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Outline of Presentation
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Motivation

• High consequence systems need to be qualified 
despite lack of system level data

• Component and sub-system data can usually be 
obtained

• Modeling and simulation used in lieu of system level 
data

• System level models are often built in a hierarchical 
manner (i.e. building block approach)

• There is a need to incorporate all available data into 
a system level analysis

• Sources of uncertainty need to be identified and 
propagated to the system level response of interest
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Structural Dynamics Example
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System level

Hardware data and photos courtesy of Sandia National Laboratories
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Structural Dynamics Example

• Multi-part aerospace component. 
– Conical part connected to lower base via three bolted 

connections
– Inner mass is encapsulated in foam.

• We are interested in the peak acceleration of 
the inner mass 

• There is uncertainty associated with:
– Material property of the foam: modulus of elasticity, E. 
– The behavior of the bolted connection described by a 

3 parameter model (Smallwood model)
• Linear stiffness, Klin
• Non-linear stiffness, Knon
• Degree of nonlinearity, npow

• The simulation code used is Salinas.
• The UQ codes used are Matlab and WinBUGS.

a (t)
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a (t)

System level
model

Uncertainty Quantification

Foam

Joints
Output  Distribution

Aleatoric Uncertainty

Aleatoric Uncertainty

E

Klin

Knon

Aleatoric Uncertainty
• It arises from:

– Unit/unit variability of 
nominally identical systems

– Experimental setup/setup
• Treated with probability 

theory

npow
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Motivation for Bayesian Analysis

“The main purpose of statistical theory is to derive from observations 
of a random phenomenon an inference about the probability 
distribution underlying this phenomenon.” –Christian Robert

Bayesian analysis allows us to formally combine

Earlier 
understanding of 
a phenomenon

Currently 
measured data

Updated degree of belief

Marginal and joint “belief” information about 
estimated parameters can be obtained.
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Bayes Networks

• Directed acyclic graphical representations of random 
variables (nodes) and conditional probabilities (arcs) 
between nodes

• Updates the probability distribution for all the nodes, 
given some observations 

• Hierarchical modeling can be accommodated

A

B

C

Data, m

Parent
node

Children
nodes Why Bayes networks?:

• Data at different levels can be 
incorporated

• Response data can be of 
different origin (acceleration, 
density measures, etc)

• Uncertainty can be quantified 
and propagated
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Bayes Network Implementation

• Need to specify prior distributions for parent nodes
– Usually non-informative prior (Normal w/zero mean, large 

variance)
– If some data is available, use it to define prior (either full 

distribution or statistics) 
• When data is available, joint PDF of Bayes network 

can be updated using Bayes theorem

 Integration in the denominator is difficult; use Markov 
chain Monte Carlo (MCMC) with Gibbs sampling instead

Prior PDF
Posterior PDF
Likelihood function
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Bayes Network Implementation

• Markov Chain Monte Carlo 
– Establishes transition probabilities such that the stationary 

distribution is the target distribution

• Gibbs Sampling
– Sampling scheme to carry out MCMC
– Conceptually for a Bayes net (BN), a Gibbs sample is 

proportional to all the terms containing a particular node in 
the joint PDF

– From the simple BN shown previously, joint PDF is:

)|()|()|()(),( BmfACfABfAfmUf =
then Gibbs sample of node B will be 
given by: )|()|(~ BmfABfB
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Bayes Network Implementation
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X = FEM prediction
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The Math Behind the Net 
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Bayesian Calibration Example
Foam 

• Prior distribution on E, f(E)
– Prior knowledge is included 
– Gaussian distribution 

assumed

• Likelihood function
– Incorporates data, 

model prediction and 
error term 

– Normally distributed

• Error function, ε
– Term includes experimental 

variability and model error 
– Normally distributed, zero 

mean and calibrated variance

))},(({~)),(|( 111111
ffff EgYNEgYf εε −ff EgY 111 )( ε+=

),0(~1 σε Nf
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• Data from sinusoidal excitation used to 
calculate energy dissipated, Ed vs. force, F 

• Slope of each curve of Ed vs. F, in log-log 
space, is parameter npow. klin and knon are 
obtained also found from curves
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• Data from torsion, tension and 
compression experiments are used 
to obtained data of modulus of 
elasticity, E versus density, ρ

Modulus vs Density
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Dumbbell (L1)

3 leg (L2)

Available data for updating –
Joints

• Data from hammer 
impact tests

• 45 tests (acceleration 
time histories are 
recorded)

• Energy dissipated at 300 
lbs force is calculated 
from accel. time histories

• Data from shaker tests 
using wavelet input

• 27 tests (acceleration 
time histories are 
recorded)

• Energy dissipated at 300 
lbs force is calculated 
from accel. time histories

Data at 300 lbs

Data at 300 lbs(these are the Yj in the 
BN slide)
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Phase I (L1)

Phase II (L2)

Available data for updating –
Foam

1st Bending X

Torsion
1st Bending Y

Axial 

Torsion

Axial

• Data from modal tests
• 6 tests (acceleration 

time histories are 
recorded)

• Modal frequencies of 
axial mode are used

• Data from modal tests
• 3 tests (acceleration 

time histories are 
recorded)

• Modal frequencies of 
axial mode are used

Phase 1 mode shapes

(these are the Yf in the 
BN slide)
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Dumbbell (L1)

3 leg (L2)
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Note: Gaussian process models are used in lieu of 
finite element models for computational efficiency

Calculated axial frequency

Calculated axial frequency

Calculated energy dissipated

Calculated energy dissipated

Calc. peak acceleration

Available Models
(these give the “X’s” in the BN slide)
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Results
Joint Parameters

Linear Stiffness
• Comparison with parameters 

estimated from level 0 data
• Posterior reflects available data at 

levels 1 & 2
• When all data is included, posterior 

is similar to parameters estimated 
from level 0 only

Degree of nonlinearity
• Comparison with parameters 

estimated from level 0 data
• Posterior reflects available data at 

levels 1 & 2 
• After updating, the variance is 

smaller relative to using level 0

Linear Stiffness

Degree of nonlinearity
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Results
Foam Parameter

Modulus of ElasticityModulus of elasticity
• Comparison with parameter 

estimated from level 0 data
• Posterior reflects available data 

at levels 1 & 2
• When all data is included, the 

variance in the parameter is 
smaller than when using level 0 
only

• This establishes a more 
“realistic” range for this 
parameter given the available 
data
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Results
Joint and Foam Predictions

Energy dissipated at Level 1

Axial Frequency at Level 2

Energy dissipated (L1)
• This prediction is based on 5,000 

samples
• Posterior distributions of parameters 

are used for evaluation
• Red dotted line is the prediction of the 

mean of this response
• Values are consistent with test data

Axial Frequency (L2)
• Post prediction captures the mean 

behavior
• Post. prediction plus error agrees with 

the test data. 
• Error term captures the discrepancy 

between the model mean behavior 
and the test data
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Results
System level response

System level response

• System level response is an 
extrapolated quantity

• Prediction uses posterior of all 
parameters updated with 
available data at levels 1 & 2

• Based on 5,000 MCMC 
samples of the parameters

• This gives an estimate of the 
uncertainty in the system level 
response
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Summary

• A hierarchical system model was build to simulate a 
complex system.

• A Bayes network was used to incorporate all 
available data.

• Uncertainty was propagated through the hierarchical 
model up to the system level.

• The effect of knowledge (i.e. data) is reflected in a 
reduction in uncertainty.

• Errors were quantified.
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