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Within large organizations, the defense of cyber assets generally involves the use of various mechanisms, 
such as intrusion detection systems, to alert cyber security personnel to suspicious network activity.    
Resulting alerts are reviewed by the organization’s cyber security personnel to investigate and assess the 
threat and initiate appropriate actions to defend the organization’s network assets.  While automated 
software routines are essential to cope with the massive volumes of data transmitted across data networks, 
the ultimate success of an organization’s efforts to resist adversarial attacks upon their cyber assets relies 
on the effectiveness of individuals and teams.  This paper reports research to understand the factors that 
impact the effectiveness of Cyber Security Incidence Response Teams (CSIRTs).  Specifically, a 
simulation is described that captures the workflow within a CSIRT.  The simulation is then demonstrated in 
a study comparing the differential response time to threats that vary with respect to key characteristics
(attack trajectory, targeted asset and perpetrator).  It is shown that the results of the simulation correlate 
with data from the actual incident response times of a professional CSIRT.

As illustrated by recent, high-profile attacks on familiar 
organizations (e.g. Google, RSA and Target), there exists an 
ongoing effort by groups with varying motivations to take 
advantage of vulnerabilities in cyber systems to advance their 
objectives (Coviello, 2011; Finkle & Hosenball, 2014; Zetter, 
2010).  In response, a substantial industry has arisen focused 
on research and development of software products to monitor 
and scan data networks, and detect events indicative of 
potential attacks.  While such products are essential to an 
organization’s ability to defend their cyber assets, the eventual 
resolution of incidents relies on cyber professionals to 
investigate and assess individual alerts, initiate appropriate 
responses and compile data from individual incidents to 
recognize larger patterns of events.  

Within large organizations, the investigation and resolution of 
cyber incidents is often the responsibility of a Cyber Security 
Incidence Response Team (CSIRT).  The composition of 
CSIRTs differ with respect to the number of cyber 
professionals, the levels and areas of expertise and the work 
processes and practices.  Generally, the primary responsibility 
of a CSIRT is to review information from a variety of sources 
(e.g., intrusion detection systems, automated queries, user 
reports, notifications from other cyber professionals) to 
identify evidence of potential cyber threats.  Once a potential 
threat has been identified, the CSIRT undertakes various 
activities to understand and assess the threat and initiate 
measures to resolve the incident.  The corresponding tasks rely 
on general knowledge of computer and network systems and 
domain-specific knowledge of the local infrastructure, and 
adversary tactics and techniques, as well as various cognitive 
processes (e.g. inferential reasoning, pattern recognition, 
procedural memory, communication, etc.).  Consequently, the 
ability of organizations to effectively defend their cyber assets 
depends upon the performance of individual cyber 
professionals and their ability to coordinate activities to 
function as effective teams.

Various capabilities have been reported to simulate 
information networks and their vulnerability to cyber attacks, 
at varying scales and levels of fidelity (Chi et al., 2001; 
Futoransky et al., 2009; Kuhl, et al., 2001; Van Leeuwen et 
al., 2010; Yun et al., 2005).  LeBlanc et al. (2011) provide a 
review of several of the more prominent efforts in this regard. 
This includes models focusing on adversary tactics (Eom et 
al., 2008; Lee et al., 2005; Zakrzewska & Ferragut, 2011), as 
well as attacks by botnets (Kotenko, Kanovalov & Shorov, 
2010).  Approaches based on game theory have been 
demonstrated in modeling the interplay between attackers and 
defenders, including the inferences made by each side 
regarding the other (Hamilton & Hamilton, 2008; Shen et al., 
2007; Shiva et al., 2010). Other efforts have involved
relatively sophisticated models of the cognitive processes of 
adversaries and defenders.  For example, Dutt, Ahn & 
Gonzalez (2013) reported a model implemented within the 
ACT-R framework that incorporated parameters for risk 
aversion and experience with threats.  Kotenko (2005) 
described a simulation of the two-way interaction between 
attackers and cyber defenders that utilized an agent framework 
to capture the activities of teams.  The individual agents 
monitored the network for suspicious activity and developed 
evolving plans to thwart the activities of the attackers based on 
models of each of the other agents on their team, and their 
respective beliefs.  

