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ABSTRACT

A new approach to chemistry modeling for large eddy simulation of turbulent react-
ing flows is developed. Instead of solving transport equations for all of the numerous
species in a typical chemical mechanism and modeling the unclosed chemical source
terms, the present study adopts an indirect mapping approach, whereby all of the
detailed chemical processes are mapped to a reduced system of tracking scalars.
Presently, only two such scalars are considered: a mixture fraction variable, which
tracks the mixing of fuel and oxidizer, and a progress variable, which tracks the
global extent-of-reaction of the local mixture. The mapping functions, which de-
scribe all of the detailed chemical processes with respect to the tracking variables,
are determined by solving quasi-steady diffusion-reaction equations with complex
chemical kinetics and multicomponent mass diffusion. The performance of the new
model is compared to fast chemistry and steady flamelet models for predicting ve-
locity, species concentration, and temperature fields in a methane-fueled coaxial
jet combustor for which experimental data are available. The progress-variable
approach is able to capture the unsteady, lifted flame dynamics observed in the
experiment, and to obtain good agreement with the experimental data and sig-
nificantly outperform the fast chemistry and steady flamelet models, which both

predict an attached flame.
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NOMENCLATURE

Roman Symbols

A; atomic mass of element i
c convection velocity; dimensionless coefficient
Cp mixture specific heat at constant pressure (per unit mass)
Cp.i specific heat at constant pressure of species i (per unit mass)
C model coefficient; generic progress variable
D;; binary mass diffusion coefficient matrix
Dr; thermal mass diffusion coefficient of species 7
% material derivative operator, % = % +u-V
e 2.71828. .. ; mixture internal energy per unit mass
€; internal energy of species i (per unit mass)
f(..) generic function
fi body force per unit mass of species i

mass flux, g = pu
mixture enthaply per unit mass
enthaply of species ¢ (per unit mass)

indentity tensor, I;; = 0;;

h;

I

k
L flamelet domain length

M;

kinetic energy per unit mass, k = %uQ; wavenumber
molecular mass of species i
n boundary-normal coordinate
Ng number of chemical elements
Ng number of chemical species
Nij number of j atoms in a molecule of species i
D pressure
Do background pressure

P(...) probability density function
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qr
4D

qij

<

N

»

Yi
yp
Z

heat flux vector

radiative heat flux vector

Dufour heat flux

residual scalar flux of species 7
radial coordinate

universal gas constant

normalizing length scale

mixture entropy per unit mass
strain-rate tensor, S;; = %(u” + ;)
time

residual stress tensor

temperature

velocity component or magnitude; generic variable
velocity vector

normalizing velocity scale

mass diffusion velocity of species ¢
chemical production rate of species @
spatial coordinate; generic variable
mole fraction of species i

mass fraction of species 7

product mass fraction

mixture fraction

Greek Symbols

(07

Om

(077

ar

oz

generic diffusivity
molecular diffusivity
turbulent diffusivity

mass diffusivity of species i
thermal diffusivity

mixture-fraction diffusivity
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r Gamma function, I'(n) = (n — 1)!

0 Dirac delta function
dij Kronecker delta
9z (+) finite-difference operator

filter width; grid spacing

A

n generic conserved quantity
0 azimuthal coordinate

S)

velocity divergence

K thermal conductivity, Kk = pc, ar

A generic eigenvalue

o molecular viscosity, 4 = pv; distribution mean
[t turbulent viscosity

B bulk viscosity

v kinematic viscosity

T 3.14159. ..

p mass density
00 flamelet reference mass density
o? distribution variance

viscous stress tensor
generic scalar variable
scalar dissipation rate
X0 flamelet average dissipation rate
flamelet mixture-fraction flux

w angular frequency

Other Symbols

Oz indicates differentiation of ¢ with respect to coordinate x
\Y% gradient operator
contraction (inner product) operator

double-contraction operator
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Chapter 1

INTRODUCTION

1.1 Motivation and Objective

Large eddy simulation (LES) stands in the middle of the range of turbulent flow
prediction tools, between direct numerical simulation (DNS), in which all scales of
turbulence are numerically resolved, and Reynolds-averaged Navier-Stokes (RANS)
calculations, in which all scales of turbulence are modeled. In LES, the large, energy-
containing scales of motion are simulated numerically, while the small, unresolved
subgrid scales and their interactions with the large scales are modeled. The large
scales, which usually control the behavior and statistical properties of a turbulent
flow, tend to be geometry and flow dependent, whereas the small scales tend to be
more universal and consequently easier to model.

However, this fundamental advantage of LES has been called into question for
reacting flows. It has been argued that since chemical reactions take place only after
the reactants become mixed at the molecular level (so that reactions occur mostly
in the subgrid scales), turbulent reacting flows cannot, in general, be universal at
the smallest scales and therefore, subgrid models for chemical reactions cannot be
any simpler than in Reynolds-averaged approaches.

The counterargument is that the presence of chemical reactions does not in-
validate the hypothesis of universality of the small scales. Indeed, flamelet models
of turbulent combustion presuppose that there exist universal flame structures at
the smallest scales. One could also argue that it is because of the inaccurate mod-
eling of the large scales, in particular large-scale mixing, that Reynolds-averaged
approaches sometimes fail to predict turbulent reacting flows accurately, so that
even with a fairly simple model for the chemistry, LES may be able to outperform

Reynolds-averaged computations that employ more sophisticated chemistry models.
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To put LES into perspective, it will be helpful to compare its costs and benefits
to the alternative methods of DNS, RANS, and physical experiments. DNS is the
method of choice for low Reynolds number flows in which the range of scales to be
resolved is small, but it is not feasible for high Reynolds number flows of practical
importance. RANS is used when computational cost (or turnaround time), rather
than solution accuracy, is the deciding factor. In many ways, LES represents a
logical compromise by providing accurate, high fidelity solutions at affordable cost.
In general, the cost of an LES of a high Reynolds number flow is comparable to
DNS of a similar low Reynolds flow. However, when LES and DNS are compared
at the same Reynolds number, the cost difference is enormous. In this case, LES
can provide nearly the same information and accuracy as DNS for quantities of
engineering interest but at a fraction of the cost. When compared with RANS, LES
is seen to provide much more accurate data and, perhaps equally important, more
complete data, such as frequency spectra and pressure fluctuations, but at a cost
that can be several orders of magnitude higher than RANS. However, relative to the
remaining alternative of physical testing, the cost of LES appears quite reasonable,
and as the cost of computing declines in the coming years, LES is expected to
compete not only with RANS but also with laboratory experiments in providing
accurate design data with fast turnaround time and low cost. This is especially true
in applications of LES to gas turbine combustors and internal combustion engines,
where the Reynolds numbers are low and flows are unsteady and separated. These
conditions are suitable for economical LES, and they have posed difficulty for RANS

computations.

