

A Bayes Network Approach to Uncertainty Quantification in Hierarchically-Developed Computational Models

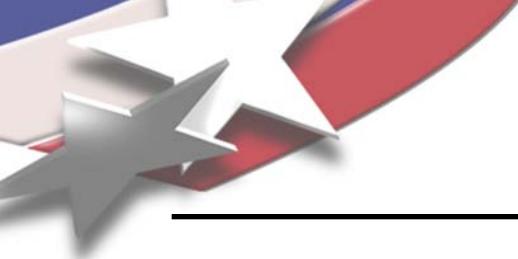
Angel Urbina
Sandia National Laboratories

Sankaran Mahadevan
Vanderbilt University

Thomas L. Paez
Thomas Paez Consulting

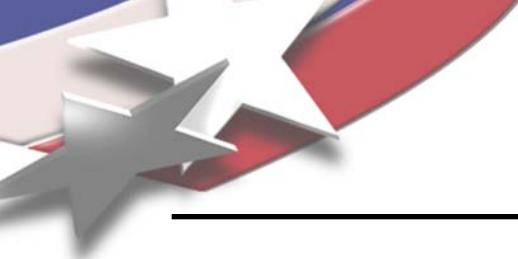
August 1-5, 2011

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000..



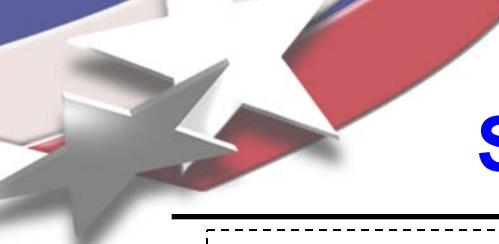
Outline of Presentation

- Motivation
- Problem description
- Hierarchical system model
- Bayes network approach
- Numerical example and results
- Summary

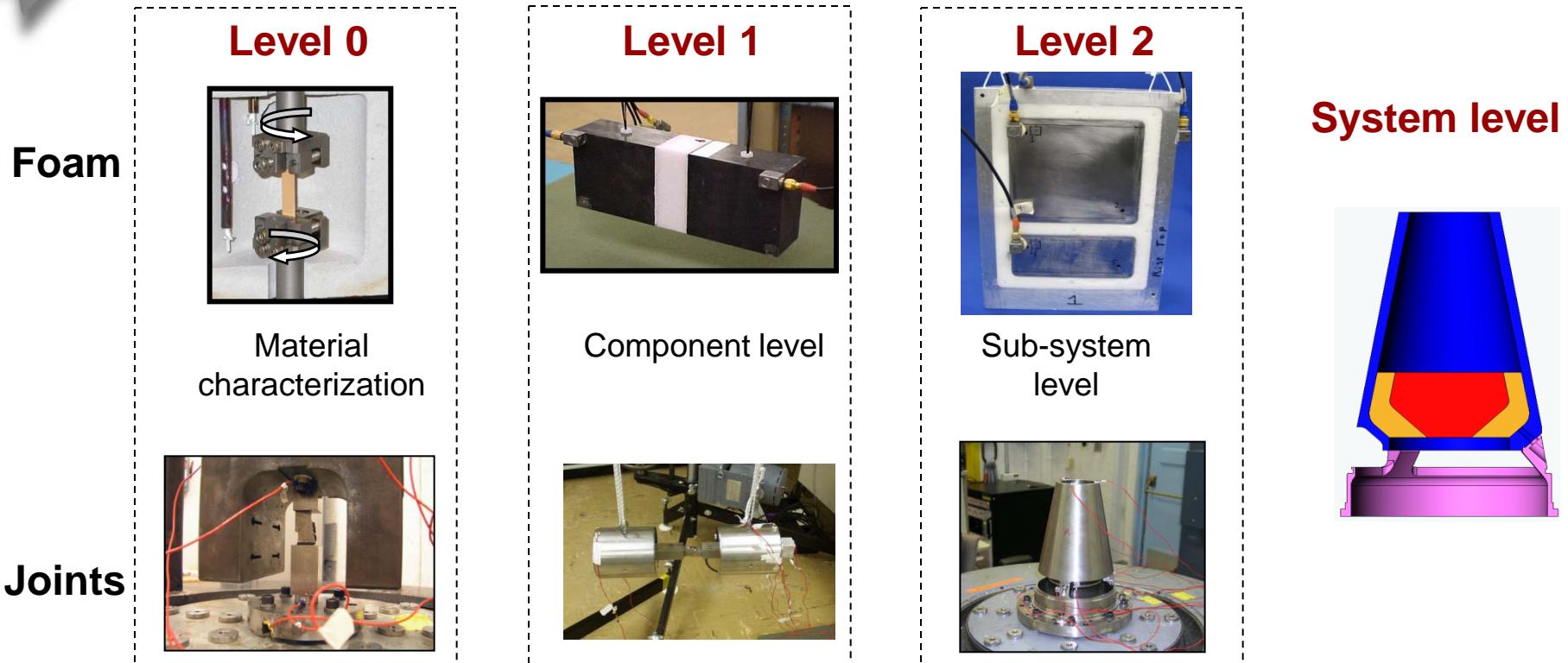


Motivation

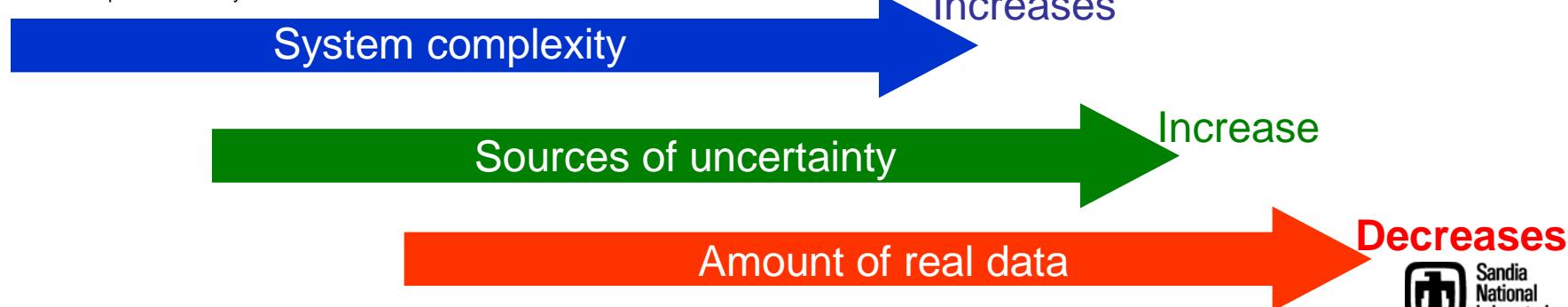
- High consequence systems need to be qualified despite lack of system level data
- Component and sub-system data can usually be obtained
- Modeling and simulation used in lieu of system level data
- System level models are often built in a hierarchical manner (i.e. building block approach)
- There is a need to incorporate all available data into a system level analysis
- Sources of uncertainty need to be identified and propagated to the system level response of interest



