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Predictive Design of Z Experiments (Lemke)

Two-sided Strip-line Flyer
Plate Experiment

Resistive magnetohydrodynamics.
Accurate electrical conductivities.
Accurate equation of state (EOS).

Circuit model for self-consistent coupling.
DAKOTA optimization loops.

Density functional theory and molecular
dynamics (DFT-MD) computations are
needed to accurately characterize material
response.
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The Upscaling Promise
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urrent Upscaling Practice and Our Goals

« DFT-MD is important to develop accurate EOS and conductivity
models.

e Various uncertainties are managed by expert users using long
experience and judgment.

* UQ=Uncertainty Quantification

— Epistemic Uncertainty = Reducible or model uncertainty may be
Improved with additional knowledge or data.

— Aleatory Uncertainty = Irreducible Uncertainty

 What are the practical requirements for a UQ technology for shock
physics with upscaling
— Evolutionary, well grounded, accessible and backward compatible
“Probability is too important to be left to the experts.” — Richard Hamming

 We want to demonstrate such a system.
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Hydrodynamics

e Conservation of mass,
p+pV-u=0,

e Conservation of momentum, These equations are an
pit + Vp = 0, excellent model for
many practical systems.

e Conservation of energy,

pe +pV - -u=20,

Equation of state, p = P (p,e)

EOS tables: Multi-phase pressure surface in p — E
coordinates (hydrodynamic closure relation)

Pressure

The wide range EOS ol :
closure surface is vorp

- - . 0.001 F/
epistemically uncertain.
O.OODIWI

Density

Phase boundaries:
Solid-Gas Liquid-Gas Solid-Liquid
(Sublimation) (Vaporization) (Melt) @ Sandia
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The Predictive Analysis Cycle

Y
. _ 2
Determine how and where In
phase space the uncertainty in
the EOS representation Is
affecting the uncertainty in

continuum output. \

DFT-MD computations + Feedback precision
experimental data + ) requirements to DFT-MD
associated error estimates modelers and validation

Current focus of our efforts is in blue  data sources @ Skl

6 Laboratories
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&- Uncertainty in the EOS Bridge

The representation of the uncertainty in the EOS bridge has
emerged as a critical issue.

* Uncertain parametric EOS
*Model form with several to tens of EOS parameters as
random variables.

* Uncertain tabular EOS
» Option 1: Deliver separate tables at evaluations points in
probability space.
» Option 2: Build a compressed representation of the
uncertain EOS.

 All techniques should be consistent but will have different
performance characteristics

Sandia
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* Bayesian Viewpoint

*Uncertain quantities are represented as random variables.

*The Bayesian view of probability
*Probability is inherently the degree of belief in a proposition
*Not necessarily derived from sampling or observations
*Handles both aleatory and epistemic uncertainty

*Bayes’ Theorem:

likelihood

E}(d | d} _ f}(d | d) ﬂ’(ﬂ)
p(d) <———— normalization

» The likelihood is usually a composite of fit and noise models.
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iIrect Parametric EOS Representation

*The vector of parameters A is inferred from experimental data

*Noise in data implies uncertainty in parameters

*Bayesian inference provides a (joint) probability density for A (Markov
Chain Monte Carlo)

*Pressure and temperature become random variables (for fixed density and

internal energy).
*Poor scaling as uncertain parametric dimension becomes large

P="P(p,E;\) T=T(p,E;}N)

. ,)d‘:/ 137
o

10 us — OO —|— SUP /'/-. - 1.36

9t > " 1.35 -
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Particle velocity (km/s)
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A
# Tabular Option |

*An ensemble of EQOS tables can represent uncertainties.
eSample uncertain parameters
*Ensemble of models
Each table given a weight

*EXxpensive to store and distribute and manage a sufficient
number of tables to represent uncertainties.

*However it does satisfy production efficiency requirements
except for memory storage.

*Could be used to get off the ground in the short term and as a
baseline.
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A 4
# Tabular Option |

Starting withatable 7= {(p;, E;, P, T;) : i € I}
consider a perturbation D = {(Ap;, AE;, AP;, AT;) : 1 € I}

*\We would like to build a joint density 1 for D so that a sample d ~ u
provides a new table 7 + d which is “reasonable.”
*Consistency: all perturbations are thermodynamically consistent
Stability: pu should disallow an unstable EOS

«Stochastic process technigues allow for reduction of dimensionality
In representing model uncertainties. However, these would require a
metric on (p, E, P, T) in order to gauge the “size” of D, or provide a
sense of “correlation length.” Is there a natural one?

Similarly, techniques such as the Karhunen-Loeve decomposition
., require a Hilbert space structure. @ S
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A
} Karhunen-Loeve Representation

*Glven a (vector valued) process, find an optimal separated
representation
F(z,§) = Fy(z) + Z a; pi(§) Fi(x)
*(02, Fy(x)) are eigenvalue/functions (o.n.) for the kernel

Cla,y) = [ F(z,&)FT (y,€) dpu(€)
°(g§= 0i () are eigenvalue/functions (o0.n.) for the kernel

K(£,0) = /(F(.:r:,&)z F(x,0))dm(x)
*For a discrete process and standard inner product, KL =

Principal Component Analysis (PCA) = subtract mean and then
calculate the singular value decomposition (SVD)

£xr {
12
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A 4
# DAKOTA UQ Toolbox

« DAKOTA is a well-known toolkit for black box large
scale engineering optimization and uncertainty
analysis.

