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} Outline of Presentation

« Motivation

* Problem description
 Hierarchical system model

* Bayes network approach
 Numerical example and results
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? Motivation

e High consequence systems need to be qualified
despite lack of system level data

« Component and sub-system data can usually be
obtained

* Modeling and simulation used in lieu of system level
data

« System level models are often built in a hierarchical
manner (i.e. building block approach)

* There Is a need to incorporate all available data into
a system level analysis

» Sources of uncertainty need to be identified and
propagated to the system level response of interest
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Structural Dynamics Example

System level

Sub-system
level
Increases
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System complexity

Decreases

Increase

Amount of real data

Sources of uncertainty



A 4
} Structural Dynamics Example

 Multi-part aerospace component.

— Conical part connected to lower base via three bolted
connections

— Inner mass is encapsulated in foam.

* We are Interested in the peak acceleration of
the inner mass

* There Is uncertainty associated with:
— Material property of the foam: modulus of elasticity, E.

— The behavior of the bolted connection described by a
3 parameter model (Smallwood model)
e Linear stiffness, K,
* Non-linear stiffness, K,
* Degree of nonlinearity, n,,,

 The simulation code used Is Salinas.
 The UQ codes used are Matlab and WinBUGS.
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Uncertainty Quantification

Aleatoric Uncertainty

System level
model

Foam

KE

Aleatoric Uncertainty

Joints

Aleatoric Uncertainty

e It arises from:;

— Unit/unit variability of
nominally identical systems

— Experimental setup/setup

» Treated with probability
theory

\ Output Distribution
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Sandia
National
Laboratories




A
} Motivation for Bayesian Analysis

“The main purpose of statistical theory is to derive from observations
of a random phenomenon an inference about the probability
distribution underlying this phenomenon.” —Christian Robert

Bayesian analysis allows us to formally combine

Earlier Currently
understanding of measured data
a phenomenon
. _
——

Updated degree of belief

Marginal and joint “belief” information about
estimated parameters can be obtained.
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A
}- Bayes Networks

e Directed acyclic graphical representations of random
variables (nodes) and conditional probabilities (arcs)
between nodes

« Updates the probability distribution for all the nodes,
given some observations

e Hierarchical modeling can be accommodated

Children
nodes Data, m Why Bayes networks?:
» Data at different levels can be
Parent incorporated

node * Response data can be of

different origin (acceleration,
density measures, etc)

» Uncertainty can be quantified
and propagated Nanore

Laborato
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}I Bayes Network Implementation

* Need to specify prior distributions for parent nodes

— Usually non-informative prior (Normal w/zero mean, large
variance)

— If some data is available, use it to define prior (either full
distribution or statistics)
 When data is available, joint PDF of Bayes network
can be updated using Bayes theorem

Prior PDF 701 D)= 7(0)f(D| 0)

Posterior PDF jﬂ(@)f(D| 9)616’
Likelihood function o

» Integration in the denominator is difficult; use Markov
chain Monte Carlo (MCMC) with Gibbs sampling instead
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* Bayes Network Implementation

 Markov Chain Monte Carlo

— Establishes transition probabilities such that the stationary
distribution is the target distribution

e Gibbs Sampling
— Sampling scheme to carry out MCMC

— Conceptually for a Bayes net (BN), a Gibbs sample is
proportional to all the terms containing a particular node in
the joint PDF

— From the simple BN shown previously, joint PDF is:

f(U,m)=f(AT(B|A)f(C|A)f(m|B)

then Gibbs sample of node B will be
givenby: B~ f(B|A)f(m|B)
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Network Implementation

J = Joints
F = Foam

0 = Calibration parameters
e = Error terms

11

Y = Experimental data
X = FEM prediction

Data node

O Stochastic node

1- Levell

2 - Level 2

S - System
Sandia
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The Math Behind the Net

Construct joint PDF of
the BN — note links
between nodes represent
conditional probabilities

(W) = f (kun) * f (kon) = f (npow) = f(E) =
« f(v]|9.(E), €])
« (Y] g2 (E), €])
* f(YiF |h1 (kiin, knon, npow), E{)
* f(YiF |h2 (Kyin, Knon, npow), Ei)

9] — [klin’ knon , npow]

If data is available, then
PDF of each parent node
can be updated via Bayes

N

Theorem
| N fW)
f(k::n,knm,ﬂpﬂw: E|F1&E, F:L&EJ [ FU) d(kyin) d(kpon) d(npow) d(E)
Sandia
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— . . .
. 4 ' Bayesian Calibration Example

Foam
FWU) = FUya) = £Utagy) = f (npow) » @
(v |g:(E), €]) « Prior distribution on E, f(E)
« f(v] |92 (E), €]) — Prior knowledge is included
« £ (V] |hy (kiin, knon, npow), €7) — Gaussian distribution
« £(¥] |hy (kiiny Knom, npow), €2) assumed
e Likelihood function  Error function, ¢
— Incorporates data, — Term includes experimental
model prediction and variability and model error
error term — Normally distributed, zero
— Normally distributed mean and calibrated variance

f (Ylf | gl(E)’ ‘91f) ~ N ({Y1f — gl(E)}’ 51f)

Ylf = 91(E)""91f f
g ~N(0,0)

Sandia
National
Laboratories

13



{

in-Ib/cycle |

=
o

E,

14

[
o

6 |

'
w

'
H

Prior Distribution

Joint Parameters

Force, Ib

f(klin)

Smallwood model
F, =Kklin(d, —d,)—knon(d, — d, )™+ F

» Data from sinusoidal excitation used to
calculate energy dissipated, E vs. force, F