Structural Dynamics Example

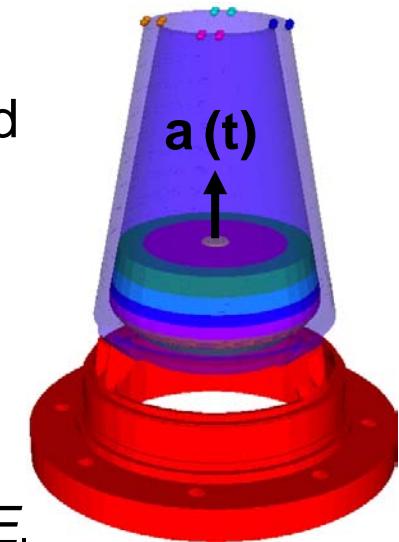


Hardware data and photos courtesy of Sandia National Laboratories



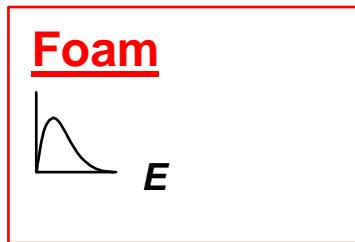
Structural Dynamics Example

- Multi-part aerospace component.
 - Conical part connected to lower base via three bolted connections
 - Inner mass is encapsulated in foam.
- We are interested in *the peak acceleration of the inner mass*
- There is uncertainty associated with:
 - Material property of the foam: modulus of elasticity, E .
 - The behavior of the bolted connection described by a 3 parameter model (Smallwood model)
 - Linear stiffness, K_{lin}
 - Non-linear stiffness, K_{non}
 - Degree of nonlinearity, n_{pow}
- The simulation code used is Salinas.
- The UQ codes used are Matlab and WinBUGS.

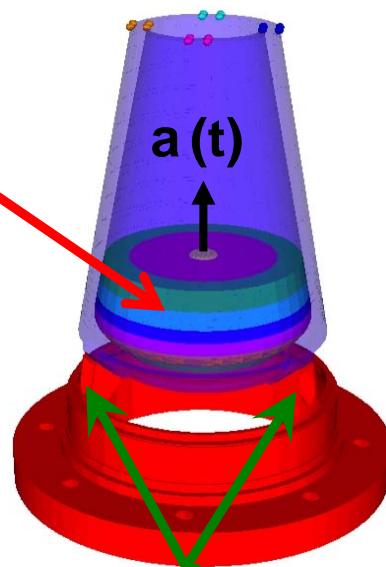


Uncertainty Quantification

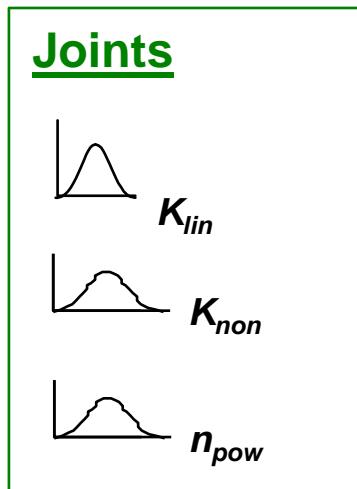
Aleatoric Uncertainty



System level model

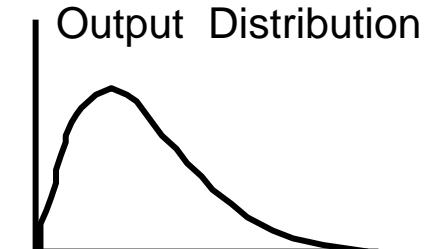


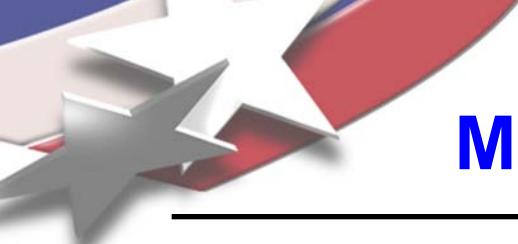
Aleatoric Uncertainty



Aleatoric Uncertainty

- It arises from:
 - Unit/unit variability of nominally identical systems
 - Experimental setup/setup
- Treated with probability theory





Motivation for Bayesian Analysis

“The main purpose of statistical theory is to derive from observations of a random phenomenon an inference about the probability distribution underlying this phenomenon.” –Christian Robert

Bayesian analysis allows us to formally combine

Earlier
understanding of
a phenomenon

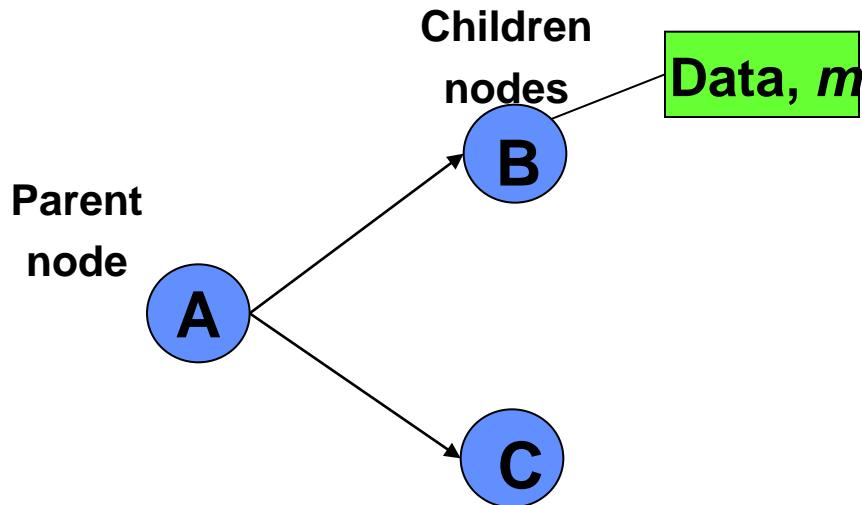
Currently
measured data

Updated degree of belief

Marginal and joint “belief” information about estimated parameters can be obtained.

