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Within large organizations, the defense of cyber assets generally involves the use of various mechanisms,
such as intrusion detection systems, to alert cyber security personnel to suspicious network activity.
Resulting alerts are reviewed by the organization’s cyber security personnel to investigate and assess the
threat and initiate appropriate actions to defend the organization’s network assets. While automated
software routines are essential to cope with the massive volumes of data transmitted across data networks,
the ultimate success of an organization’s efforts to resist adversarial attacks upon their cyber assets relies
on the effectiveness of individuals and teams. This paper reports research to understand the factors that
impact the effectiveness of Cyber Security Incidence Response Teams (CSIRTs). Specifically, a
simulation is described that captures the workflow within a CSIRT. The simulation is then demonstrated in
a study comparing the differential response time to threats that vary with respect to key characteristics
(attack trajectory, targeted asset and perpetrator). It is shown that the results of the simulation correlate

with data from the actual incident response times of a professional CSIRT.

As illustrated by recent, high-profile attacks on familiar
organizations (e.g. Google, RSA and Target), there exists an
ongoing effort by groups with varying motivations to take
advantage of vulnerabilities in cyber systems to advance their
objectives (Coviello, 2011; Finkle & Hosenball, 2014; Zetter,
2010). Inresponse, a substantial industry has arisen focused
on research and development of software products to monitor
and scan data networks, and detect events indicative of
potential attacks. While such products are essential to an
organization’s ability to defend their cyber assets, the eventual
resolution of incidents relies on cyber professionals to
investigate and assess individual alerts, initiate appropriate
responses and compile data from individual incidents to
recognize larger patterns of events.

Within large organizations, the investigation and resolution of
cyber incidents is often the responsibility of a Cyber Security
Incidence Response Team (CSIRT). The composition of
CSIRTs differ with respect to the number of cyber
professionals, the levels and areas of expertise and the work
processes and practices. Generally, the primary responsibility
of a CSIRT is to review information from a variety of sources
(e.g., intrusion detection systems, automated queries, user
reports, notifications from other cyber professionals) to
identify evidence of potential cyber threats. Once a potential
threat has been identified, the CSIRT undertakes various
activities to understand and assess the threat and initiate
measures to resolve the incident. The corresponding tasks rely
on general knowledge of computer and network systems and
domain-specific knowledge of the local infrastructure, and
adversary tactics and techniques, as well as various cognitive
processes (e.g. inferential reasoning, pattern recognition,
procedural memory, communication, etc.). Consequently, the
ability of organizations to effectively defend their cyber assets
depends upon the performance of individual cyber
professionals and their ability to coordinate activities to
function as effective teams.

Various capabilities have been reported to simulate
information networks and their vulnerability to cyber attacks,
at varying scales and levels of fidelity (Chi et al., 2001;
Futoransky et al., 2009; Kuhl, et al., 2001; Van Leeuwen et
al., 2010; Yun et al., 2005). LeBlanc et al. (2011) provide a
review of several of the more prominent efforts in this regard.
This includes models focusing on adversary tactics (Eom et
al., 2008; Lee et al., 2005; Zakrzewska & Ferragut, 2011), as
well as attacks by botnets (Kotenko, Kanovalov & Shorov,
2010). Approaches based on game theory have been
demonstrated in modeling the interplay between attackers and
defenders, including the inferences made by each side
regarding the other (Hamilton & Hamilton, 2008; Shen et al.,
2007; Shiva et al., 2010). Other efforts have involved
relatively sophisticated models of the cognitive processes of
adversaries and defenders. For example, Dutt, Ahn &
Gonzalez (2013) reported a model implemented within the
ACT-R framework that incorporated parameters for risk
aversion and experience with threats. Kotenko (2005)
described a simulation of the two-way interaction between
attackers and cyber defenders that utilized an agent framework
to capture the activities of teams. The individual agents
monitored the network for suspicious activity and developed
evolving plans to thwart the activities of the attackers based on
models of each of the other agents on their team, and their
respective beliefs.