Previous efforts to simulate the interplay between cyber 
adversaries and defenders have generally focused on scenarios 
in which an organization is undergoing an active attack, or 
otherwise, must cope with high demand situations.  In 
contrast, the current paper describes a model-based simulation 
that accounts for both mundane day-to-day operations, as well 
as the response of a CSIRT to incidents with potential to result 
in substantial consequences.  In this regard, it should be noted 
that the overwhelming majority of alerts investigated by cyber 
defenders are concluded to be the product of either legitimate 
user activity, false alarms generated by automated intrusion 
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detection algorithms or network technical problems that 
cannot be attributed to nefarious activities.

CSIRT Workflow Simulation
Analysts from the Sandia National Laboratories CSIRT were 
interviewed and based on these discussions, the workflow 
diagramed in Figure 1 was prepared.  This workflow was then 
implemented within a discrete event simulation using 
MicroSaint Sharp.  The following describes the model 
developed to simulate the workflow shown in Figure 1.

The model begins by generating a specified number of alerts.  
Each alert corresponds to an event that has triggered some 
form of automated network monitoring or other alerting 
function.  This step is meant to simulate the experience where
on any given morning, analysts arrive to find a queue 
containing some number of alerts that were either generated 
overnight or left unresolved from the previous day.   

At the onset of a simulation, based on likelihood estimates 
derived from records of events encountered by the Sandia 
National Laboratories CSIRT, alerts are assigned an alert type 
(See Table 1), and a ground truth level of threat, which is an 
additive function of three threat characteristics: (1) trajectory 
of the attack; (2) the asset targeted; and (3) the perpetrator.  
Next, for each analyst, the perceived level of threat is 
calculated.  The perceived level of threat varies for each 
analyst with the values randomly drawn from analyst-specific 
distributions in which the actual level of threat serves as the 
mean and the standard deviation is inversely related to the 
level of expertise assigned to the analyst.  The perceived level 
of threat is further modified on the basis of two additional 
factors: (1) novelty, or how unique is the activity, and (2) 
recency, or the extent to which activity resembles other recent 
substantive threats.  On average, experienced analysts are 
assigned a perceived level of threat that is closer to the actual 
level of threat than less experienced analysts.  Thus, a less 
experienced analyst is more likely to either overestimate or 
underestimate the threat represented by a given alert.

Table 1. Types of alerts incorporated into the simulation.

Type of Alert 
Legitimate Network Traffic
Network Technical Problem
Anomalous Firewall Activity
Anomalous Web Activity
Sandbox Activity
Beacon Activity
Email Attachment
Signature match

Once the threat associated with a given alert has been defined, 
the next step in the model simulates the process whereby 
individual analysts scan the queue of alerts and select an alert 

to open for investigation.  The current model simulates a five-
member CSIRT team, with each individual assigned an integer 
from 1-10 that reflects their level of expertise with each type 
of activity that might generate an alert.  An individual analyst 
will appraise alerts on the basis of the perceived level of threat 
and their expertise, favoring alerts that pose a high level of 
threat and correspond to their area of expertise.  Each analyst 
scans the list of unopened alerts until they reach an alert that 
exceeds an analyst-specific threshold of interest.  If no alert 
exceeds their threshold, their threshold is lowered and they 
again scan the list.

Once an alert has been opened for investigation, it is 
determined which of thirteen tasks must be performed (See 
Table 2).  Given the type of activity, the likelihood of each 
task being performed is based on data recorded from incidents 
encountered by the Sandia National Laboratories CSIRT.  A 
specific software tool that would ordinarily be used to 
accomplish the task is assigned to each task.  Individual 
analysts are assigned integer values from 1-10 to reflect both 
their level of expertise with a particular task and their 
expertise with the associated software tool.  Expertise with 
tasks and tools serve as factors in determining the time 
required for an analyst to perform a given task and the 
effectiveness with which they will perform the task.  
Consequently, superior performance results when an analyst 
has both high expertise with a task and associated software 
tool.  Likewise, intermediate levels of performance result 
when an analyst has expertise with a task, but not the 
associated software tool, or vice versa.  