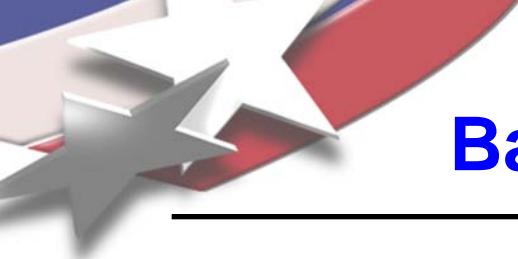
Bayes Networks

- Directed acyclic graphical representations of random variables (nodes) and conditional probabilities (arcs) between nodes
- Updates the probability distribution for all the nodes, given some observations
- Hierarchical modeling can be accommodated



Why Bayes networks?:

- Data at different levels can be incorporated
- Response data can be of different origin (acceleration, density measures, etc)
- Uncertainty can be quantified and propagated



Bayes Network Implementation

- Need to specify prior distributions for parent nodes
 - Usually non-informative prior (Normal w/zero mean, large variance)
 - If some data is available, use it to define prior (either full distribution or statistics)
- When data is available, joint PDF of Bayes network can be updated using Bayes theorem

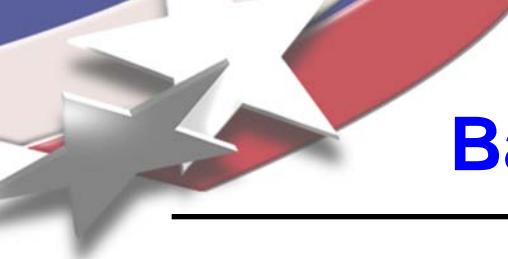
Prior PDF

$$f(\theta | D) = \frac{\pi(\theta) f(D | \theta)}{\int_{-\infty}^{\infty} \pi(\theta) f(D | \theta) d\theta}$$

Posterior PDF

Likelihood function

➤ Integration in the denominator is difficult; use Markov chain Monte Carlo (MCMC) with Gibbs sampling instead



Bayes Network Implementation

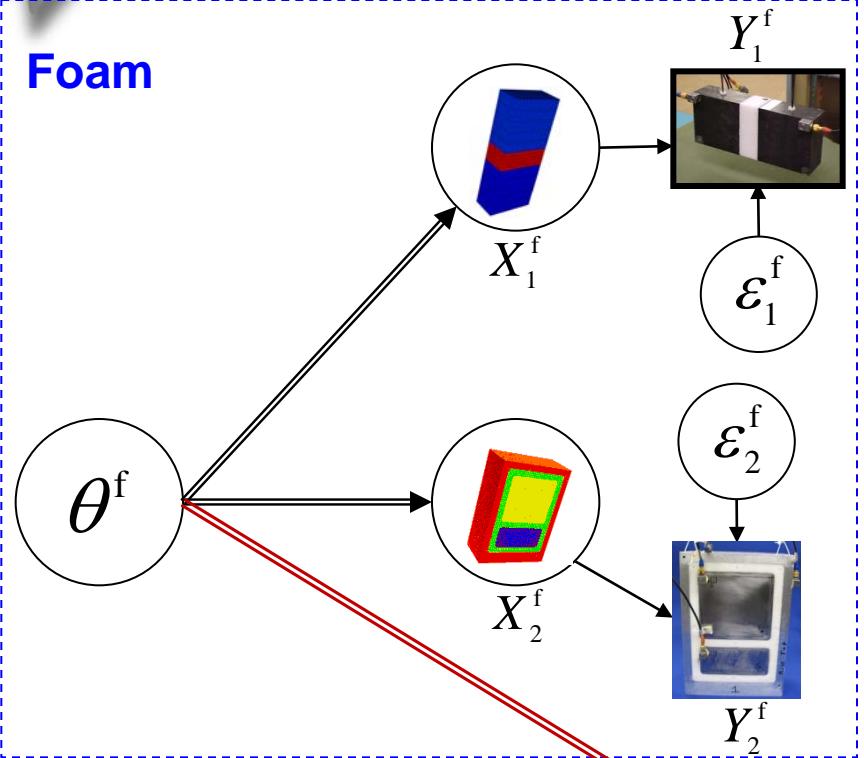
- Markov Chain Monte Carlo
 - Establishes transition probabilities such that the stationary distribution is the target distribution
- Gibbs Sampling
 - Sampling scheme to carry out MCMC
 - Conceptually for a Bayes net (BN), a Gibbs sample is proportional to all the terms containing a particular node in the joint PDF
 - From the simple BN shown previously, joint PDF is:

$$f(U, m) = f(A)f(B | A)f(C | A)f(m | B)$$

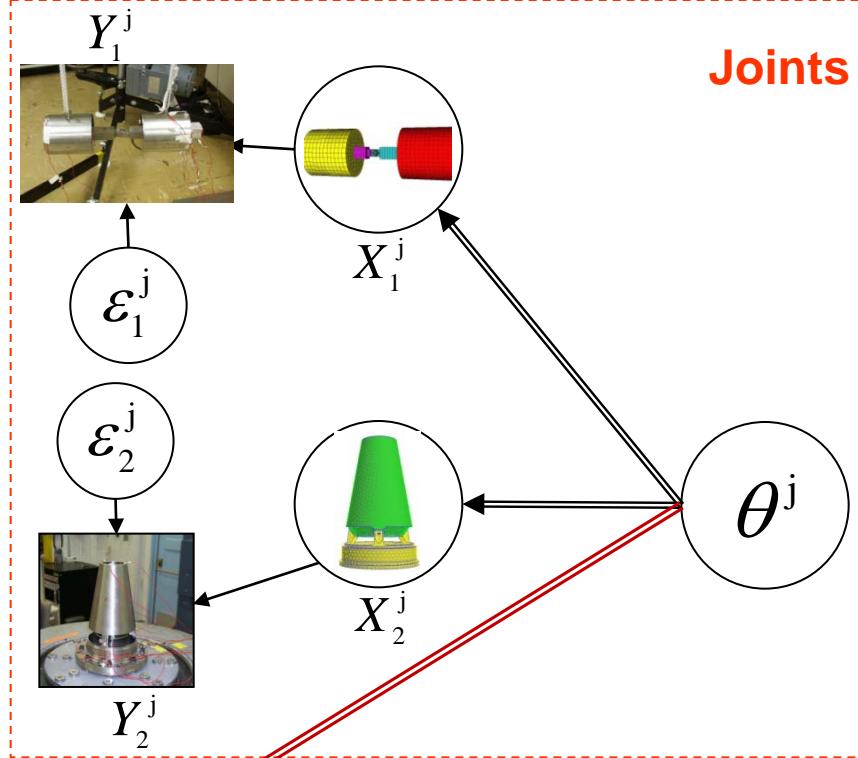
then Gibbs sample of node B will be given by: $B \sim f(B | A)f(m | B)$