 The historical interface between DAKOTA and analysis
codes Is based on specialized file based
communication interfaces controlled by user scripting.

— This interface permits usage by analysts with modest
scripting skills and determination.

 Making the UQ enabled analysis standard engineering
practice requires a much smaller “user energy barrier”
at multiple points.

)
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http://dakota.sandia.gov/�

;,_'

Embedded UQ Interface ALEGRA

-
SNL DAKOTA

.

= Optimization, calibration,
sensitivity analysis, ’
uncertainty quantification

aramete
file

Current

14

loose coupling:
file system
interface with
separate
executables

-
ALEGRA

-

~

esponse

KA\LEG RA Executable\

| DAKOTA

]

Internal API
integrated with
physics input
and response
functions; single
input file

sJo)aweled

N

>

responses

[ ALEGRA

|

J

/

Moving from potentially fragile, study-specific script

interfaces to a unified, user-friendly capability

Future
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\
AL Flyer/Target Impact Test Case

We are using the new embedded interface for the results
presented here.

Impact velocity Free surface velocity

1cm 2Ccm

Simple shock analysis says that the free surface velocity
should be slightly larger than the impact velocity for
convex Hugoniots and release isentropes.

)
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A Computational Experiment

Current tabular models do not come with a UQ representation. Can we get a feel for the
variation to be expected from different wide range tabular models with varying provenance, for a
given interpolation scheme? 8 wide range tables were used as a surrogate for the drawing of
realizations from a random field EOS.

x-velocity at time 4.e-6 for vO=1.e3 m/s x-velocity at time 4.e-6 for v0=5.e3 m/s

i i These results are
indicative of what we
- 1 km/s - 5 km/s expect to see from a
e e more formal uncertain
EOS modeling
| 0 J approac_:h. e.g. small
uncertainty at low
impact velocities and
T e when traversing off
10 km/s o] = 2 Hugoniot states.
o . 15 km/s

Sandia
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A UQ View of the Experiment

Assume that the 8 tables each occur with a .125 probability

CDF of free surface velocity at time 4.0e-6 (s)

T |
|

o
=)

Probability

o
'S
T

- - [ P -
Initial velocity
— 5.e3mfs

— le3imfs
6.e3 m/s
0.2 — 7e3mis
— Beimfs
— 9.e3mfs
— 10.e3 mfs
— 15e3mfs

— 2eimfs [
— 4e3mfs
D.O L 1 1
0 5000 10000 15000 20000 25000

— 3.e3mfs
Velocity (m/s)

*\We see in the plots of the output cumulative distribution function (CDF) evidence of small
uncertainty at low impact velocities and high uncertainty when traversing off Hugoniot states.
*Note that the physical information content is not as rich as the previous slide.

*We shall see that this simplistic distribution assumption is unacceptable.

)
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other UQ Experiment to Emphasize the Point

Pick a simple Mie Gruneisen (MG) model accurate near the primary
Hugoniot and a wide range EOS model. Assume that each EOS has
a .5 probability. The huge variation at higher velocities is indicative
of severe epistemic uncertainty as expected.

CDF of free surface velocity at time 4.0e-6 s
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0.8
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The Mie-Gruneisen (MG) Model
as a Test Case

Even though we know the MG equation of state is not accurate
over a wide range it does have a small number of parameters
and we can use this model as a test case for a more formalized
approach for a wide range EOS.

P(p,E) = Pr(p)+Topo(E — Er(p))
E(p,T) = FEgr(p)+Cy(T —Tr(p)),

us = Cp + Sy,
Pr(p) = Pulp) = o+ pousu,
Er(p) = Eu(p) = Eo+ (Pu+ Po)p/2po

du
dp

7
Tr(p) = Tulp)=e "[Th+Cy' / TP ——d]
0
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MG “Analytic” Model
3x3 Polynomial Chaos Expansion (PCE) UQ

11 T T T T T T T 1.0CDF for 1 km/s impact at 5.e-6 (s) - Analytic - Write Tables
Table Size
10 F . /;‘/.ﬁ/' E E;i
& ' osfl — 1
£ ol // - o
E o f/ | %‘0,6-
f; 7 ///// £ 0.4
or //";f 1 02
e
0 0.5 1 15 2 25 3 35 4 019.01 D,Ii)2 0,63 0.64 O.Ii)S .06 0.07
Particle velocity (kimy/s) Release Velocity (m/s) +1.00079e3
S = s + 0‘5‘51 / N
= 1.347 + 0.01322 _
r+ S | R= > a v (S)
Co = ey +0c,(r& + V1 —12&) n=0
= 5.321 + 0.03213(—.7824 &, + 0.6227 &)
: Use tensor product Gauss-Hermite
Use Markov Chain Monte Carlo to .
compute coefficients of random quadrature to compute coefficients
20 Spre resentation of the spectral response
P ' representation.