The objective of this work is the development of a large eddy simulation based
prediction methodology for turbulent reacting flows with principal application to
gas turbine combustors. It is in the gas turbine industry where accurate, high fi-
delity prediction methods for turbulent combustion are desperately needed for the
design of next generation, low emissions combustors. Current practice in the in-
dustry relies heavily on RANS calculations, backed up by expensive physical testing.

The trend in the industry and in engineering in general, is towards shorter design

-2



cycles through increased reliance on numerical prediction. RANS models for tur-
bulent combustion do not appear capable of meeting the needs of industry in this
regard, and the industry is beginning to look towards more sophisticated prediction
tools that can take advantage of new computational capabilities. It is, in fact, the
relentless advance of computer technology that is the driving force behind increas-
ing expectations for computational fluid dynamics and the main motivation for this

study.

1.2 Literature Survey

Large eddy simulation has been developed and studied as a turbulent flow prediction
tool for engineering during the past three decades, with significant progress occur-
ring more recently with advances in computer technology and the development of
the dynamic subgrid-scale modeling procedure (Germano et al. 1991). With the dy-
namic procedure, model coefficients are automatically computed using information
contained in the resolved turbulence scales, thereby eliminating the uncertainties
associated with tunable model parameters. Moin et al. (1991) applied the dynamic
procedure to scalar transport and subgrid kinetic energy models for compressible
turbulent flows using Favre filtering. Reviews of LES are given by Lesieur and Métais
(1996) and Moin (1997). The application of large eddy simulation to chemically re-
acting flows has been a subject of growing interest, but to date few simulations of
realistic combustion systems have been undertaken.

The application of LES to gas turbine combustor configurations has been facil-
itated by the availability of comprehensive experimental data for both nonswirling
and swirling confined coaxial jets with and without chemical reactions, due to the
classic experiments that were conducted at United Technologies Research Center
(Johnson and Bennett 1981, 1984; Roback and Johnson 1983; Owen et al. 1976;
Spadaccini et al. 1976). Akselvoll and Moin (1996) simulated incompressible flow
with a passive scalar in a nonswirling confined coaxial jet and obtained good agree-
ment with the experiment of Johnson and Bennett (1984). Pierce and Moin (1998a)

further extended that work to include the effects of swirl, which is commonly used
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in gas-turbine combustors, and chemical heat release, which requires the use of
variable-density transport equations. These studies were successful in predicting
velocity and conserved scalar mixing fields in complex combustor flows, but they
did not consider the effects of finite-rate chemistry or the general issue of chemistry

modeling in LES.

Techniques for computational modeling of turbulent combustion have been the
subject of numerous studies, with significant advances attributable to the devel-
opment of flamelet models (Peters 1984, 1986), PDF methods (Pope 1985, 1990),
conditional moment closure (Klimenko and Bilger 1999), and linear eddy model-
ing (Kerstein 1992a, 1992b; McMurtry et al. 1993; Calhoon and Menon 1996). A
comprehensive review of turbulent combustion modeling has been written by Peters
(2000). Many of these established modeling approaches have recently been extended

for use in large eddy simulations.

The steady flamelet model was proposed for LES and tested in homogeneous
turbulence by Cook et al. (1997). Unsteady flamelet modeling was used by Pitsch
and Steiner (2000) in large eddy simulation of a piloted jet diffusion flame, where
excellent agreement with the experimental data was obtained. Gao and O’Brien
(1993), Réveillon and Vervisch (1998), among others, have proposed extensions of
the PDF method to LES. In the latter study, the dynamic approach was used to close
the turbulent micro-mixing term in the PDF transport equation. Monte Carlo simu-
lation techniques, which are commonly used in the implementation of PDF methods,
have been generalized to LES via the filtered density function (Colucci et al. 1998;
Jaberi et al. 1999). A variant of the conditional moment closure technique, called
conditional source estimation was proposed by Bushe and Steiner (1999), who also
incorporated it into an LES of a piloted jet diffusion flame (Steiner and Bushe 2001).
Jaberi and James (1998) propose modeling the filtered chemical source terms in
LES using the scale-similarity approach and obtain the corresponding model coef-
ficient using the dynamic procedure. However, scale similarity assumptions may
be inappropriate for quantities that are dominated by small scales such as chemi-

cal reactions and scalar dissipation, and therefore, it is unlikely that extrapolation
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from larger scales would yield accurate results in high Reynolds number applica-
tions. DesJardin and Frankel (1998) have performed extensive evaluation of several
subgrid-scale combustion models. However, their conclusions may not be applicable

to LES of high Reynolds number flows.

Assumed PDF methods offer a simple and inexpensive alternative to modeling
approaches that solve PDF transport equations (Frankel et al. 1993). The most
important application of assumed PDF’s has been in the modeling of mixture fraction
fluctuations. Cook and Riley (1994) proposed the assumed beta PDF as a subgrid-
scale mixing model in LES and successfully tested it in homogeneous turbulence.
Jiménez et al. (1997) tested the assumed beta PDF for LES in a turbulent mixing
layer and demonstrated, in particular, the superior performance of the model in
highly intermittent, forced mixing layers where the assumed PDF approach in the
RANS context was found to be very inaccurate. Wall and Moin (2000) tested the
model in the presence of chemical heat release and also demonstrated that good
results can be obtained. Assumed PDF’s require the variance of the subgrid scalar
fluctuations as an input parameter. This quantity was modeled by Cook and Riley
(1994) using a scale-similarity assumption. A theoretical estimate for the coefficient
in this model was obtained by Cook (1997) and Jiménez et al. (1997). Pierce and
Moin (1998¢), using equilibrium assumptions for the subgrid scales, obtained an
algebraic scaling law for the variance and computed its coefficient using the dynamic
procedure.

One of the major challenges faced during the present study was to predict
flame lift-off in non-premixed combustion. The flamelet /progress-variable approach
(§3.3.4) was developed in part to address this problem, but it should be mentioned
that an alternative solution may be to use the level-set or G-equation approach in
combination with mixture fraction. This was used by Miiller et al. (1994) in a RANS
calculation of a lifted jet flame. Other approaches for modeling partially premixed
combustion and lifted flames in LES have also been proposed (Vervisch and Trouvé

1998; Legier et al. 2000).