Bayes Network Implementation

Foam



Joints



J = Joints

F = Foam

θ = Calibration parameters

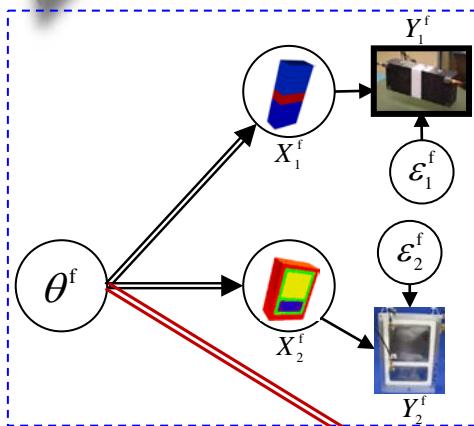
ε = Error terms

Y = Experimental data
 X = FEM prediction
 1 - Level 1
 2 - Level 2
 S - System

Data node

Stochastic node

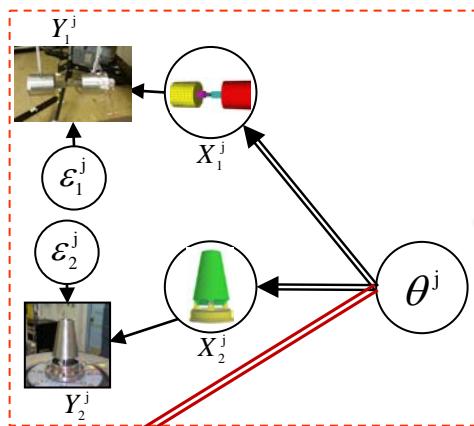
The Math Behind the Net



$$\theta^f = [E]$$

$$\theta^j = [k_{lin}, k_{non}, n_{pow}]$$

If data is available, then
PDF of each parent node
can be updated via Bayes
Theorem



Construct joint PDF of
the BN – note links
between nodes represent
conditional probabilities

$$f(U) = f(k_{lin}) * f(k_{non}) * f(npow) * f(E) * \\ * f(Y_1^f | g_1(E), \epsilon_1^f) \\ * f(Y_2^f | g_2(E), \epsilon_2^f) \\ * f(Y_1^j | h_1(k_{lin}, k_{non}, npow), \epsilon_1^j) \\ * f(Y_2^j | h_2(k_{lin}, k_{non}, npow), \epsilon_2^j)$$

$$f(k_{lin}, k_{non}, npow, E | Y_{1\&2}^j, Y_{1\&2}^f) = \frac{f(U)}{\int f(U) d(k_{lin}) d(k_{non}) d(npow) d(E)}$$

Bayesian Calibration Example

Foam

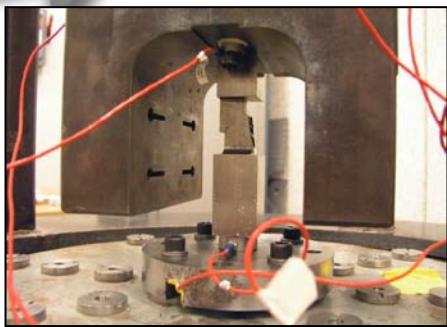
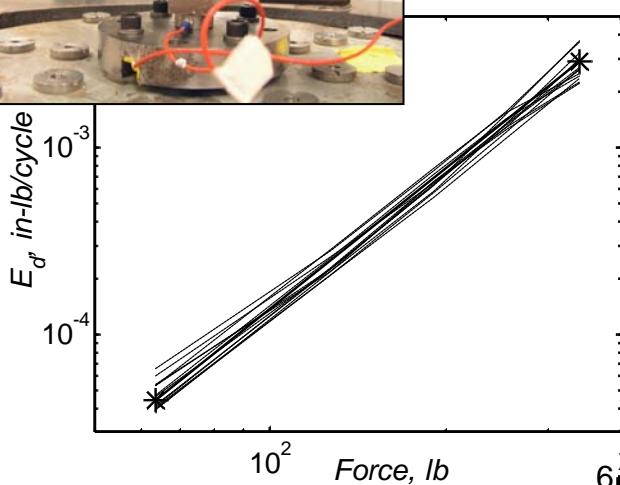
$$f(U) = f(k_{lin}) * f(k_{non}) * f(npow) * f(E) * \\ * f(Y_1^f | g_1(E), \epsilon_1^f) \\ * f(Y_2^f | g_2(E), \epsilon_2^f) \\ * f(Y_1^j | h_1(k_{lin}, k_{non}, npow), \epsilon_1^j) \\ * f(Y_2^j | h_2(k_{lin}, k_{non}, npow), \epsilon_2^j)$$

- Prior distribution on E , $f(E)$
 - Prior knowledge is included
 - Gaussian distribution assumed

- Likelihood function
 - Incorporates data, model prediction and error term
 - Normally distributed
- Error function, ϵ
 - Term includes experimental variability and model error
 - Normally distributed, zero mean and calibrated variance

$$Y_1^f = g_1(E) + \epsilon_1^f \quad \left\{ \begin{array}{l} f(Y_1^f | g_1(E), \epsilon_1^f) \sim N(\{Y_1^f - g_1(E)\}, \epsilon_1^f) \\ \epsilon_1^f \sim N(0, \sigma) \end{array} \right.$$

Prior Distribution Joint Parameters

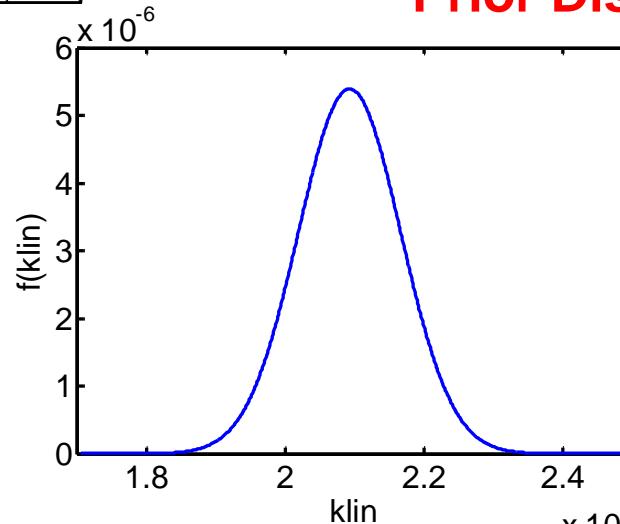
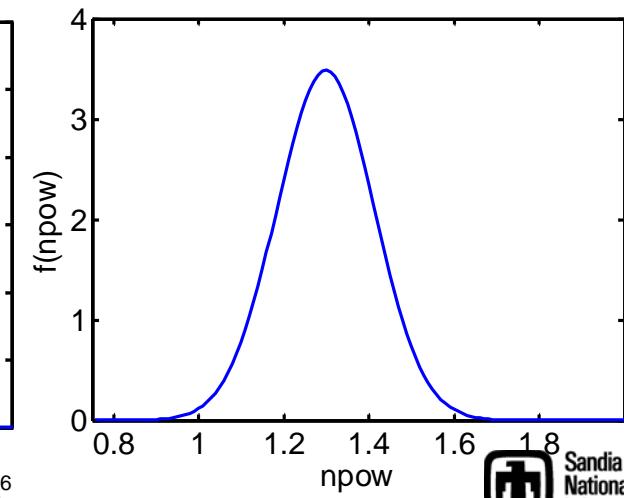


