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Motivation and Goals 
•  Engineering application codes (“app”) are huge and 

complex 
•  Typically Herculean effort to change algorithms 

•  Difficult to evaluate new algorithms 
•  Difficult to evaluate different programming paradigms 
•  Impractical for “co-design” of architecture, 

programming languages and algorithms 
•  E.g.: app took 4-6 months to port (twice) 
•  US national lab codes export controlled 

•  Miniapplications (“miniapps”) 
•  Proxy for key app performance issue 
•  Easy to port, open source 
•  Mantevo 



Motivation and Goals 

•  But is miniapp representative of app? 
•  Intuitively one would think so… (more like hope) 
•  Improperly designed miniapp or use of a miniapp 

outside its scope will produce useless results, or 
worse, misleading results 

•  Talk will focus on comparison of an FEM semiconductor 
device modeling app and an FEM miniapp 

•  Key questions: 
•  What is miniapp not intended to represent? 
•  What is miniapp intended to represent? 
•  How good of a job does it do? 



Application Proxies 

•  Proxy App: Generic term for all types 
•  Skeleton App: 

•  Communication accurate, computation fake 
•  Compact App:  

•  Small version of app; attempt some tie to physics 
•  Scalable Synthetic Compact Applications (SSCA):  

•  DARPA HPCS 
•  HPC Challenge Benchmarks 
•  NAS Parallel Benchmarks 
•  SPEC 
•  Others (e.g. Seven Dwarfs, etc.) 



Miniapps Specifications 

•  Size: O(1K) lines 
•  Focus: Proxy for key app performance issue 
•  Availability: Open Source 
•  Scope of allowed change: Any and all 
•  Intent 

•  Improving performance of app 
•  Co-design: architecture and app 

•  Reference version developer & owner: Application team 



Mantevo Project 

•  Multi-faceted application performance project 
•  Started 5 years ago 
•  Two types of packages: 

•  Miniapps: Small, self-contained programs 
•  MiniFE/HPCCG: unstructured implicit FEM/FVM 
•  phdMesh: explicit FEM, contact detection 
•  MiniMD: MD Force computations 
•  MiniXyce: Circuit RC ladder 
•  MiniGhost: Data exchange pattern of CTH 
•  And many more coming online… 

•  Minidrivers: Wrappers around Trilinos packages. 
•  Beam: Intrepid+FEI+Trilinos solvers 
•  Epetra Benchmark Tests: Core Epetra kernels 

•  Open Source (LGPL) 

(Heroux  et al.) 



Are Miniapps Representative of Apps? 
Focus on an FEM App and Miniapp 

•  Work in progress, building a “body of evidence,” the 
more data, the better 

•  Comparison of semiconductor device modeling app to 
miniapp 

•  Single compute node comparison 
•  Effects of memory bandwidth 
•  Cache performance 

•  Future directions: Comparison at scale 



RAMSES/Charon Semiconductor Device Simulator 
 

Charon team: G. Hennigan (PI), R. Hoekstra, J. Castro, D. Fixel, R. 
Pawlowski, E. Phipps, L. Musson, T. Smith, J. Shadid, Lin 

•  Drift-diffusion model for semiconductor devices 
•  Stabilized FEM and FVM discretization for 

unstructured meshes 
•  Fully-implicit Newton-Krylov solver; usually GMRES 

•  Robust, but need efficient solution of sparse linear 
systems 

•  Massively parallel for high fidelity simulations 
•  Trilinos for nonlinear solver (NOX), Krylov solver 

(AztecOO), preconditioner (ML and Ifpack), Sacado 
for AD (matrix assembly) 



Semiconductor Drift-Diffusion Model 
Electric 

potential


• ψ: electric poten(al 
• n: electron concentra(on 
• p: hole concentra(on 

• C: doping profile 
• R: genera(on‐recombina(on 
term 

Defect species: each addi(onal species adds a transport‐reac(on equa(on 

2D and 3D steady-state drift-diffusion bipolar junction 
transistor (BJT) test cases (G. Hennigan) 



Implicit Finite Element Miniapp: MiniFE  
(A. Williams) 

•  What is MiniFE not intended to represent? 
•  App with different physics: Number of Newton steps, 

number of Krylov iterations per Newton step 
•  What is MiniFE intended to represent? 

•  Krylov solve (dominant computational kernel) 
•  Matrix and RHS assembly (but may not hold if app uses 

different approach) 

•  Steady-state 3D heat equation (Poisson equation) 
•  Geometry is a cube 
•  Finite element method with hexahedral elements 
•  FEM Matrix and RHS assembly 
•  Symmetric matrix solved by CG (no preconditioner) 



•  Dual-Socket 12-core Magny-Cours;  31k DOF/core; Intel 11 
•  Charon steady-state drift-diffusion BJT 
•  2D App (3 DOF/node) vs. 3D MiniFE; match DOF/core and NNZ  
•  Efficiency: ratio of 4-core time to n-core time (expressed as %) 
•  LS and PS+LS: linear solve without/with ML precond setup time 
 

 
 

Charon MiniFE 

cores  CG eff 

4  Ref 

8  87 

12  74 

16  64 

20  56 

24  46 

cores  LS eff  PS+LS eff 

4  Ref  Ref 

8  88  89 

12  77  80 

16  68  72 

20  59  64 

24  52  57 

MiniFE Represent App?  Memory Bandwidth Effects 



CG  Mat+RHS 

L1 HR  99.8  99.9 

L2 HR  95  67 

L3 HR  13  48 

Charon MiniFE 

LS  PS+LS  Mat+RHS 

L1 HR  99.2  99.7  99.7 

L2 HR  81  80  98.3 

L3 HR  17  22  98.4 

Abbreviations: HR (hit rate), LS (linear solve), PS (prec setup) 