At present, most large eddy simulations of turbulent combustion in complex
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geometries have not been subject to comprehensive validation against experimen-
tal data. Future developments in this field would benefit tremendously from new
quantitative experimental data using modern non-intrusive diagnostic capabilities
in complex configurations. The present study would not have been possible without
the experimental data of Owen et al. (1976), which included detailed documenta-
tion of velocity, species concentrations, and temperature. A modern version of these
experiments is currently underway at Stanford (Sipperley et al. 1999) to address

the acute need for LES validation data.



1.3 Accomplishments

The following list summarizes the important contributions of this work:

e Development of a 20,000 line computer code, structured according to modern
object-oriented progamming techniques, written in FORTRAN 90, and including

distributed-memory parallelism using the MPI standard.

e Development of a body-force technique for generation of swirling inflow condi-

tions (Pierce and Moin 1998b).

e Development of a dynamic subgrid-scale model for conserved scalar variance

and dissipation rate (p. 23).

e Development of a novel flamelet/progress-variable chemistry model for LES of

non-premixed combustion (p. 41).

e Development of a conservative space-time discretization for variable density

flows (p. 54).

e Identification of spurious heat release as a mechanism for numerical instability

in variable density flows (p. 58).

e Development of an iterative, semi-implicit time advancement scheme for the

variable density equations (p. 59).

e Development of a novel technique for generating inflow turbulence from speci-

fied turbulence statistics (p. 72).
e First comprehensive validation of LES for complex reacting flows (p. 82).

e Demonstration of the importance of differential diffusion in flamelet modeling

of subgrid-scale chemistry (p. 88).






Chapter 2

GOVERNING EQUATIONS

The starting point for a computational investigation is a statement of the governing equa-
tions for the phenomena under study. In this chapter, the complete, detailed governing
equations for gaseous reacting flows are first presented and then simplified to a working

set of equations suitable for the present study.
2.1 The Equations of Gaseous Combustion

The equations governing gaseous combustion are summarized below for reference
(e.g. Williams 1985, p. 2). They are valid for a mixture of ideal gases in local

thermodynamic equilibrium and chemical nonequilibrium.

Species:
Ipyi B o
o TV (w) = =V (pVigs) + pwi, i=1,...,Ns (2.1)
Mass:
dp
ot ' = 2.2
e +V-(pu) =0 (2.2)
Momentum:
8pu+v (puu) = —=Vp+V -7+ Z f; (2.3)
ot put) =—Vvp p : yifi ,
Energy:
0 k

Viscous Stress:

T=2u[S— (V- uwI+ pup(V-u)l (2.5)
Heat Flux:
_ x] DT A
g= VT + pry,h +RTZZ o, Vit Vit an o (26)
conductlon —_—— . radiation
mass diffusion Dufour effect

—-9-—



Mass Diffusion:

TiT; Vp p
Vo =3 5 Vi= Vot i-w)—= 00 v - £)
\j Y B —_——— J |
Stefan-Maxwell pressure-gradient body-force 2.7)
i Z Z‘;;L'j (DTJ _ DT,Z’) VT’T
; pLj Yy Yi
Soretveffect
Thermodynamic State:
Yi 2
= RT 2.8
p p; A, (2.8)

Note that summation of all species conservation equations in (2.1) yields total mass
conservation, (2.2), so that one of these Ng + 1 equations is redundant. To be
consistent with mass conservation, the diffusion velocities and chemical sources

must satisfy
Zyin'Z(), Zwi:0~
i i

Equation (2.7) is an implicit vector equation for the species diffusion velocities.

Temperature is implicitly related to internal energy or enthalpy through
p
e=> wieT) , h:€+;:Zyihi<T) ;
i i

where e; and h; are the species internal energies and enthalpies per unit mass, which
for an ideal gas are functions of temperature only. Species mole and mass fractions

are related by

yi/M; x; M;
=, Yim e
>y /M;) > M

To complete the specification of the governing equations, molecular transport,

T; =

thermochemical, and chemical kinetic property data are needed. Transport prop-
erties include 1, k, D;;, and D7 ;, while thermochemical data include h; and M;.
Chemical kinetics will provide the chemical reaction sources, w;, as functions of

species concentrations, temperature, and pressure.
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2.2 Simplifying Assumptions

For the large-scale simulations undertaken in this study, it is necessary to simplify
the governing equations of §2.1, although when computations of flamelet solutions
are considered in §3.3 it will be found that many of the simplifications are unnec-
essary. We adopt a standard set of assumptions that are well justified for many
combustion systems and have been used in many previous studies. Accordingly, the

following phenomena are neglected in this study:

e acoustic interactions and compressibility

heating due to viscous dissipation

bulk viscosity

body forces

diffusion due to pressure gradients

thermal radiation

Furthermore, it will be convenient to express mass-diffusion processes in Fick’s Law
form by assigning a mixture diffusivity, «;, to each species. The species diffusion

velocities are then given by
Vyi
V= —a; 2 (2.9)
Yi

A simple formula for calculating approximate mixture diffusivities from the binary

diffusivity matrix (Bird et al. 1960, p. 571) is,

1-— xX;
i
i Dis

a; = (2.10)

A problem can arise when using (2.9) in that the resulting diffusion velocities do
not necessarily satisfy > . v;V; = 0. A simple remedy is to subtract any residual

“Stefan flow” from the bulk flow velocity in the species transport equations,

Vo (puyi) — V- plu—3 2y Vi)l ,

thereby cancelling any bulk flow arising from the diffusional mass fluxes.

—-11-



The separate assumptions that acoustics and viscous heating are negligible
are often lumped together into what is commonly called the “low Mach number
approximation”, though depending on the application, either of these phenomena
could still be important even if the flow nominally has a very low Mach number.
While these assumptions stipulate that the flow be low Mach number, the converse
is not necessarily true.