Once the task has been determined, there is next consideration 
of which analyst should do the work.  This simulates the 
practice in which an analyst looks at an alert and realizes that 
a task needs to be performed for which another analyst is more 
skilled.  However, there is an incumbency bias whereby given 
two analysts with similar levels of expertise, the analyst who 
opened the investigation will conduct the task.  If it is 
determined that another analyst should perform a given task 
and that analyst is busy, the task goes into a queue and is 
worked once the analyst has completed their current task.  
Thus, at any given time, more experienced analysts may have 
numerous tasks waiting in their queue.  

Completion of a task results in generation of evidence toward 
resolution of the alert.  The time required to complete a given 
task and the evidence generated are both a function of the 
analyst’s level of expertise with the task and the associated 
software tool.  The threshold of evidence that must be reached 
to resolve an alert varies for each analyst based on the 
perceived level of threat attributed to an alert by each analyst.  
Following completion of a task, the total level of evidence is 
compared to the threshold.  One of four outcomes may result: 
(1) the alert is correctly resolved; (2) the alert is erroneously 
resolved (i.e., false positive); (3) the alert is correctly 
unresolved; or (4) the alert is incorrectly unresolved (i.e., false 
negative).  Where an alert is unresolved, there is a 
determination of the next task to be performed, with this 
process continuing until the alert is eventually resolved.



Table 2. Tasks incorporated into the simulation. 

Tasks
Submit to sandbox
Submit to analysis
Retrieve machine proxy
Reverse engineer executable
Reverse engineer protocol
Retrieve forensics data
Analyze memory image
Retrieve network data
Retrieve email
Add network signature
Retrieve SSL keys
Implement network block
Implement additional alerts

Evaluation of the Model
To evaluate the model, a collection of 136 actual alerts were 
obtained from records generated by the Sandia National 
Laboratories CSIRT.  These records included data concerning 
the nature of each alert and tasks performed by each analyst
that worked on the alert.  This allowed a determination of the 
time to resolve each alert, the number of analysts that worked 
on each alert and the number of entries, with entries 
corresponding to separate tasks performed in resolving alerts.  
Additionally, an experienced analyst from the Sandia National 
Laboratories CSIRT reviewed each alert and assigned values 
from 1-3 regarding characteristics of the associated threat (i.e., 
threat trajectory, targeted asset and perpetrator).  

Threat characteristics are summaries of the alert data based on 
the MITRE Cyber Prep Methodology and threat attributes 
described by Mateski et al. (2012).  The summaries are 
defined simply as a 3-pair describing the threat actions.
Resource, family, and profiles are condensed by actions and 
context into each of the 3-pair attributes. The first attribute is 
an observed trajectory: (1) targeting no specific entity, (2) 
targeting a specific single entity, or (3) targeting multiple 
entities or high value entities. The second attribute is the 
affected or potentially affected asset set: (1) no asset, (2) a 
client or set of client assets, or (3) an infrastructure, service, or 
critical asset. The final attribute describes the threat potential: 
(1) a careless or unknown entity, (2) an action associated with 
criminal activity, or (3) an action associated with advanced 
theat.

Table 3 provides correlation results for the variables derived 
through the analysis of actual alerts.  It can be observed that 
the three measures of the level of effort devoted to individual 
alerts (i.e., total time, number of entries and number of 
analysts) are each strongly related to one another.  As might 
be expected, alerts requiring longer to resolve also have more 
entries indicating that more tasks are performed, and their 
resolution involves work by more analysts.  Each of the threat 

characteristics were strongly associated with each measure of 
the level of effort required to resolve alerts.  This suggests that 
for each threat characteristic, as the level of threat increases, a 
greater level of effort is expended to resolve the alert.  There 
were positive relationships between the three threat 
characteristics, although these correlations were weaker than 
those found between the measures of the level of effort, with 
the association between the characteristics asset and 
perpetrator failing to reach statistical significance.  A stepwise 
regression was performed to assess the contribution of threat 
characteristics to each measure of the level of effort required 
to resolve alerts.  For total time, the only threat characteristic
that attained statistical significance was asset (t=3.98, 
p<0.001, R-Square=10.65).  With number of entries, all three 
threat characteristics attained significance (perpetrator –
t=6.92, p<0.001; asset – t=3.38, p<0.001; trajectory – t=2.84, 
p<0.005; R-Square=41.26).  Finally, for the number of 
analysts, perpetrator and asset were both statistically 
significant (perpetrator – t=6.36, p<0.001; asset – t=3.39, 
p<0.001, R-Square=30.85).