Smallwood model

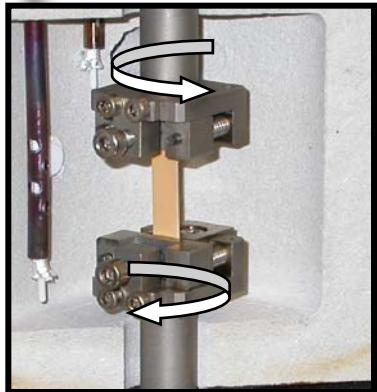
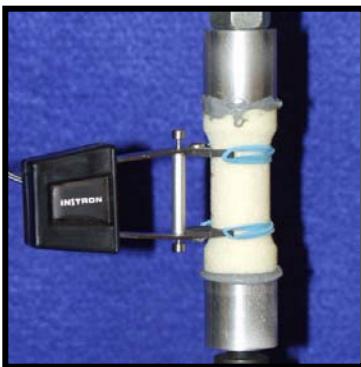
$$F_j = klin(d_j - d_i) - knon(d_j - d_i)^{npow} + F_i$$

- Data from sinusoidal excitation used to calculate energy dissipated, E_d vs. force, F
- Slope of each curve of E_d vs. F , in log-log space, is parameter *npow*. *klin* and *knon* are obtained also from curves

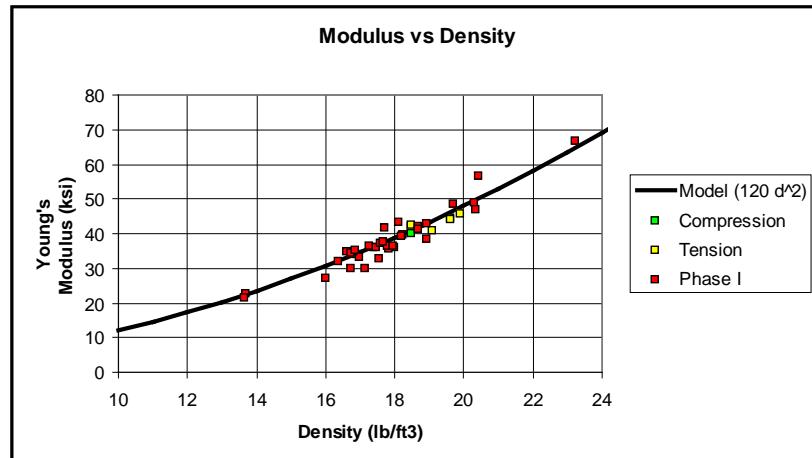
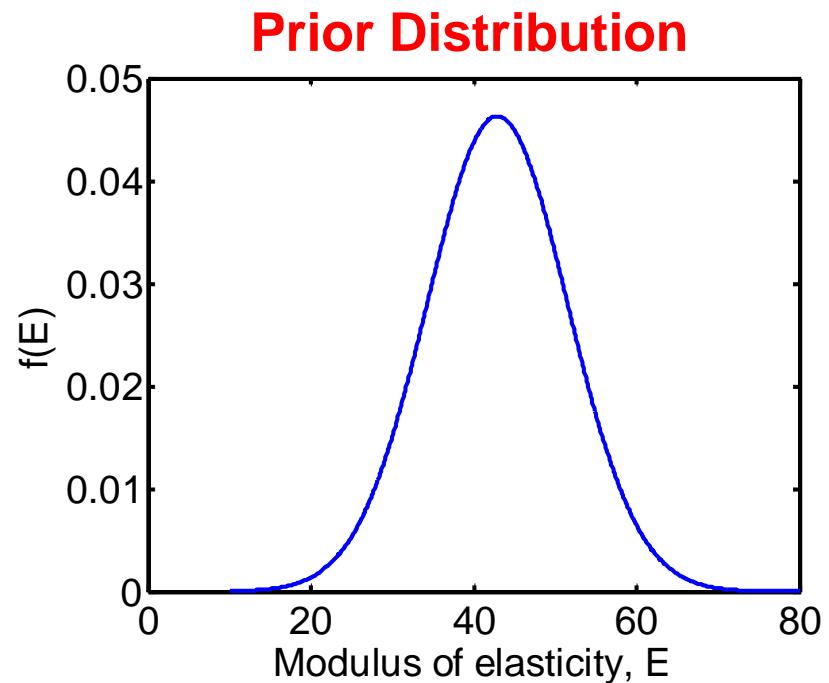
Prior Distributions



Prior Distribution Foam Parameters

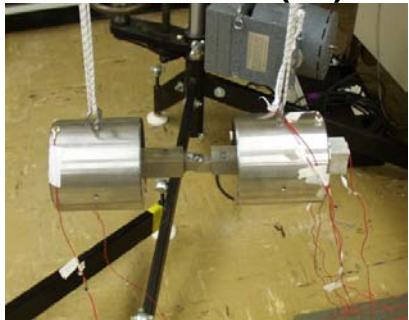
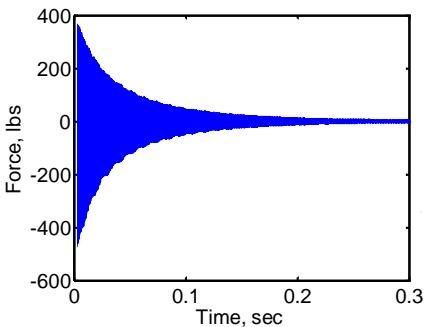
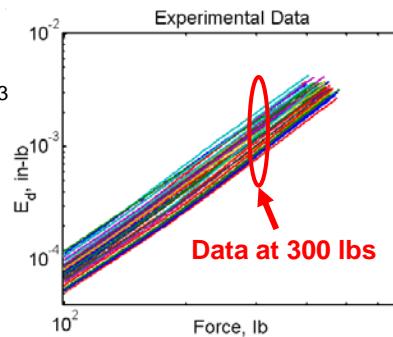


- Data from torsion, tension and compression experiments are used to obtain data of modulus of elasticity, E versus density, ρ