In neglecting acoustic interactions and compressibility, it is assumed that ther-
modynamic variables such as density, temperature, enthalpy, and entropy are de-
coupled from variations in pressure, dp, about some specified background pressure

field, pg. This would mean, for example, that

0
P(po + 5])7 8) = p(p078) , Or <8_]p?)s ~ 0 ’

which, of course, implies that the speed of sound is nearly infinite. With this
approximation, only pg is coupled to the thermodynamic variables and enters into

the equation of state,

Y

RT . 2.11
MiR (2.11)

bPo=p

7
For the open systems considered in this study it is also assumed that pg is uniform
and constant so that the material derivative of pressure in the enthalpy equation

reduces to
Dp  DPro _
Dt Dt
In addition to the above approximations, the “unity Lewis numbers” assump-
tion (equal diffusivities for all species and temperature) is used for large-scale trans-
port, where turbulent advection dominates. However, differential diffusion effects
can still be important at the small scales, and in such cases, differential diffusion
can be included in subgrid-scale models for turbulent combustion but can generally
be ignored when solving the transport equations for the large scales.
The above assumptions are now used to derive simplified forms of the energy

equation for reacting flows, starting with the internal energy equation (obtained by
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subtracting kinetic energy from total energy) in enthalpy form:

dph

ot Dt

D
+V - (puh) = 2 p T Vu—Voqt+pY uifi Vi (2.12)
i
After neglecting acoustic interactions, viscous dissipation, and body forces, this
simplifies to:
Oph

Dpo
S TV (ou h)_ﬁ—v (2.13)

Then, assuming constant pg, rewriting the left-hand side in advective form, and
substituting for the heat flux vector while neglecting radiation and the Dufour

effect, one obtains:

Dh

P =V (5T = ZpVyl hi) . (2.14)

To generate more useful forms, the following 1dent1ty is helpful:

Vh = VZylh —ZyZVh +Zh Vi
= Zych IVT—l—Zh Vy; (215)

=, VT + > hiVy; .

Using this relation and the species conservation equations, the left-hand-size of

(2.14) may be expressed as:
Dh ;

Substituting this into (2.14) and rearranging yields:

pcpl;ﬁjt1 =V (kVT) — Z pcpiyiVi - VT — Z phiw; . (2.16)
7 K3
This is the standard form of the energy equation for reacting flows when temperature
is used as a primitive variable. It should be noted that under assumption of equal
specific heats for all species, the mass diffusion term in (2.16) is zero.
To avoid the reaction source term in (2.16), it is often desirable to work with

total enthalpy. Returning to (2.14) and substituting Fick’s Law for the diffusion

velocities, we have,

Dh

P =V (VT + ZpaihZ-Vyi) . (2.17)
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Using the identity (2.15) to eliminate VT, the following form can be derived:

Dh

Pr = V- (parVh)+V - [; p(a; — ar)h;Vy;] . (2.18)

Under the assumption of unity Lewis numbers, a; = ap, this reduces to

Dh

— =V Vh) . 2.19
P Di (parVh) (2.19)
With this last step, the energy equation has been written as a simple advection-
diffusion equation for a conserved scalar. If, in addition, adiabatic walls are as-

sumed, then enthalpy and mixture fraction (§3.3.1) have the same boundary condi-

tions and are linearly dependent.

2.3 Working Equation Set

With the assumptions and simplifications of §2.2, the governing equations used for

this study may be written as follows:

Continuity:
@+V (pu) =0 (2.20)
ot )= '
Momentum:
dpu 1
0 + V- (puu) = -Vp+ V- [2u(S - 31V - u)] (2.21)
Scalar Transport:
0
gfk + V- (pudr) =V - (parVor) + pwr , k=1,2,... (2.22)
State Relation:
p= f<¢17 ¢27 . ) (223)

Note that the equation of state (2.23) has been reduced from (2.11) to an expression
for density in terms of the transported scalars. In general, the set of transported
scalars carried in a simulation, ¢, could include mixture fraction, total enthalpy, a

particular chemical species, or some more complicated composite quantity. In this
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work, however, the only scalar equations considered are for mixture fraction and a
progress variable.

Chemical property data, which are needed to determine p, u, oy, and wy in
terms of the ¢y, are provided by the chemistry models discussed in §3.3. The
chemistry model will also provide complete chemical state information — data for
all chemical species and temperature — in terms of the ¢, even though only a

small number of scalars are carried in (2.22).

—15—



—16—



Chapter 3

TURBULENCE AND
CHEMISTRY MODELS

In this work, solutions to the reacting flow equations are obtained using the technique of
large eddy simulation. The large, energy-containing scales of motion are simulated nu-
merically while the small, unresolved scales and their interactions with the large scales are
modeled. In this chapter, large eddy simulation principles are first reviewed; then standard
dynamic models for subgrid stress, scalar flux, and scalar variance are given, and the as-
sumed beta PDF for subgrid fluctuations of a conserved scalar is discussed. The chemistry
models used in this work are all based on mixture fraction, which plays a fundamental role
in non-premixed combustion. Traditional mixture-fraction based modeling approaches are

discussed, and a new flamelet approach incorporating a progress variable is presented.

3.1 Filtering and the LES Equations

In large eddy simulation (LES), all of the field variables are decomposed into re-
solved and subgrid-scale parts. The resolved, large-scale fields are related to the
instantaneous full-scale fields through a grid-filtering operation (indicated by an
overbar symbol) that removes scales too small to be resolved by the simulation.
Note that in the present study, filtering is implicitly defined by the computational
grid used for the large-scale equations and that explicit filtering (Ghosal and Moin
1995; Vasilyev et al. 1998) is not used. Quantities per unit volume are treated using

a Reynolds decomposition,
p=p+p,

while quantities per unit mass are best described by a Favre (density-weighted)

decomposition,

where



Note that with the Favre decomposition, filtered variables represent “mixed-mean”
averages over subgrid volumes. This ensures that the filtering process does not alter
the form of the conservation laws.

The LES equations for the resolved fields are formally derived by substituting
the above decompositions into the governing equations, and then subjecting the
equations to the grid filter. The instantaneous small-scale fluctuations are removed
by the filter, but their statistical effects remain in unclosed residual terms repre-
senting the influence of the subgrid scales on the resolved scales. Applying this
procedure to the working equations of §2.3, the LES equations are written (now

using subscript notation) as:

Continuity:

Momentum:
(PU:) 1 + (PUTL;) 5 = —P; + (2155) 5 + tig s (3.2)
Sij = S(@Wij +Uj0) — 20iTk s
Scalar Transport:
(Pdi) e + (ﬁﬂjgi),j = (p&idi i)k + PW; + Qi k (3.3)
State Relation:

p= f(¢1, P2, ...) (3.4)

All unclosed transport terms in the momentum and scalar equations are grouped
into the residual stress, ¢;;, and residual scalar flux, g;;. These terms as well as the

filtered chemical source terms, w;, and the state relation require closure modeling.
3.2 Subgrid-Scale Models

Subgrid closure models for (3.1-3.4) are presented below. The dynamic procedure is
first summarized in §3.2.1 because it is used whenever applicable to evaluate model
coefficients. Closures for the filtered chemical source terms and the state relation,

which are related to the chemical model, are discussed in §3.3.
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3.2.1 The Dynamic Procedure

Since many of the subgrid closures considered utilize the dynamic modeling concept
(Germano et al. 1991), it is briefly reviewed here in general form. The dynamic
procedure is a method for calculating dimensionless scaling coefficients in subgrid-
scale models for filtered nonlinear terms.