Previous efforts to simulate the interplay between cyber
adversaries and defenders have generally focused on scenarios
in which an organization is undergoing an active attack, or
otherwise, must cope with high demand situations. In
contrast, the current paper describes a model-based simulation
that accounts for both mundane day-to-day operations, as well
as the response of a CSIRT to incidents with potential to result
in substantial consequences. In this regard, it should be noted
that the overwhelming majority of alerts investigated by cyber
defenders are concluded to be the product of either legitimate
user activity, false alarms generated by automated intrusion



detection algorithms or network technical problems that
cannot be attributed to nefarious activities.

CSIRT Workflow Simulation

Analysts from the Sandia National Laboratories CSIRT were
interviewed and based on these discussions, the workflow
diagramed in Figure 1 was prepared. This workflow was then
implemented within a discrete event simulation using
MicroSaint Sharp. The following describes the model
developed to simulate the workflow shown in Figure 1.

The model begins by generating a specified number of alerts.
Each alert corresponds to an event that has triggered some
form of automated network monitoring or other alerting
function. This step is meant to simulate the experience where
on any given morning, analysts arrive to find a queue
containing some number of alerts that were either generated
overnight or left unresolved from the previous day.

At the onset of a simulation, based on likelihood estimates
derived from records of events encountered by the Sandia
National Laboratories CSIRT, alerts are assigned an alert type
(See Table 1), and a ground truth level of threat, which is an
additive function of three threat characteristics: (1) trajectory
of the attack; (2) the asset targeted; and (3) the perpetrator.
Next, for each analyst, the perceived level of threat is
calculated. The perceived level of threat varies for each
analyst with the values randomly drawn from analyst-specific
distributions in which the actual level of threat serves as the
mean and the standard deviation is inversely related to the
level of expertise assigned to the analyst. The perceived level
of threat is further modified on the basis of two additional
factors: (1) novelty, or how unique is the activity, and (2)
recency, or the extent to which activity resembles other recent
substantive threats. On average, experienced analysts are
assigned a perceived level of threat that is closer to the actual
level of threat than less experienced analysts. Thus, a less
experienced analyst is more likely to either overestimate or
underestimate the threat represented by a given alert.

Table 1. Types of alerts incorporated into the simulation.

Type of Alert

Legitimate Network Traffic

Network Technical Problem

Anomalous Firewall Activity

Anomalous Web Activity

Sandbox Activity

Beacon Activity

Email Attachment

Signature match

Once the threat associated with a given alert has been defined,
the next step in the model simulates the process whereby
individual analysts scan the queue of alerts and select an alert

to open for investigation. The current model simulates a five-
member CSIRT team, with each individual assigned an integer
from 1-10 that reflects their level of expertise with each type
of activity that might generate an alert. An individual analyst
will appraise alerts on the basis of the perceived level of threat
and their expertise, favoring alerts that pose a high level of
threat and correspond to their area of expertise. Each analyst
scans the list of unopened alerts until they reach an alert that
exceeds an analyst-specific threshold of interest. If no alert
exceeds their threshold, their threshold is lowered and they
again scan the list.

Once an alert has been opened for investigation, it is
determined which of thirteen tasks must be performed (See
Table 2). Given the type of activity, the likelihood of each
task being performed is based on data recorded from incidents
encountered by the Sandia National Laboratories CSIRT. A
specific software tool that would ordinarily be used to
accomplish the task is assigned to each task. Individual
analysts are assigned integer values from 1-10 to reflect both
their level of expertise with a particular task and their
expertise with the associated software tool. Expertise with
tasks and tools serve as factors in determining the time
required for an analyst to perform a given task and the
effectiveness with which they will perform the task.
Consequently, superior performance results when an analyst
has both high expertise with a task and associated software
tool. Likewise, intermediate levels of performance result
when an analyst has expertise with a task, but not the
associated software tool, or vice versa.