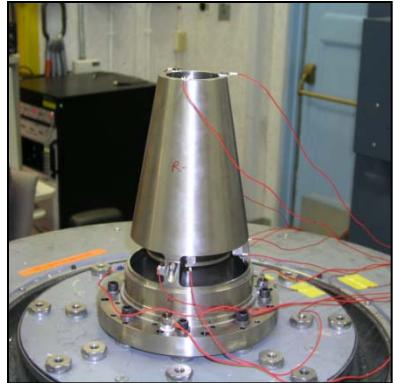
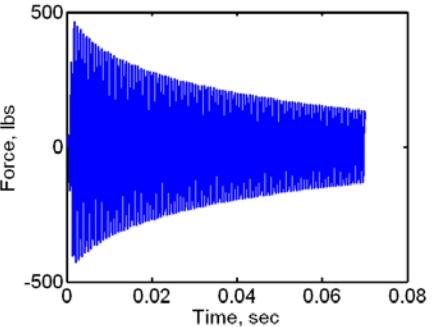
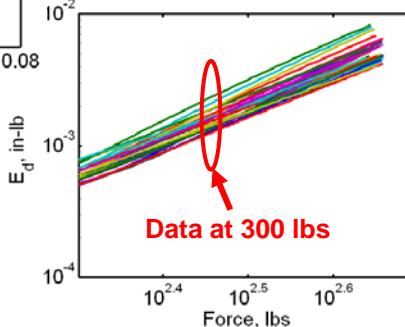
Available data for updating – Joints

Dumbbell (L1)



- Data from hammer impact tests
- 45 tests (acceleration time histories are recorded)
- Energy dissipated at 300 lbs force is calculated from accel. time histories

3 leg (L2)

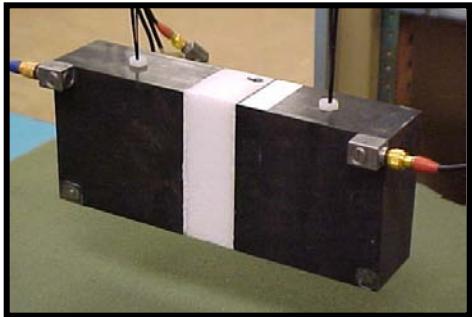
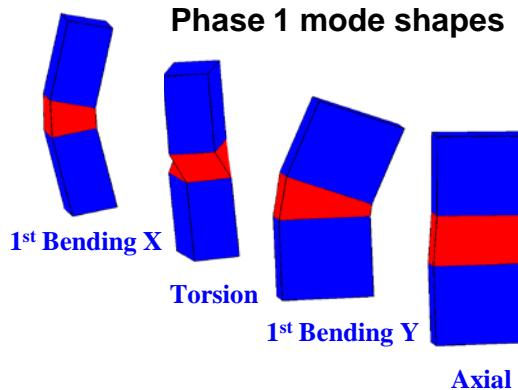


- Data from shaker tests using wavelet input
- 27 tests (acceleration time histories are recorded)
- Energy dissipated at 300 lbs force is calculated from accel. time histories

(these are the Y^i in the BN slide)

Available data for updating – Foam

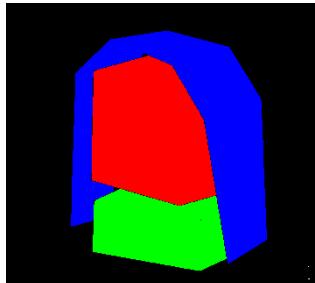
Phase I (L1)



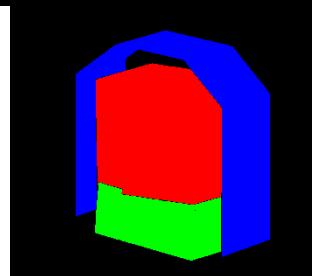
- Data from modal tests
- 6 tests (acceleration time histories are recorded)
- Modal frequencies of axial mode are used

Phase II (L2)

Torsion



Axial



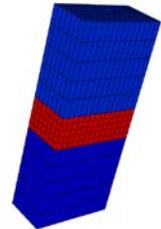
- Data from modal tests
- 3 tests (acceleration time histories are recorded)
- Modal frequencies of axial mode are used

(these are the Y^f in the BN slide)

Available Models (these give the “X’s” in the BN slide)

Foam

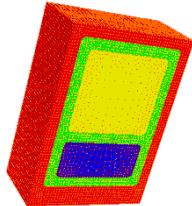
Phase I (L1)



$$X_1^f = g_1^f(\theta^f)$$

Calculated axial frequency

Phase II (L2)



$$X_2^f = g_2^f(\theta^f)$$

Calculated axial frequency

System

$$X_s = g_s(\theta^j, \theta^f)$$

Calc. peak acceleration

$$\theta^f = [E]$$

E = Modulus of elasticity

$$\theta^j = [k_{lin}, k_{non}, n_{pow}]$$

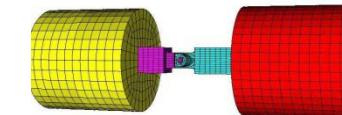
k_{lin} = linear stiffness

k_{non} = nonlinear stiffness

n_{pow} = degree of nonlinearity

Joints

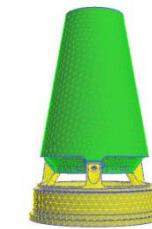
Dumbbell (L1)



$$X_1^j = g_1^j(\theta^j)$$

Calculated energy dissipated

3 leg (L2)



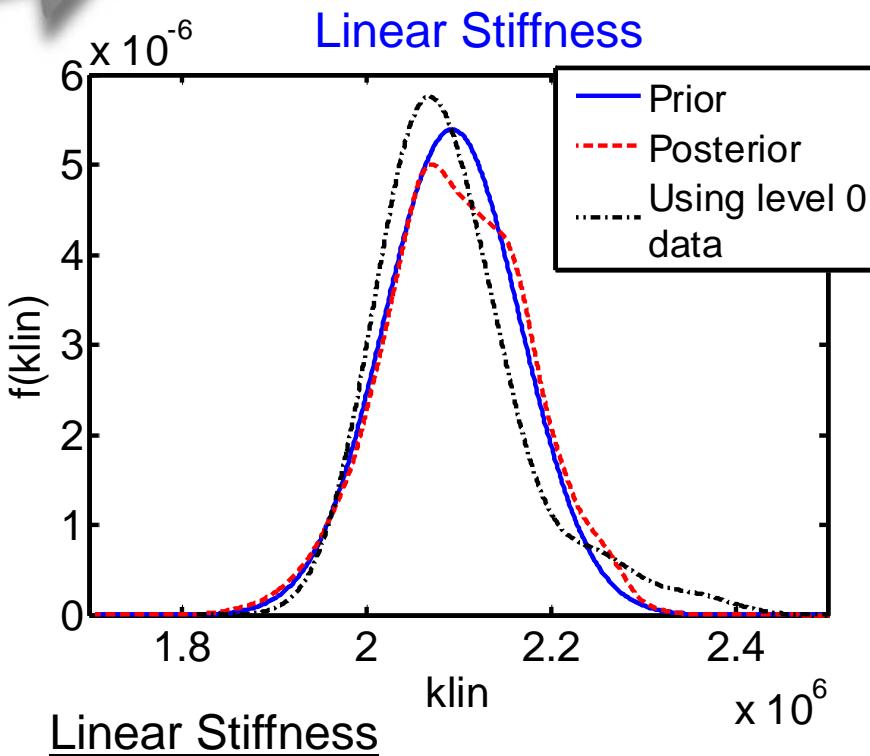
$$X_2^j = g_2^j(\theta^j)$$

Calculated energy dissipated

Note: Gaussian process models are used in lieu of finite element models for computational efficiency