•  Cray XE6 node (dual-socket 2.4GHz 8-core Magny-Cours); 16 MPI 
processes (use all 16 cores); 31k DOF/core 

•  2D Charon steady-state drift-diffusion BJT 
•  GCC 4.5.2 compiler; PAPI 4.1.2 
•  2D App (3 DOF/node) vs. 3D MiniFE; match DOF/core and NNZ 
•  Compare matrix and RHS assembly time 
 

MiniFE Represent App?  MC: Cache Performance 



CG  Mat+RHS 

L1 HR  88  99.9 

L2 HR  3  29 

L3 HR  15  15 

Charon MiniFE 

LS  PS+LS  Mat+RHS 

L1 HR  91  91  97 

L2 HR  7  7  88 

L3 HR  19  19  94 

•  Dual-socket 2.93 GHz quadcore Nehalem; 8 MPI ranks; 31k DOF/core 
•  2D Charon steady-state drift-diffusion BJT 
•  Intel 11; OpenMPI 1.4.3; PAPI 4.1.3 
•  2D Charon (3 DOF/node) vs. 3D MiniFE; match DOF/core and NNZ 
•  Compare matrix and RHS assembly time 
 

MiniFE Represent App?  Nehalem: Cache Performance 

Abbreviations: HR (hit rate), LS (linear solve), PS (prec setup) 



•  3D Charon steady-state BJT 
•  Cray XE6; dual-socket 2.4GHz 8-core Magny-Cours; 16 MPI ranks 
•  App Aztec Krylov solver 

•  1 DOF/node with BiCGSTAB; ILU(0)ov=0 precond (“ILU/bicg”) 
•  3 DOF/node with BiCGSTAB; ILU(0)ov=0 precond (“ILU/bicg”) 
•  3 DOF/node with GMRES; ILU(0)ov=0 precond (“ILU/GMR”) 
•  3 DOF/node with GMRES; ML multigrid precond 

MiniFE Represent 3D App?  Cache Performance 

MiniFE  3D Charon (Aztec) 

1 DOF/node  1 DOF/node  3 DOF/node 

CG  ILU/bicg  ILU/bicg  ILU/GMR  ML/GMR 

L1 HR  99.8  99.2  99.3  99.5  99.5 

L2 HR  95  84  82  91  89 

L3 HR  13  14  7  19  15 



Future Directions: Comparison at Scale 

Cray XE6 Red Sky (Nehalem 
linux cluster) 



Future Directions: Comparison at Scale 

Sandy Bridge linux 
cluster (fat tree) 



Conclusions and Future Work 
•  Difficult to work with large apps: miniapps can help 

•  Evaluating new algorithms to improve performance 
•  Co-design 

•  Need to understand what the miniapp is intended to 
represent as well as what it is not intended to represent 

•  Performing a study to understand how well MiniFE can 
represent an FEM app 
•  Seems to be a reasonable performance proxy for 

single compute node 
•  Doesn’t do as well at scale; further investigation is 

needed to understand discrepancies 
•  Future work 

•  More rigorous framework for comparisons 
•  Make miniFE more predictive of MG preconditioner 
•  Use miniapp to improve app 



Thanks For Your Attention! 
Paul Lin (ptlin@sandia.gov) 
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MiniFE Represent App?  Processor/Node Ranking 

•  Charon steady-state drift-diffusion BJT; 8 MPI tasks; 31k DOF/core 
•  Nehalem (Intel 11; all cores of dual-socket quadcore) 
•  12-core Magny-Cours (Intel 11; one socket, 4 MPI tasks/die) 
•  Barcelona (Intel 11; two sockets out of the quad-socket) 
•  2D App (3 DOF/node) vs. 3D MiniFE; match DOF/core and NNZ 
•  LS and PS+LS: linear solve without/with ML precond setup time 
•  Compare matrix and RHS assembly time 
 
 

CG  Mat+RHS 

1  Nehalem  Nehalem 

2  MC(1.7)  MC(1.7) 

3  Barc(2.7)  Barc(1.8) 

Charon MiniFE 

LS  PS+LS  Mat+RHS 

1  Nehalem  Nehalem  Nehalem 

2  MC(1.7)  MC(1.8)  MC(1.46) 

3  Barc(2.8)  Barc(2.5)  Barc(1.52) 

Number in parenthesis is factor greater than #1 time 



CG  Mat+RHS 

1  Intel  Intel 

2  GNU(1.01)  GNU (1.1) 

3  PGI(1.04)  PGI (1.8) 

Charon MiniFE 

LS  PS+LS  Mat+RHS 

1  Intel  Intel  Intel 

2  GNU(1.02)  GNU(1.01)  GNU(2.5) 

3  PGI(1.06)  PGI(1.2)  PGI(3.3) 

Number in parenthesis is factor greater than #1 time 

•  Quad-socket quadcore Barcelona node; 16 tasks; 31k DOF/core 
•  Charon steady-state drift-diffusion BJT 
•  Intel 11.1.064; PGI 9.0.4; GNU 4.3.4 (all Open MPI 1.4.1) 
•  2D App (3 DOF/node) vs. 3D MiniFE; match DOF/core and NNZ 
•  LS and PS+LS: linear solve without/with ML precond setup time 
•  Compare matrix and RHS assembly time 
 
 

MiniFE Represent App?  Compiler Ranking 