Once the task has been determined, there is next consideration
of which analyst should do the work. This simulates the
practice in which an analyst looks at an alert and realizes that
a task needs to be performed for which another analyst is more
skilled. However, there is an incumbency bias whereby given
two analysts with similar levels of expertise, the analyst who
opened the investigation will conduct the task. If it is
determined that another analyst should perform a given task
and that analyst is busy, the task goes into a queue and is
worked once the analyst has completed their current task.
Thus, at any given time, more experienced analysts may have
numerous tasks waiting in their queue.

Completion of a task results in generation of evidence toward
resolution of the alert. The time required to complete a given
task and the evidence generated are both a function of the
analyst’s level of expertise with the task and the associated
software tool. The threshold of evidence that must be reached
to resolve an alert varies for each analyst based on the
perceived level of threat attributed to an alert by each analyst.
Following completion of a task, the total level of evidence is
compared to the threshold. One of four outcomes may result:
(1) the alert is correctly resolved; (2) the alert is erroneously
resolved (i.e., false positive); (3) the alert is correctly
unresolved; or (4) the alert is incorrectly unresolved (i.e., false
negative). Where an alert is unresolved, there is a
determination of the next task to be performed, with this
process continuing until the alert is eventually resolved.



Table 2. Tasks incorporated into the simulation.

Tasks

Submit to sandbox

Submit to analysis

Retrieve machine proxy

Reverse engineer executable

Reverse engineer protocol

Retrieve forensics data

Analyze memory image

Retrieve network data

Retrieve email

Add network signature

Retrieve SSL keys

Implement network block

Implement additional alerts

Evaluation of the Model

To evaluate the model, a collection of 136 actual alerts were
obtained from records generated by the Sandia National
Laboratories CSIRT. These records included data concerning
the nature of each alert and tasks performed by each analyst
that worked on the alert. This allowed a determination of the
time to resolve each alert, the number of analysts that worked
on each alert and the number of entries, with entries
corresponding to separate tasks performed in resolving alerts.
Additionally, an experienced analyst from the Sandia National
Laboratories CSIRT reviewed each alert and assigned values
from 1-3 regarding characteristics of the associated threat (i.c.,
threat trajectory, targeted asset and perpetrator).

Threat characteristics are summaries of the alert data based on
the MITRE Cyber Prep Methodology and threat attributes
described by Mateski et al. (2012). The summaries are
defined simply as a 3-pair describing the threat actions.
Resource, family, and profiles are condensed by actions and
context into each of the 3-pair attributes. The first attribute is
an observed trajectory: (1) targeting no specific entity, (2)
targeting a specific single entity, or (3) targeting multiple
entities or high value entities. The second attribute is the
affected or potentially affected asset set: (1) no asset, (2) a
client or set of client assets, or (3) an infrastructure, service, or
critical asset. The final attribute describes the threat potential:
(1) a careless or unknown entity, (2) an action associated with
criminal activity, or (3) an action associated with advanced
theat.

Table 3 provides correlation results for the variables derived
through the analysis of actual alerts. It can be observed that
the three measures of the level of effort devoted to individual
alerts (i.e., total time, number of entries and number of
analysts) are each strongly related to one another. As might
be expected, alerts requiring longer to resolve also have more
entries indicating that more tasks are performed, and their
resolution involves work by more analysts. Each of the threat

characteristics were strongly associated with each measure of
the level of effort required to resolve alerts. This suggests that
for each threat characteristic, as the level of threat increases, a
greater level of effort is expended to resolve the alert. There
were positive relationships between the three threat
characteristics, although these correlations were weaker than
those found between the measures of the level of effort, with
the association between the characteristics asset and
perpetrator failing to reach statistical significance. A stepwise
regression was performed to assess the contribution of threat
characteristics to each measure of the level of effort required
to resolve alerts. For total time, the only threat characteristic
that attained statistical significance was asset (#=3.98,
p<0.001, R-Square=10.65). With number of entries, all three
threat characteristics attained significance (perpetrator —
t=6.92, p<0.001; asset — =3.38, p<0.001; trajectory — =2.84,
p<0.005; R-Square=41.26). Finally, for the number of
analysts, perpetrator and asset were both statistically
significant (perpetrator — =6.36, p<0.001; asset — /=3.39,
p<0.001, R-Square=30.85).