Consider an arbitrary nonlinear term, ¢(u), which is a known function of the
field variables, u, and suppose that we wish to determine its filtered value by model-
ing the subgrid residual with an algebraic model, m(u), which depends on the field
variables but in general can also depend explicitly on space and time and on other
parameters such as the grid filter width, A. The value of the filtered term is then

the sum of resolved and modeled parts:

t(u) = t(u) + m(a) . (3.5)
The basic idea behind the dynamic procedure is to consider how ¢(u) and m(u) vary
with the filter width. In particular, an expression similar to (3.5) for the value of

the filtered term at a larger filter width, referred to as the test filter, can be written:

—

t(u) = t(T) + m(a) . (3.6)

In dynamic modeling, filtering to the test level is indicated by a hat symbol. The

test filter width is denoted by A and is usually taken to be twice the width of the
grid filter, A =2A.

If (3.5) is test filtered and subtracted from (3.6), an interesting identity results:

t(@) —t@) = m@) — m(@) . (3.7)

Remarkably, all terms in this equation are computable from the known resolved
field. It represents the “band-pass filtered” contribution to the nonlinear term in
the scale range between the grid and test filter levels. A consistent subgrid model
should contribute the same amount as the resolved field in this band. The key
to the dynamic procedure is to use this identity as a constraint for calibration of

subgrid-scale models.
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Note that while (3.7) is an exact identity when m(u) is the exact subgrid
residual, it should only be expected to hold in a statistical sense (and should not
be applied locally and instantaneously) when m(u) is modeled. The reason for
this is the following: In filtering the governing equations, we have replaced the
instantaneous variations that occur within each subgrid volume with a statistical
description of the subgrid state. However, the band-pass filtered fields in (3.7) are
based on instantaneous data, and the test filtering process itself does not provide
sufficient averaging to produce converged statistics in the band-pass filtered scale
range. Furthermore, subgrid models are generally valid for predicting statistical
properties of the subgrid scales but usually cannot account for instantaneous subgrid
fluctuations. Requiring (3.7) to be satisfied locally forces the model to operate
beyond its range of validity, resulting in unphysical fluctuations in model behavior.
This may explain why LES practitioners have found that some form of averaging is
required in order to compute stable model coefficients with the dynamic procedure.
Related discussions are given by Ghosal et al. (1995) and Carati and Eijnden (1997).

For the dynamic procedure to be applicable, the quantity to be modeled must
vary substantially between the grid and test filter scales; otherwise, the difference in
(3.7) will not be significant and cannot be used for modeling subgrid-scale quantities.
Examples of quantities that cannot be modeled dynamically are dissipation and
chemical reaction rates, because these phenomena occur almost exclusively at the
smallest scales, which are always unresolved in LES.

The dynamic procedure is usually applied to situations in which the subgrid

model can be written as,

m(u) = c s(u,A) (3.8)

where s(u, A) is a dimensionally consistent algebraic scaling law and ¢ is an unknown
dimensionless coefficient, which in the dynamic procedure is allowed to vary in space
and time. Substituting this form into (3.7) we obtain,

@) — t(@) = *s(@,A) — ¢ s(w, A) | (3.9)

where ¢* is the model coefficient at the test filter level. Note that ¢ has been left
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inside the test filtering operator in the right most term.

At this point, the various forms of the dynamic procedure differ as to how
to use this equation to calculate the model coefficient, ¢. In the present study,
it is assumed that c is a statistical quantity that varies slowly in space and time
and is both scale invariant and independent of the directions in which the flow is
statistically homogeneous. We therefore set ¢* = ¢ and allow ¢ to pass through the

test filtering operator. To simplify notation the following substitutions are made:

L=t@—t@, M=s@A) —s@A),

where, L is called the Leonard term and M is the model term. The equation for ¢

can then be written as,

L=cM. (3.10)

To obtain a single value for ¢ in each homogeneous region of the flow, and to
determine c¢ in cases where £ and M are nonparallel vectors or tensors, (3.10) is
solved by least-squares (Lilly 1992). The final expression is:

= % : (3.11)

where the angle brackets indicate averaging over directions of flow homogeneity.

3.2.2 Turbulent Stress and Scalar Flux

Subgrid momentum and scalar transport terms that appear in (3.2) and (3.3) are
modeled using the dynamic approach of Moin et al. (1991). The present formulation
differs from Moin et al. in the use of the deviatoric strain rate for the definition of
S| and in the use of least-squares averaging.

The residual stresses are modeled as subgrid turbulent stresses with an eddy

viscosity assumption,
tij = —pugtiy + puitl; = 2u:Si; — 5pq°0i; (3.12)

where %ﬁq2 is the subgrid kinetic energy and,

1/~ ~ 1s ~
Sij = 5(Wij +uji) = 306Uk g -
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The eddy viscosity is given by the Smagorinsky model,
e = C,pA%S|, where |S|=1/S5;;5; , (3.13)
and the subgrid kinetic energy is modeled using,
5q° = CipA2|S|? . (3.14)

Note, however, that the isotropic part of the residual stress does not need to be mod-
eled separately when pressure is decoupled from thermodynamic variables, because
it may then be lumped together with the pressure. In the present study, acoustic
interactions and compressibility are neglected, so in the interest of computational
efficiency, this term is not actually computed.

The residual scalar fluxes are modeled as subgrid turbulent scalar fluxes with

a gradient-diffusion assumption,
Qi = —Purd; + Plird; = poudi | (3.15)
where the eddy diffusivity is given by,
pay = CopA?|S] . (3.16)

Note that the eddy diffusivity model has the same algebraic form as the eddy vis-
cosity model, but the model coefficient is different. The ratio of the two coefficients
gives the subgrid turbulent Prandtl number, Pr; = C,/C,.