Results

Joint Parameters

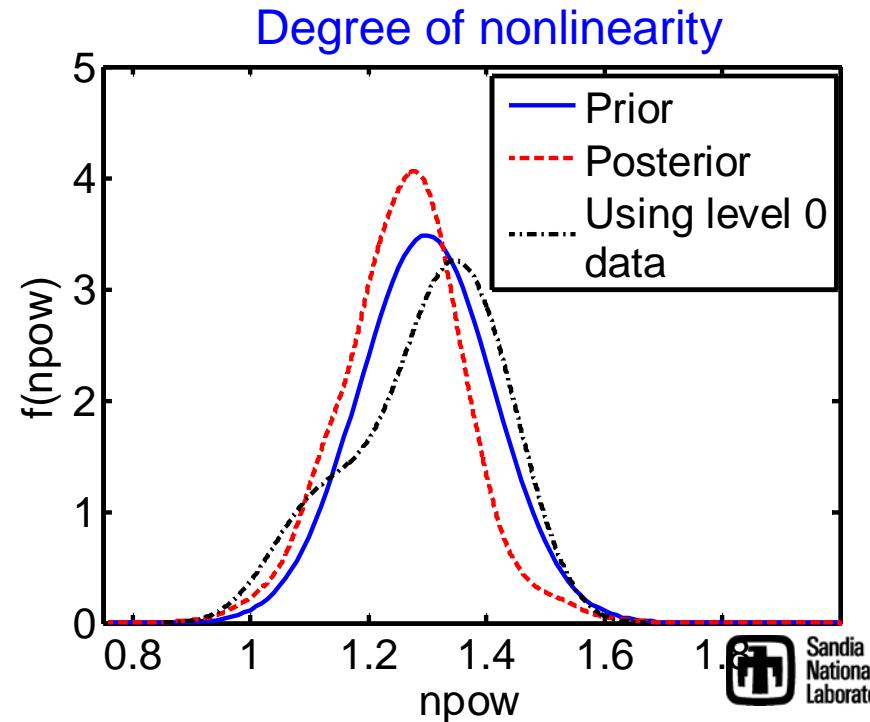


Linear Stiffness

- Comparison with parameters estimated from level 0 data
- Posterior reflects available data at levels 1 & 2
- When all data is included, posterior is similar to parameters estimated from level 0 only

Degree of nonlinearity

- Comparison with parameters estimated from level 0 data
- Posterior reflects available data at levels 1 & 2
- After updating, the variance is smaller relative to using level 0

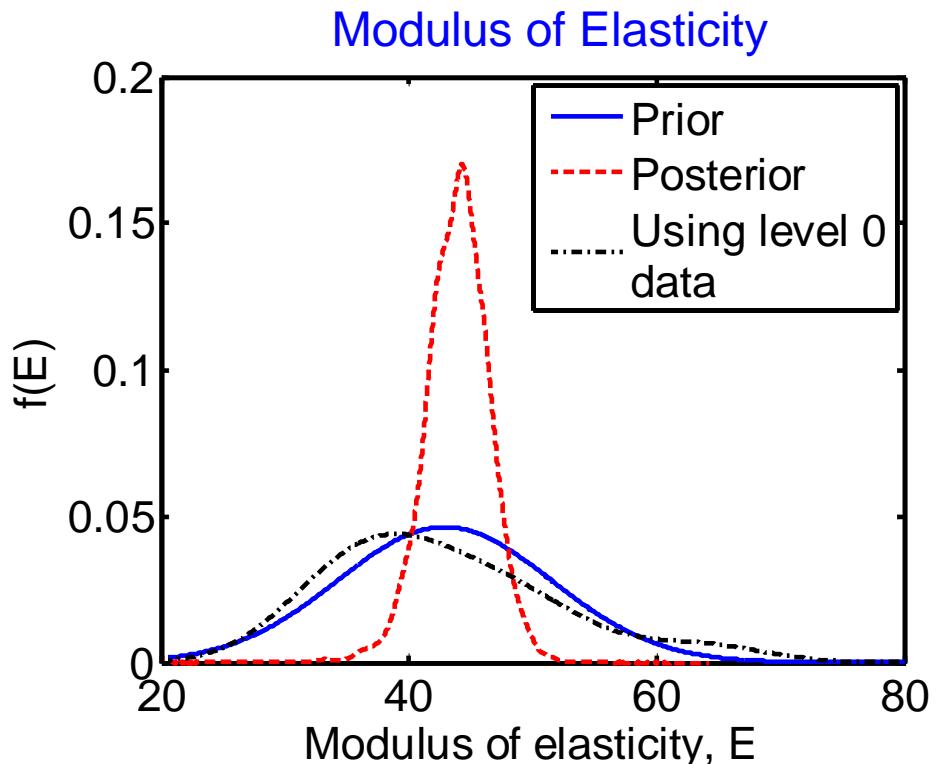


Results

Foam Parameter

Modulus of elasticity

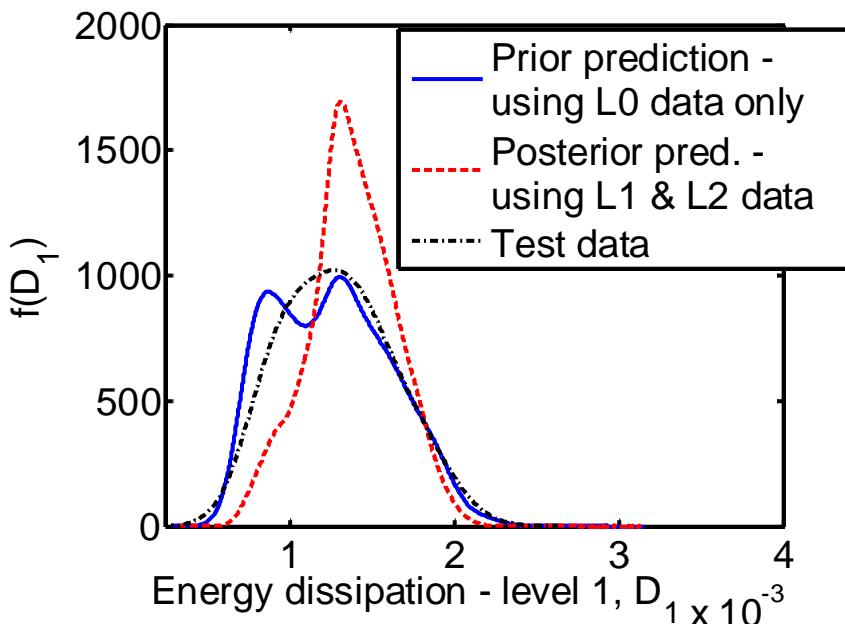
- Comparison with parameter estimated from level 0 data
- Posterior reflects available data at levels 1 & 2
- When all data is included, the variance in the parameter is smaller than when using level 0 only
- This establishes a more “realistic” range for this parameter given the available data