Evaluation of the model involved simulating a series of 136 
alerts with threat characteristics equivalent to those of the 
actual events drawn from the records of the Sandia National 
Laboratories CSIRT.  The simulation utilized an intermediate 
value of expertise (i.e., 5 on a scale of 1-10) for each of five 
analysts, with respect to the type of activity, tasks and 
software tools.  For each alert, the simulation generated a 
value for the total time required to resolve the alert.  There 
was a statistically significant correlation between the total 
times for the simulated alerts and the corresponding total times 
for the actual alerts (r=0.185, p<0.03).  This result suggests 
that the mechanisms incorporated into the model to simulate 
the investigation of alerts produce a differential response to 
varying threat characteristics that is comparable to that 
occurring with actual events.  However, it was also noted that 
the current model does not have mechanisms to account for 
the situation in which analysts suspend work on an alert for 
some period of time and then, later resume work on the alert 
based on having gained new insights or a lull in ongoing 
demands on their time.  In the current model, once an 
investigation of an alert begins, it continues until the alert is 
resolved.  It is believed that the correlation would have been 
even stronger had these mechanisms existed in the model.

Conclusion
The research described in the preceding sections provides an 
account of the workflow within a CSIRT and the manner in 
which varying threats differentially affect this workflow.  In 
particular, it is proposed that analysts employ thresholds 
whereby a certain level of evidence must be attained before 
they are satisfied that they have a sufficient understanding of 
suspicious network activity to close an investigation.  It may 
be further asserted that these thresholds are a function of 
characteristics of the corresponding threat.  



The current analysis does not take into consideration the 
expertise of the analyst.  It is conjectured that expertise 
influences the workflow in three ways.  First, as analysts gain 
expertise, they more accurately assess the nature of threats and 
are better able to calibrate the level of effort devoted to an 
individual alert to the threat posed by the related activity.  
Consequently, inexperienced analysts are expected to either 
underestimate or overestimate the level of threat, and as a 
result, tend to commit insufficient resources to their 
investigation or continue investigations beyond the point of 
diminishing returns.  Secondly, a richer understanding of tasks 
should allow analysts possessing greater expertise to perform 
those tasks more efficiently and productively.  Third, greater 
knowledge of the procedures entailed in using software tools 
combined with a better conceptual knowledge of the 
application of the software tools should similarly result in 
superior efficiency and productivity.  As a result, on average, 
the two latter factors should result in experienced analysts 
requiring less time to perform tasks and generating more 
evidence toward resolution of an investigation through their 
task performance.  

Of the factors described above, experience with software tools 
is expected to become increasingly important for domains 
such as cyber security.  With cyber security, and similar
domains, a situation is arising in which the available data is so 
immense that it is unrealistic for an individual to learn to 
recognize meaningful patterns through the implicit learning 
processes that have traditionally been associated with attaining 
domain expertise (Klein, Calderwood & Clinto-Cirocco, 
2010).  Consequently, it is asserted that in these domains, a 
trend will emerge in which expertise is rooted in conceptual 
and practical understanding of software tools and the ability to 
effectively apply software tools to unique, and often, 
unexpected, circumstances.
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Figure 1. Workflow for Cyber Security Incident Response Team implemented in simulation.

Table 3. Correlation analysis of variables assessed from actual cyber security incidents

Total Time # Entries # Analysts Trajectory Asset
# Entries r=0.513

p<0.001
# Analysts r=0.524

p<0.001
r=0.860
p<0.001

Trajectory r=0.171
p<0.048

r=0.348
p<0.001

r=0.229
p<0.008

Asset r=0.326
p<0.001

r=0.352
p<0.001

r=0.311
p<0.001

r=0.241
p<0.005

Perpetrator r=0.171
p<0.048

r=0546
p<0.001

r=0.498
p<0.001

r=0.192
p<0.026

r=0.136
NS