 Slope of each curve of E4 vs. F, in log-log
space, is parameter npow. klin and knon are

obtained also found from curves

W 01 O

. Prior Distributions
x10 . . 4 — . .
3.
T
2 2}
£
1.
' ' ' ' 008 1 12 14 1is6
1.8 2 2.2 2.4 - . . . S
Klin 10° npow National
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A

Prior Distribution
Foam Parameters

» Data from torsion, tension and
compression experiments are used
to obtained data of modulus of
elasticity, E versus density, p

-.'I‘r
——————
Prior Distribution
Modulus vs Density 005
80
70 0.04
» E zz ;/ - = Model (120 d"2)
1 #7 g 0.03
>§zz ll‘/l e ® Phase | @
N 0.02
010 12 14 16 18 20 22 24
Density (Ib/ft3) 001
O 1 o o
0 20 40 60 80
Modulus of elasticity, E
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Joints

0.1
Time, sec

0.2

Force, lbs

(these are the Y!in the

16

BN slide)

10"

2 Experimental Data

Data at 300 Ibs |

2
10 Force, Ib

e Data from hammer
impact tests

» 45 tests (acceleration
time histories are
recorded)

* Energy dissipated at 300
Ibs force is calculated
from accel. time histories

Data at 300 Ibs

e Data from shaker tests
using wavelet input

o 27 tests (acceleration
time histories are
recorded)

* Energy dissipated at 300
Ibs force is calculated
from accel. time histories

1 02.4 102.5 1 02.6
Force, Ibs
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e Data from modal tests

Phase 1 mode shapes e 6 tests (acceleration
time histories are
recorded)

1% Bending X I * Modal frequencies of

axial mode are used

Torsion

1stBending Y

Axial

Phase Il (L2) Torsion

» Data from modal tests

» 3 tests (acceleration
time histories are
recorded)

* Modal frequencies of
axial mode are used

(these are the Y'in the
BN slide) i
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Available Models
| (these give the “X’s” in the BN slide)

- Foam

Phase | (L1)

| : : : X1 =qgl(g]
le = glf (Qf) X, = gs(gj ’ gf) Calculatled engelrg(y diZSipated

Calculated axial frequency

. Calc. peak acceleration

Phase Il (L2) 0" =[E] 3leg (L2)
| E = Modulus of elasticity '

: 6’ = [klin’knon'npow] : =
f t(nf | _ i : | . o
X! =0, (9 ) i K, = linear stiffness i X) = 921(91)

. Calculated axial frequency Kqon = nONlinear stiffness " Calculated energy dissipatedi
N, =degree of nonlinearity

Note: Gaussian process models are used in lieu of
Sandia
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Results
Joint Parameters

x10° Linear Stiffness
6 - - —
S Prior
5t AN | Posterior
Y R\ _Using level 0
4} i data
=
= 3
2 L
1 L
O . o . . Tewean
1.8 2 _ 2.2 2.4
klin % 10°

Linear Stiffness

« Comparison with parameters
estimated from level O data

» Posterior reflects available data at
levels 1 & 2

 When all data is included, posterior
IS similar to parameters estimated
19 fromlevel O only

Deqgree of nonlinearity

o Comparison with parameters
estimated from level 0 data

» Posterior reflects available data at
levels 1 & 2

 After updating, the variance is
smaller relative to using level O

Degree of nonlinearity

5
— Prior
4} P Posterior
A Using level 0
' data
= 3
@]
o
= 2}
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A

Results
Foam Parameter

Modulus of elasticity Modulus of Elasticity
. - - 0.2 -
Co_mparlson with parameter — Prior
estimated from level O data B |- Posterior
« Posterior reflects available data ~ 0-19] AU . (ljJsing level 0
\ ata

atlevels 1 & 2 i
- When all data is included, the & 0.1} P
variance in the parameter is
smaller than when using level 0 g5} {
only
 This establishes a more

“realistic” range for this
parameter given the available

data

O N ~ Py ‘.,
20 40 60 80
Modulus of elasticity, E
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Results
Joint and Foam Predictions

Energy dissipated at Level 1 Axial Frequency (L2)
2000 [ Prior prediction- + Post prediction captures the mean
4 using LO data only behavior
1500} A . Posterior pred. - . L -
using L1 & L2 data F;]ost. przdlctlon plus error agrees with
~, :,' "‘ ———— Test data t e teSt ata

* Error term captures the discrepancy
between the model mean behavior

500} and the test data
Axial Frequency at Level 2
ol . R . 0.015 -
1 2 3 4 ____Prior prediction -
Energy dissipation - level 1, D, %107 using LO data only
icci _____Post. prediction -
Energy dissipated (L1) 0.01 using L1 & L2 data
» This prediction is based on 5,000 ~, __ Post. prediction
sam pIeS = (L1&L2 data) + error
. . QO Testdata
« Posterior distributions of parameters 0.005
are used for evaluation
* Red dotted line is the prediction of the 0
mean of this response 600 800 1000 120 400 1600
. : 1st natural frequency - level 2, f @ Sandia
21 Values are consistent with test data Laboratoris
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Results
System level response

’\

0.02} 4/\
O e

System level response

Prior prediction -
LO data only

Posterior prediction -

L1 data only

Posterior prediction -

L2 data only

Posterior prediction -

all data used

.

150

200

250

Peak absolute acceleration,g

22

» System level response is an
extrapolated quantity

 Prediction uses posterior of all
parameters updated with
available data at levels 1 & 2

« Based on 5,000 MCMC
samples of the parameters

 This gives an estimate of the
uncertainty in the system level
response
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_ '
} Summary

e A hierarchical system model was build to simulate a
complex system.

* A Bayes network was used to incorporate all
available data.

e Uncertainty was propagated through the hierarchical
model up to the system level.

* The effect of knowledge (i.e. data) is reflected in a
reduction in uncertainty.

* Errors were quantified.
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