)
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Table Refinement using PCE

'
# CDF Convergence under

1
09 r
0.8 r
0.7
0.6
05 f
04 ¢
03
02
0.1

0 1 10'. 1 1 1 1 1 1 1 1 1
1000.7 1000.75 1000.8 1000.85 1000.9 4 8 16 32 64 128 256 512 1024

Release velocity (km/s) N

* CDF converges to analytic result, as expected

 Shift is converged within sampling error at N=512

» Convergence appears faster than a power law
* Problem: the converged N=512 produces a very large table for a
simple, limited range EOS. Wide range EOS models typically have
N~128. Improved tabulation methodologies are needed.

)
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V
}i Tabular Approach — Option Il

22

Use Principal Component Analysis (PCA) to look for a reduced
tabular representation.

Collect a representative sample of tables of (pressure, internal
energy) on a fixed (density, temperature) grid

Perform Principal Component Analysis (PCA)
A={z,. . 2ot — 21" =7 —z1" = UV’

r=Z24+UXE =2+ AVE
Choose a truncated set of modes.

Compare with previous results.

Sandia
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UQ with 2 Mode PCA Tables
Taken from PCE Samples

 adl

Take 9 tables from PCE as sample data, build a
Principal Component Analysis (PCA)
representation and use the 2 largest modes

CDF for 1 km/s impact at 5.e-6 (s) - 2 mode PCA Tabular

e 7
e / /; ,ff / ,‘J . . . .
ool = i / [ ——__ Output distribution
— ez [l i
o=l [ [ )] IS too broad.
: L)
<, / / /
/ Ny Why?
og / / , .
00 0.02 0.04 0. D?lelefsg%elogtyo(m,f? 12 0 01.800?2318

The PCE Gauss quadrature tables should not have equal
weights in the PCA analysis! @ Santia

National
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Probability

}'

Parametric UQ with
Principal Component Tables - LHS

Take tables from 100 Latin Hypercube Sampling (Monte Carlo) runs as
realizations and build a 2 mode Principal Component Analysis representation

1.0

CDF for 1 km/s impact at 5.e-6 (s) - Analytic - Write Tables

10 CDF for 1 kmlfs impaclt at 5.e—6| (s) - LHSI PCA Tabular
g 0.6}
0801 0.02 0.03 0.04 0.05 0.06 0.07 0801 002 o.b3m 0.04 0.05 0.06 0.07 0.08
Release Velocity (m/s) +1.00079e3 Release Velocity (m/s) +1.00078e3
CDF shape verifies that proper weighting of the
sample realization tables is critical for the PCA -
. ndia
24 representation approach. @ Nfional



; ' UQ with 2 mode PCA Tables

Generated with Weighted PCE Samples

:=ZHY?1/1"H1 &'z - aA"HY? = UsvT
=24+ USE=2+GVUSE =2+ (Z - 211 HY?VE

Take 9 tables from PCE as data, build a PCA representation

using Gauss-Hermite quadrature weights in the PCA analysis
(2 largest modes)

for 1 km/s impact at 5.e-6 (s) - 2 mode PCA Tabular

Output distribution
—— IS now consistent!

0.02 0.03 0.04 0.05 0.06 0.07
Release Velocity (m/s) +1.00079e3
Sandia
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A
#Wide Range EOS UQ Representation

« The PCA approach clearly works for the Mie-Gruneisen EQOS for
this problem.

 What about wide range EOS?

— The first thing to try is to add more general coordinates into the PCA
analysis.

— Will we still get useful compression?
— What about phase boundaries and EOS stability?

— With large numbers of parameters we will be forced to deal with larger
computing requirements for the PCA analysis.

« How do we enable downscale information transfer returning along
the bottom of the predictive analysis cycle and the evaluation of
epistemic uncertainty?

)
iona
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V
}i Looking for Epistemic Uncertainty

27

Pressure (GPa)

Iso-therm and Hugoniot of the
inferences relative to the data
160

Inferred posterior pdf contours

Isotherm
140 } Hugoniot
Hugoniot fit
120 Isotherm Fit
Both fit
100
80
60 r
40
20
0 1 1 1 1
2.5 3 3.5 4 4.5

Density (g/cm?')

Hugoniot

/

Isothern

| Both N

—

1 1 1
00 5220 _w 60 00 400 ) 440

*Mie-Gruneisen model is holding together.

*As we add more data including DFT-MD data, we expect
to be able to show using formal UQ methods that the
epistemic uncertainty for this model will increase.

m)
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A
# Summary

 We have outlined a general way of thinking about
the upscaling UQ problem for shock
hydrodynamics.

 The basic PCA approach shows promise as a
workable conceptual framework for tabular
delivery of parametric EOS model uncertainty to
production users.

e Proper weighting of sample realizations is
essential.

 We are experimenting with pulling together the
pieces in a way which will be compatible with
current technology and a sustainable UQ enabled
technology going forward.

)
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