The coefficients in all of these models, C,,, Cy, and C,, are evaluated using the
dynamic procedure. To simplify the expressions for the coefficients, the following

notation for density-weighted test filtering is introduced:

(LijMij) — — =

c,= ,
P2 (Mg Myy)



For the subgrid turbulent scalar flux model (3.15) the coefficient is calculated from,

(M;M;) ,

Although it is not actually used in the present study, the expression for the subgrid

kinetic energy coefficient is the following;:

(M)
(M2)

A~

Cp = L = piigi, — Pt , M =DA2|S|2 — A5 .

There is a minor defect in the dynamic procedure when applied to scalar trans-
port: In a region where the flow is turbulent but the scalar is uniform or fully
mixed, the dynamic procedure does not define an eddy diffusivity. When this sit-
uation arises in practice, the eddy diffusivity is set to zero. This normally does
not pose a problem in regions of uniform scalar because the scalar gradient, which
multiplies the eddy diffusivity, is also zero. However, since scalar transport is linear
in the scalar, the eddy diffusivity should in principle depend only on the velocity
field, should be the same for all scalars, and should be nonzero where the velocity is
turbulent. When multiple scalar transport equations are solved simultaneously, one
could compute a different eddy diffusivity for each scalar, or compute a least-squares
average diffusivity using all the scalars, or base the eddy diffusivity calculation on
a single, chosen scalar. In the present study, eddy diffusivity is computed using the

mixture fraction and then applied to all scalars.

3.2.3 Variance and Dissipation Rate of a Conserved Scalar

Subgrid scalar variance is an input parameter to the assumed PDF model of §3.2.4,
while scalar dissipation rate is a parameter in flamelet models of turbulent combus-
tion (§3.3.3). Starting from assumptions of local homogeneity and local equilibrium
for the subgrid scales, Pierce and Moin (1998c) derived algebraic models for subgrid

variance and dissipation rate. The subgrid variance is modeled using,

P = CypA2|Vo? (3.17)
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and the filtered dissipation rate, p X = pa,,|V¢|?, is modeled by,
PX = Dlam +ar)| Vo[ . (3.18)

where a,, is the molecular diffusivity and «; is the turbulent diffusivity of §3.2.2.

Dynamic evaluation of Cy is summarized by the following:

(LM) pe——

Co= gy + L=P00-p00. M=PAYVG —pA% VoL

Pierce and Moin presented (3.17) as an alternative to the scale-similarity model
of Cook and Riley (1994). An alternative derivation for (3.18) to that of Girimaji
and Zhou (1996) was presented to emphasize the local equilibrium and dynamic
modeling ideas. Note that when (3.17) is applied to mixture fraction, the dynamic
procedure does not guarantee that the predicted variance is physically realizable. In
practice, variance predictions lying outside the physically allowed range, 0 < iz <

Z(l — Z), are clipped.

3.2.4 Assumed Beta PDF for a Conserved Scalar

While algebraic scaling laws and scale-similarity concepts can be expected to work
for quadratic nonlinearities, the only acceptable closure for arbitrary nonlineari-
ties appears to be the probability density function (PDF) approach. For example,
the state relation for density (3.4) can in general be an arbitrary nonlinear func-
tion of the scalar variables. If the joint PDF of the subgrid scalar fluctuations,

P(¢1, ¢2, ...), were known, the filtered density could be evaluated using,

ﬁ: f<¢17 ¢27 ) = f(QSl? ¢27 )P(¢17 ¢27 ) d¢1 d¢2 see e (319)

When Favre filtering is used for the scalar variables, it is more appropriate to eval-
uate filtered quantities using the joint Favre PDF of the subgrid scalar fluctuations.

Analogous to (3.19), Favre-filtered quantities would be evaluated using,

7= /y(qSl, b2, .. )P(d1, b2, .. ) dr dos ... | (3.20)
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where the density-weighted Favre PDF is related to the standard PDF by,

) = po1, 62, .- )P(S1, 62, ..)

D

P(1, ¢o, ...

(3.21)

The Reynolds-filtered density can be obtained using P by dividing (3.21) by p and
integrating, with the result that,

—1

dpydes ...| . (3.22)

/]3(¢17 P2, --)

P~ D b2 )

In the assumed PDF method, the probability density function is modeled di-
rectly using simple analytical forms, such as the beta distribution. However, because
source terms can directly modify the PDF of a scalar, the beta distribution can be
expected to be valid only for conserved scalars. For this reason, it is applied only to
mixture fraction in this work. Assumed-PDF modeling of reacting scalars is a topic
for further research.

The two-parameter family of beta distributions on the interval, 0 < z < 1, is

given by,
)b—l F(a + b)
[(a)T(b) °

where the parameters a and b are related to the distribution mean and variance

(1, o%) by

P(x; a,b) = z°7 (1 — (3.23)

plp—p? —o?) p L=pp—p—0*)

a =
o2 ’ o2

When applied to mixture fraction, x — 2, u — Z , and 02 — zm,

The beta PDF has been evaluated as a model for subgrid mixture fraction
fluctuations in large eddy simulations in several studies using a priori tests on
direct numerical simulation data. Cook and Riley (1994) tested the beta PDF in the
context of the fast chemistry model (§3.3.2) in homogeneous turbulence. Jiménez
et al. (1997) demonstrated the good performance of the beta PDF model using data
from a highly intermittent, incompressible, turbulent mixing layer. Wall and Moin
(2000) tested the beta PDF in the presence of heat release. It has also been shown
(Wall et al. 2000; Cook and Riley 1994) that accurate prediction of the subgrid

variance is the most important factor in obtaining good results with the beta PDF.
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The state relation and other nonlinear functions are often known prior to con-
ducting a simulation, in which case the PDF integrals can be calculated and stored
into lookup tables before the simulation begins. The filtered density and other fil-
tered quantities can then be efficiently retrieved during the simulation as functions

of the known filtered scalars and variances:

ﬁ:F<$17 52) SRR /1/27/72/_57 ¢71lv’2/7 ) . (324)
3.3 Chemistry Models

Developing effective strategies for incorporating chemistry into large eddy simula-
tions was one of the main objectives of this work. The straightforward, brute-force
approach would be to find a suitable chemical kinetic mechanism for the system
under investigation, solve scalar transport equations for all the species in the mech-
anism, and attempt to model the filtered source term in each equation.

