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Outline

* Quick overview of Sierra Mechanics
* Quick overview of Sierra-SD(Salinas)

* Inverse problems in Sierra-SD
— Source inversion
— Material inversion

« Example applications of Sierra-SD
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Overview of Sierra Mechanics

* Goal: massively
parallel coupled
multiphysics
calculations

* Modules for structural
dynamics, solid
mechanics, fluids,
thermal, etc
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Overview of Sierra-SD (Salinas)

* Massively parallel implicit finite element analysis
for structural dynamics and acoustics

» Scalable to thousands of processors, has been
run on >10,000 processors

* Transient, direct frequency response (Helmholtz),
modal analysis capabilities

 Embedded fully coupled structural acoustic
capability
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Inverse Problems- Motivation

» Characterize energy sources from experimental measurements

— acoustic testing of aerospace structures, damage or defect
identification from acoustic emission, aeroacoustics

* Determine unknown material properties from experimental
measurements

— Model calibration, defect characterization

* For applications that involve complex geometries and/or
sources, finite element modeling is needed for an accurate
solution of the forward problem.

» Goal: leverage existing Sierra-SD massively parallel finite
element technology developed for forward problems to solve
the inverse problem.
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Inverse Problems:
The physical View

External inputs
(known)

e.g. forces,
fluxes, etc.

The direct or forward prob

=@~
1

em

System response
(unknown)

e.g. displacements,
temperature,

concentrations, etc.

The System (known)

e.g. geometry, material
properties, etc.
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Inverse Problems:
The physical View (2)

The inverse problem — general scenario

External inputs
(unknown)

e.g. forces,
fluxes, etc.
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()

System response
(partially known)

e.g. displacements,
temperature,

concentrations, etc.

The System (unknown)

e.g. geometry, material
properties, etc.
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Inverse Problems in Sierra-SD

 Emerging capabilities aimed at providing force,
material, and shape inversion capabilities.

 All capabilities are parallelized

* Current capabilities:

— Force/source inversion for acoustics and
structures

* Determines amplitudes of sources, given
experimental response measurements

— Material inversion in time and frequency domain

* Determines material properties (elastic and
viscoelastic), given experimental response
measurements
candia

National
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Rapid Optimization Library (ROL)

— Optimization of differentiable simulated processes:

o partial differential equations (PDEs)
o differential algebraic equations (DAEs)
o network equations (gas networks, electrical networks)

— Inverse problems, optimal design and control problems.

— The parameter/design /control spaces can be very large,
often related to the size of the computational mesh
(PDEs) or the size of the device network or graph (DAEs).

= Matrix-free, gradient-based, embedded methods.

POC: Ridzal/Kouri (1441) o
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Rapid Optimization Library (ROL)

@ Unconstrained optimization:
Gradient descent, quasi-Newton (secant) methods, nonlinear CG,
Gauss-Newton, Newton, with line-search and trust-region
globalizations.

@ Equality constraints:
Sequential quadratic programming (SQP), with line-search and
trust-region globalizations.

@ Inequality constraints:
For box constraints, use projected gradient and projected Newton
methods. For general inequalities, use interior-point algorithms.

POC: Ridzal/Kouri (1441) o
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Interaction of Finite Element and
Optimization Codes

Finite Element and Optimization Codes operate as independent entities

Gradient, Hessian of Lagrangian

/

"l

Massively parallel
structural acoustics
(Sierra-SD)

\

Objective function

~

Library (ROL)

)

~
— Rapid Optimization

I /

Next iterate of design
variables

The adjoint method is used to compute the gradients and Hessians
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Use Cases for Material Inversion

Both linear and nonlinear material inversion capabilities needed
in NW community

Material inversion: Material inversion:
Nonlinear joints Viscoelastic foams

Unknown joint parameters to
be derived from experimental
data

e Unknown
distributed foam
parameters to be
derived from
experimental data

Other needs: parameters for plasticity and other nonlinear material models m 5



} Use Cases for Source Inversion

Surface with 172 acoustic patches

Goal: Structure of interest
Solve inverse problem to obtain acoustic patch
inputs that produce the given 17 experimental
microphone measurements.

2 approaches:
1. Frequency domain
- forward problem is frequency sweep
from 40Hz-4000Hz
2. Time domain
- forward problem is implicit time
integration with about 4000 time steps

17 Microphone locations
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Formulation of Source Inverse Problem

L
J({u}. . {u}n;) =§Z(u}-—{um},-)rlo]({u},-—{um},-)+m{p}: Objective Function
i=1

Ny

€=+ 3 Re(Tol: (1@l u): = (F((r)):)) Lagrangian

KKT conditions:

Dppy, £-{dw} =0 = [H(w;){u}; = {F({rh};

Forward problem

Diuy,L-{ou} =0 = [H(w;){w}; = .#:[Q]({.u.m b — {u}j) Adjoint problem

Dy £ - {0p} = ZRe( [%} {6p})+ﬂ{p}m{pn-{ﬁp} Gradient



}Dissipative Material Inversion in Frequency

Domain
Generic formulation based on complex modulus
minimize  .J(u,p) Objective function
u,p
Sul‘)ject to g(u p) — 0 PDE constraint