Results

Joint and Foam Predictions

Energy dissipated at Level 1



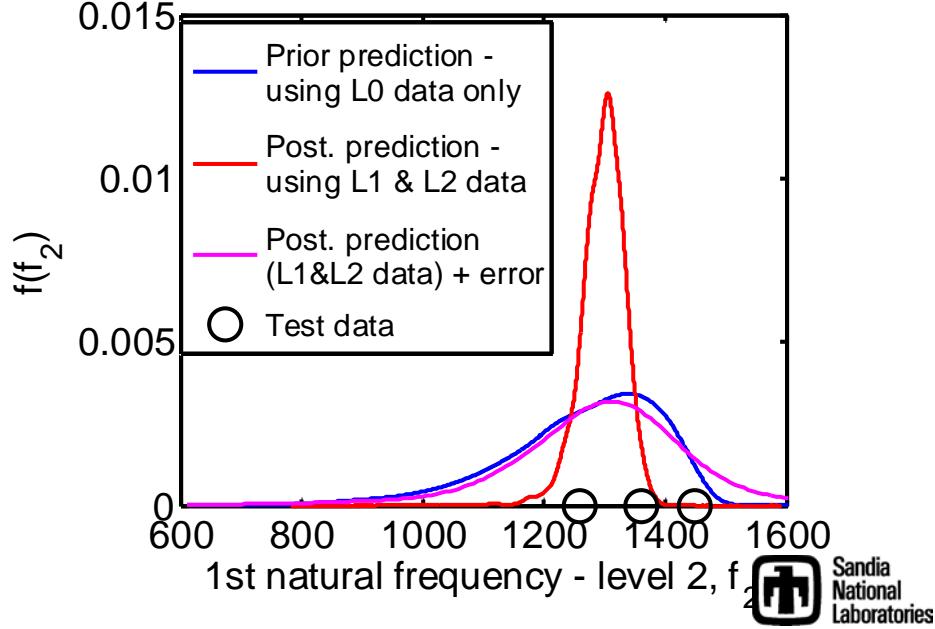
Energy dissipated (L1)

- This prediction is based on 5,000 samples
- Posterior distributions of parameters are used for evaluation
- Red dotted line is the prediction of the mean of this response
- Values are consistent with test data

Axial Frequency (L2)

- Post prediction captures the mean behavior
- Post. prediction plus error agrees with the test data.
- Error term captures the discrepancy between the model mean behavior and the test data

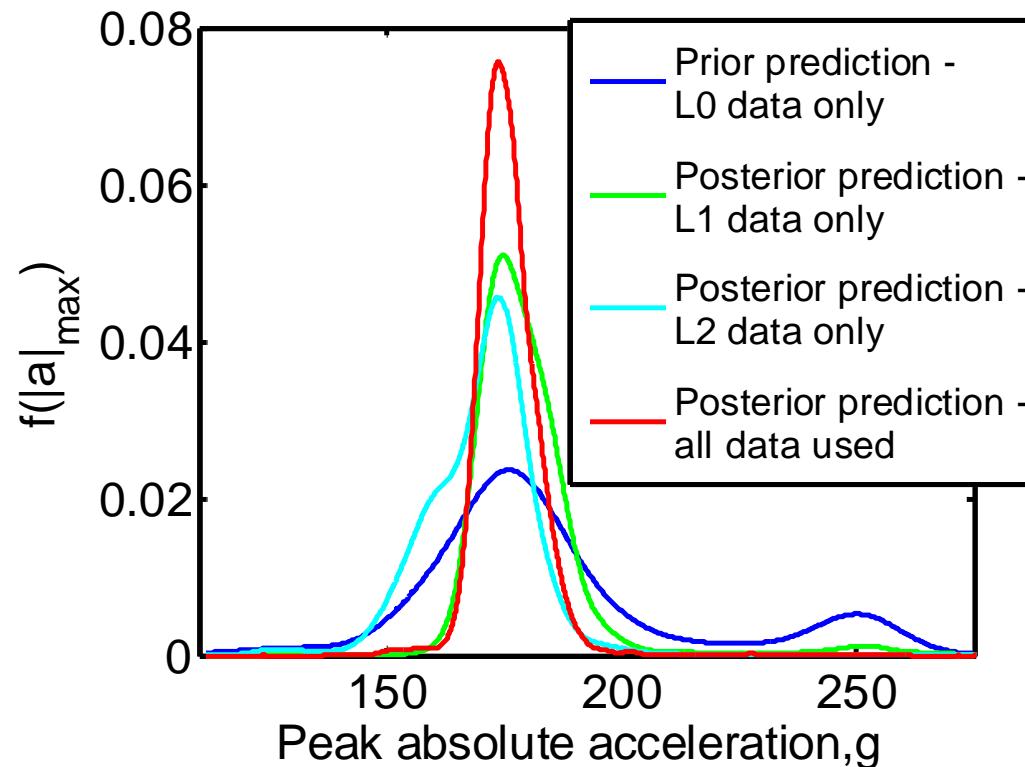
Axial Frequency at Level 2



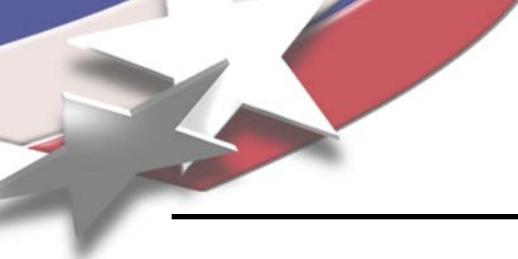
Results

System level response

System level response



- System level response is an extrapolated quantity
- Prediction uses posterior of all parameters updated with available data at levels 1 & 2
- Based on 5,000 MCMC samples of the parameters
- This gives an estimate of the uncertainty in the system level response



Summary

- A hierarchical system model was build to simulate a complex system.
- A Bayes network was used to incorporate all available data.
- Uncertainty was propagated through the hierarchical model up to the system level.
- The effect of knowledge (i.e. data) is reflected in a reduction in uncertainty.
- Errors were quantified.