A serious problem with this direct approach is that realistic kinetic mechanisms
can involve tens of species and hundreds of reaction steps, even for “simple” fuels
such as methane. Unless mechanism reduction methodologies can drastically reduce
the dimensionality of the chemical system, one is faced with having to solve a large
number of stiffly coupled scalar transport equations.

Another problem is that each species transport equation contains a filtered
chemical source term that must be modeled. Like the state relation (3.4), each
chemical source term is, in principle, an arbitrary nonlinear function of the scalar
variables. As discussed in §3.2.4, PDF methods are the most attractive approach for
evaluating such nonlinearities; however, when the number of independent variables
becomes large (say, more than three) joint PDF’s can become unwieldy.

Thus, the key to combustion modeling in LES appears to be minimizing the
number of transported scalar variables required. For non-premixed combustion,
mixture-fraction based models appear to offer the most effective description of the
chemistry. By mapping the details of the multicomponent diffusion-reaction pro-
cesses to a small number of “tracking” scalars, complete chemical state information

can be obtained at greatly reduced computational expense.
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3.3.1 The Role of Mixture Fraction

All of the chemistry models considered in this work are based on the concept of
mixture fraction. The role of mixture fraction in non-premixed combustion is best
described as a tracking scalar because it tracks the mixing of inflow streams, the

transport of conserved scalars, and the advection of reactive scalars.

A Mixture Tracking Scalar

At its most basic level, mixture fraction (denoted by Z in this work) is a generic
mixing variable that represents the relative amount that each inflow stream con-
tributes to the local mixture. When the the inflow streams are fuel and oxidizer,
mixture fraction can be thought of as specifying the fuel-air ratio or stoichiometry
of the local mixture.

Mixture fraction is also a conserved scalar that is representative of other con-
served scalars in the flow. Equations for conserved scalars can be formally derived
by taking linear combinations of species transport equations in such a way that
reaction source terms cancel. The resulting equation will describe a physical quan-
tity that is conserved during chemical reaction, such as total enthalpy or the mass
fraction of a particular chemical element. Except for differences due to effects of
differential diffusion and boundary conditions, every conserved scalar satisfies the

advection-diffusion equation, here written for mixture fraction:

Z
%Jrv.(puz) — V- (pazVZ) . (3.25)

Because conserved scalar transport is linear, a small number of conserved scalars
forming a complete basis is sufficient to construct all other conserved scalars by
superposition. A flow system containing n inflow ports would in general require n
mixture fraction variables to form a complete basis, but because all the normalized
mixture fractions must sum to unity, only n — 1 mixture fraction variables are
needed. By convention, a mixture fraction variable is assigned the value 1 in the
flow port from which it emanates and zero in all others. Values of mixture fraction
between 0 and 1 indicate the mass fraction that a particular stream contributes to

the local mixture.
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The standard mixture fraction used in non-premixed combustion, Z, is the fuel-
stream mixture fraction and is therefore unity in the fuel stream and zero in the
oxidizer stream. The mixture fraction for the oxidizer stream is then given by 1—Z.
When there are more than two inflow ports supplying independent species composi-
tions and /or enthalpy content, an additional mixture fraction variable can be added
for each additional port. When thermal radiation or heat transfer to boundaries
is important, total enthalpy should be treated as an independent conserved scalar,

but otherwise it can be directly related to mixture fraction.

Utility with Differential Diffusion

In the absence of differential diffusion, the diffusivity in (3.25) is the same for all
scalars and mixture fraction tracks other conserved scalars exactly. However, when
differential diffusion effects are present, mixture fraction tracks other conserved
scalars only approximately. As noted in §2.2, differential diffusion can generally be
neglected in the large scale transport resolved by LES, and therefore, considerations
of differential diffusion will be limited mainly to the subgrid-scale model.

With differential diffusion, the mixture fraction concept is still very useful, but
the definition of mixture fraction is not as straightforward. Pitsch and Peters (1998)
suggest that (3.25), with az prescribed, be taken as the definition of Z. But in the
present work, an average mixture fraction is defined by combining the conserved
elemental (atomic) mass fractions. The elemental mass fractions, a;, are given in

terms of the species mass fractions by,
ajzzyiNijAj/Mi N jzl,,NE 5 (326)
i

where NN;; is the number of j atoms in each molecule of species ¢, A; are atomic
weights, and Ng is the total number of distinct chemical elements present in the sys-
tem. The average mixture fraction for a two-feed system is then given by summing

the elemental mass fractions and normalizing the result,

A
7 - 2 ilai —ai| (3.27)

= 1 0 >
Zj ’aj _aj’
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where a? and a] are elemental mass fractions in the oxidizer and fuel streams,
respectively. Also, an average mixture-fraction diffusivity can be defined in a similar

manner by combining the elemental diffusive fluxes,
aj =Y pyiViNiAj /My, j=1,...,Np, (3.28)

and equating the mixture fraction flux to the normalized result,

> lail
VZ| = === — . 3.29
pOéz‘ ’ Zj |a;_a?| ( )

Note that (3.27) and (3.29) are consistent with each other such that solving (3.25)
with az given by (3.29) is equivalent to using (3.27). The above definitions are used
in the present work to define mixture fraction and its diffusivity when computing

flamelet solutions in physical space (§3.3.3).

Utility in Flamelet Models

Another important property of the mixture fraction is its ability to account for tur-
bulent advection in diffusion flames. Because the velocity field transports all scalars
equally, changes in species mass fractions with respect to mizture fraction are due
only to diffusion and reaction. (In the absence of diffusion and reaction, relation-
ships between mixture fraction and other scalars would be exactly preserved.) The
implication is that turbulent combustion, when viewed relative to mixture fraction,
is simply laminar diffusion-reaction in an unsteady straining environment created by
turbulent advection. This principle is the basis of flamelet models, in which explicit
velocity dependence is removed from the scalar transport equations by relating the
scalars to the mixture fraction, which itself does depend on the velocity field.