Evaluation of the model involved simulating a series of 136
alerts with threat characteristics equivalent to those of the
actual events drawn from the records of the Sandia National
Laboratories CSIRT. The simulation utilized an intermediate
value of expertise (i.e., 5 on a scale of 1-10) for each of five
analysts, with respect to the type of activity, tasks and
software tools. For each alert, the simulation generated a
value for the total time required to resolve the alert. There
was a statistically significant correlation between the total
times for the simulated alerts and the corresponding total times
for the actual alerts (7=0.185, p<0.03). This result suggests
that the mechanisms incorporated into the model to simulate
the investigation of alerts produce a differential response to
varying threat characteristics that is comparable to that
occurring with actual events. However, it was also noted that
the current model does not have mechanisms to account for
the situation in which analysts suspend work on an alert for
some period of time and then, later resume work on the alert
based on having gained new insights or a lull in ongoing
demands on their time. In the current model, once an
investigation of an alert begins, it continues until the alert is
resolved. It is believed that the correlation would have been
even stronger had these mechanisms existed in the model.

Conclusion

The research described in the preceding sections provides an
account of the workflow within a CSIRT and the manner in
which varying threats differentially affect this workflow. In
particular, it is proposed that analysts employ thresholds
whereby a certain level of evidence must be attained before
they are satisfied that they have a sufficient understanding of
suspicious network activity to close an investigation. It may
be further asserted that these thresholds are a function of
characteristics of the corresponding threat.



The current analysis does not take into consideration the
expertise of the analyst. It is conjectured that expertise
influences the workflow in three ways. First, as analysts gain
expertise, they more accurately assess the nature of threats and
are better able to calibrate the level of effort devoted to an
individual alert to the threat posed by the related activity.
Consequently, inexperienced analysts are expected to either
underestimate or overestimate the level of threat, and as a
result, tend to commit insufficient resources to their
investigation or continue investigations beyond the point of
diminishing returns. Secondly, a richer understanding of tasks
should allow analysts possessing greater expertise to perform
those tasks more efficiently and productively. Third, greater
knowledge of the procedures entailed in using software tools
combined with a better conceptual knowledge of the
application of the software tools should similarly result in
superior efficiency and productivity. As a result, on average,
the two latter factors should result in experienced analysts
requiring less time to perform tasks and generating more
evidence toward resolution of an investigation through their
task performance.

Of the factors described above, experience with software tools
is expected to become increasingly important for domains
such as cyber security. With cyber security, and similar
domains, a situation is arising in which the available data is so
immense that it is unrealistic for an individual to learn to
recognize meaningful patterns through the implicit learning
processes that have traditionally been associated with attaining
domain expertise (Klein, Calderwood & Clinto-Cirocco,
2010). Consequently, it is asserted that in these domains, a
trend will emerge in which expertise is rooted in conceptual
and practical understanding of software tools and the ability to
effectively apply software tools to unique, and often,
unexpected, circumstances.
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Figure 1. Workflow for Cyber Security Incident Response Team implemented in simulation.

Table 3. Correlation analysis of variables assessed from actual cyber security incidents
Total Time | # Entries # Analysts | Trajectory | Asset
# Entries r=0.513
»<0.001
# Analysts r=0.524 r=0.860
2<0.001 p<0.001
Trajectory r=0.171 r=0.348 r=0.229
<0.048 »<0.001 »<0.008
Asset r=0.326 r=0.352 r=0.311 r=0.241
p<0.001 p<0.001 p<0.001 p<0.005
Perpetrator r=0.171 r=0546 r=0.498 r=0.192 r=0.136
p<0.048 »<0.001 »<0.001 1<0.026 NS




