:
Adams-Bashforth: v S4PY, gn+1
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Computational Methodology

Momentum Solver
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Computational Methodology

Momentum Solver

Adams-Bashforth: v S4PY, gn+1
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Computational Methodology

Scalar Advance

Symmetric Strang splitting: 5(C + D)%
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Computational Methodology

Scalar Advance

Symmetric Strang splitting: §
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Computational Methodology

Scalar Advance

Symmetric Strang splitting: 5(C + D)
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Computational Methodology

Scalar Advance

Symmetric Strang splitting: 5(C + D)
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Computational Methodology
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Computational Methodology
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Computational Methodology

Scalar Advance

Symmetric Strang splitting: 5(C + D)
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Computational Methodology

Scalar Advance

Symmetric Strang splitting: 5(C + D)
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Computational Methodology

Scalar Advance
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Computational Methodology

Scalar Advance
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Computational Methodology

Numerical Construction - Summary

@ The numerical construction uses a hybrid approach: momentum
solved on a uniform mesh coupled with scalar transport in an
AMR framework.

@ Spatial stencils: derivatives (4™ order), interpolations (6™ order),
filters (8" order); Time stencils: 2" order

@ Projection scheme

@ Time integration: Adams-Bashforth
@ Variable coefficient Poisson equation: multigrid pre-conditioned
CG solver (Hypre package)
@ Scalar update: operator-split stiff approach with Berger-Colella
time refinement

@ Convection/Diffusion advanced using Runge-Kutta-Chebyshev
@ Reaction advanced using BDF2 (cvode)

@ Chombo library is used to handle the AMR infrastructure.
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Numerical Results

Flame-Vortex Dynamics

Slip Wall
Burnt Mixture
= @)
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Slip Wall

@ |IC: counter-rotating Lamb-Oseen vortices superimposed
over a freely-propagating premixed flame (stoichiometric
CHjg-air).

@ GRI-Mech v3.0 (53 species, 325 reactions).

@ 3 mesh levels: coarse grid size 60um
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Numerical Results
Convergence Rates

@ Measured using:

@ succesivelly refined coarse grids and time step sizes

@ 1D (freely propagating premixed flame) and 2D
(flame-vortex pair) configurations

@ Time Convergence: 1.5625 x 1078 — 5x 10~ ’s
@ Velocity field: 2.0, Pressure: 1.8-2.0, Scalars: 1.8-2.0

@ Spatial Convergence: 3.75 — 30um (on the coarse level)
and 2-3 refinement levels

@ Velocity field: 3.8-3.9, Pressure: 3.6-3.9, Scalars 3.6-4.0

(Safta, Ray, Najm, JCP 2010, vol. 229)
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Numerical Results

Computational Expense of Algorithm Compon

© Momentum Projection

@ Velocity Predictor/Corrector
@ Pressure Solve

@ Scalar Advance

@ Reaction
@ Convection + Diffusion

© Momentum Projection

@ Velocity Predictor/Corrector
@ Pressure Solve
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@ C1 chemistry and mixture averaged transport properties
@ R2 - uniform level run (512 x 256)
@ R3-R6 - 2 level runs; fine level covers 5-30% of the coarse level
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Numerical Results
Computational Efficiency

@ Preliminary results with small computational meshes. Tests with
larger mesh sizes are ongoing.

AMR vs Uniform Mesh (UM) '[X  2s6%Coarsecria 16 —x—
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© 2 Level Mesh
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@ GRI-Mech 3.0 and mixture averaged transport properties
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Summary
Summary and Future Work

@ We have presented a high-order AMR construction for low
Mach number reacting flow

@ Using a hybrid approach: pressure projection scheme on a

uniform mesh coupled with a operator-split scalar transport

on a AMR hierarchy
@ 2" order time convergence and 4"-order spatial accuracy

Future work
@ Continue working on improving the computational
efficiency

@ Study 2D laminar jet flames in laboratory-scale geometry
with complex fuels.

@ Couple this numerical construction with CSP-based time
integration, adaptively reducing chemical stiffness and
potentially eliminating operator-splitting.
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