ﬁ('u,._p: w) :=.J+ wEgR —+ wggf = J + ;R(whg) Lagrangian

o(w)=D(w)e = (b(w)Dy + G(w)D¢)e(w) Constitutive Law

3

Viscoelasticity Block Proportional Damping Dashpots
b(w) = bg(w) + iby (w) b(w) = b+ iwsb Er =0
G(w) = Gr(w) +iGr(w) Glw) =G+ iwpG Er = wc



"";,7
Source Inversion Methodology in Sierra-SD

 PDE-constrained optimization approach
— Offers flexibility and extensibility

— Applicable to time-domain, frequency-domain, and
nonlinear problems. Can be tailored to each application.

— Applicable to large numbers of design variables.

— Allows significant code sharing with material inversion
capability (backward time integrators for adjoint
problems, experimental data manager, objective
function, etc)

* Massively parallel finite element code Sierra-SD is used for
solving the forward and adjoint problems.

» Optimization code ROL is used for solving the optimization
problem.
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Structural Acoustic Equations of Motion

acoustics

. I ..
V20 =50, inQx (0.7)

Vo -ny = —pyrii,. on 8(2?! x [0, T]
¢ =0, on dQ? x[0,T]

6(0.7) =0, inQy

Time domain

Mia() +[Clv(r) + [K]u(1)

= f(7)

4

solid mechanics

V.o =pi, inQx(0,T)
on=nh, on Q" x[0,T]
6=D:Vu, inQx|[0,T]

u=0, on QP x[0,7T]
u(0.7)=0, in Q
(0.,7)=0, in Q

Frequency domain (Helmholtz)
H(w)lz(w) = F(o)
H(0)] = —0’[M] +io[C] + K]
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Structural Acoustic Equations of Motion

K

0
M

u

¢

: ||
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Fully coupled formulation
|

Condensed notation

Mla(r) + [Clv(z) + [K|u(r) = f(1)

K. 0

N

0 K,

|

|

:
Ja

We will use the condensed notation in following slides
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Statement of Inverse Problem

Minimize objective function

1) Ap}) = 5 ()~ {n)) 1] (120} — {an}) + 2([p)).

{u} State variables (displacement, pressure)

{u,,} Measured data (displacement, pressure)

{P} Unknown parameters (loads, material parameters)

Q] Weight matrix

Subject to equations of motion

Mla(r) + [Clv(z) + [K]u(r) = f(1)
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- Optimality is obtained by setting derivatives of
Lagrangian to zero

 We adopt a reduced space approach where we
derive reduced gradients and Hessians from full
space approach

 Reduced space approach can be derived from full
space

Optimality conditions
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Solution of Inverse Problem

Do until tolerance < eps

—

Solve forward problem

3

Solve adjoint problem

$

| Compute gradients, Hessians
Optimization step
Receive design variable updates from optimization solver
end

Gandia
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pplication of Material Inversion (from A.
Urbina)

Characterizing viscoelastic foams

Foam block (block 1 in SD input deck) svst e m

Steel blocks
(blocks 2 & 3 in
SD input deck) ### - Response locations

##4# - Input locations

Experimental setup of foam phase 1 hardware

o « Data is highly damped
g, - *» Requires viscoelastic
; material inversion

0.06 0.08 0.1 0.12 0.14 lmm
Time (s) o T ]
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}' Application of Frequency Domain

Viscoelastic Material Inversion

| Characterizing viscoelastic foams
Measurement point

Applied Traction
Foam block (block 1 in SD input deck) F= FSi n (wt)

212

Steel blocks
(blocks 2 & 3 in

SD input deck) ##4# - Response locations

-8
10 F
-9
0 F
C mm 1 1 1 1 1 1
0 5 10 15 20 25 30
_m omPUted [teration Number

Real part of K 40000 38303.30 Objective function and
Imag part of K 0 1101.39 gradient reduced to
Real part of G 16000 16326.25 acceptable level

Imag part of G 5000 4950.58 () i
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} Source Inversion on B61

Surface with 172 acoustic patches

Goal: Structure of interest
Solve inverse problem to obtain acoustic patch
inputs that produce the given 17 experimental
microphone measurements.

2 approaches:
1. Frequency domain P
- forward problem is frequency sweep 17 Microphone locations
from 40Hz-4000Hz
2. Time domain
- forward problem is implicit time
integration with about 4000 time steps




Real Part of Acoustic Pressure
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Frequency Domain Source Inversion

Single Frequency Results
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Acoustic Pressure at Mic 1
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Time Domain Source Inversion
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- Massively parallel finite element structural acoustics
and optimization codes have been loosely coupled
for the solution of source and material inversion
problems.

* Adjoint methods have been implemented in Sierra-SD
in both time and frequency domains.

« Applicable to large-scale models with many degrees
of freedom.

* The method allows flexibility to work with both time
and frequency domain, and nonlinear problems.

 Method has been applied to solve source and
material inversion on problems of interest.

Conclusions
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