By itself, mixture fraction does not contain any information about chemical
reactions in the mixture. Assumptions such as fast chemistry or steady flamelet
state relationships are needed to associate a chemical state with the mixture frac-
tion. Also, mixture fraction cannot account for chemical variations in directions
perpendicular to its gradient. To address these and other problems, an additional

tracking scalar in the form of a progress variable is introduced in §3.3.4.
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3.3.2 Fast Chemistry Assumption

One of the simplest approaches for relating chemical states to mixture fraction is
to assume equilibrium chemistry, the condition that chemical kinetics are infinitely
fast relative to other processes in the flow (high Damkdhler number limit), so that
the mixture is always completely reacted, or in a state of chemical equilibrium.
A similar assumption, called fast chemistry (also known as the Burke-Schumann
limit), is equilibrium chemistry combined with a one-step, global reaction or “major
products” assumption. The opposite extreme of fast chemistry is the case of pure
mizing (or frozen chemistry), the limit in which chemical reactions are negligible.
With each of these assumptions the chemical composition is a unique function
of mixture stoichiometry, total enthalpy, and pressure. For constant background
pressure, unity Lewis numbers, negligible thermal radiation, and adiabatic walls,

all chemical variables become functions of mixture fraction alone:
vi = vi(2) , T=1(2), p=p(2). (3.30)

These functions constitute what may be called “chemical state relationships”, and
can be computed using an equilibrium chemistry code such as STANJAN (Reynolds
1986). When combined with the assumed PDF of §3.2.4 for mixture fraction, this
provides complete closure for the problem, and all of the filtered combustion vari-
ables can be expressed as functions of filtered mixture fraction and mixture fraction

variance:
Ui =15:1(Z,27), T=T(Z,2"™), p=pZ,2"), et (3.31)

Note that (3.31) includes similar expressions for filtered transport properties such
as o and az, which are used when solving the large-scale momentum and scalar
transport equations. The computational cost of the fast chemistry model is negli-
gible, because the functions in (3.31) can be precomputed and tabulated prior to
running a simulation.

Example state relationships for temperature, 7'(Z), are plotted in Fig. 3.1 for

equilibrium chemistry, fast chemistry, and pure mixing assumptions. Note that
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Fig. 3.1 Temperature as a function of mixture fraction from equilibrium
and fast chemistry state relationships. Methane-air combustion at the con-
ditions of the experiment in §5.1 (750K air, 300K fuel, 3.8 atm).

equilibrium chemistry predicts much lower temperatures than fast chemistry in the
fuel-rich region. This is caused by the endothermic breakdown of hydrocarbon fuel
into CO and Hs; but in reality, chemical kinetic mechanisms to achieve this conver-
sion are very slow or nonexistent. Because of this defect in equilibrium chemistry,
the fast chemistry assumption may be preferable for hydrocarbon fuels.

Since the fast chemistry model does not incorporate any chemical kinetic infor-
mation, it is limited to situations in which kinetics do not play a role. Accordingly,
the model cannot account for any effect of turbulence on the chemistry, and cannot
account for ignition and extinction phenomena as occur, for example, in the region
upstream of a lifted flame. Nevertheless, it is a convenient starting point for the

development of more capable models.

3.3.3 Classical Steady Flamelets

Although the steady flamelet model is sometimes introduced in a conceptually dif-
ferent framework than the fast chemistry model above, the two models are actually
very similar. They both rely on a single scalar transport equation for the mixture

fraction and employ “chemical state relationships” to relate all chemical variables to
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the mixture fraction. The only difference is that the steady flamelet model replaces
equilibrium chemical states (obtained from thermochemistry alone) with solutions
to one-dimensional, steady, diffusion-reaction equations. The chemical reactions,
although finite-rate, are assumed to be at all times in balance with the rate at
which reactants diffuse into the flame, so that flame properties are directly related
to the scalar dissipation (or mixing) rate. The result is a modest improvement over
fast chemistry, allowing for more realistic chemical state relationships. Like the fast
chemistry model, steady flamelets cannot account for extinction (when reaction rate
is lower than mixing rate), ignition (when reaction rate is higher than mixing rate),
or the effects of unsteady mixing (when reaction rate lags behind changes in mixing
rate). The flamelet/progress-variable approach discussed in §3.3.4 overcomes all of
these limitations by using a (dynamic) chemical variable instead of the (kinematic)
dissipation rate to parameterize flamelet evolution.

One approach to deriving the steady flamelet model is to start with the as-
sumption that in each region of the flow, all chemical species are given by unique

functions of the mixture fraction,

yi = fi(Z) . (3.32)

Derivatives of chemical species can then be related to derivatives of mixture fraction:

Yit = fi/Z,t ) Yij = fz'/Z,j : (3.33)
For (3.32) to be valid locally, species mass fractions must vary slowly in directions
perpendicular to the mixture-fraction gradient and chemical reactions must be in
balance with species diffusion along the mixture-fraction gradient, so that the flame
is locally one-dimensional and steady.

Using (3.33), the species conservation equations can be “transformed” from
physical space to mixture-fraction space. For the moment, assume unity Lewis
numbers so that all species, enthalpy, and mixture fraction have a common diffusiv-
ity, a. Substituting (3.33) into the species transport equations (2.1) and rearranging

while noting that f;, = f;'Z x, one obtains,
filo(Zy +uj Z ) — (paZ ) k] = paZ w Z i fi + pwi .
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The quantity in brackets on the left-hand side of this equation is identically zero,
leaving us with the steady flamelet equations,
d*y;
PX g = ~PWi (3.34)
where x = aZ Z ), is the mixture-fraction dissipation rate. In order to solve (3.34),

an additional assumption is needed to prescribe the dissipation rate as a function

of mixture fraction, x = x(Z).

Physical-Space Formulation

In the present study, the flamelet equations are formulated and solved in physi-
cal space rather than in mixture-fraction space, and the physical-space solutions
are later remapped to mixture fraction. In physical space, it is more natural to
consider the full combustion equations of §2.1 and reduce them to the case of one-
dimensional, steady combustion. Most of the assumptions of §2.2 are maintained,
except that the full multicomponent diffusion mechanisms (including Soret and
Dufour effects) may be used. Continuity and momentum equations are not solved
because the velocity is to be imposed. The physical space (z-coordinate) flamelet

equations can then be written as:

puyi o = —(pyiVi) o + pw; ,
puh gz = (KT — 3 ;pViyihi — qD) o ,

pzpo/Zi%RTa

(3.35)

where ¢p is the Dufour heat flux. Mixture fraction is defined in terms of the species
mass fractions by (3.27), but one could instead include an equation for mixture
fraction,

puZ = (pazZ 3) o (3.36)

in which az would be prescribed. Note that solving (3.36) with az given by (3.29)

is equivalent to using (3.27).
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Fig. 3.2 Mixture fraction and temperature from a steady flamelet solu-
tion in physical space. Methane-air combustion at the conditions of the
experiment in §5.1 (750K air, 300K fuel, 3.8 atm). L = 0.2 cm.

Like the dissipation rate in (3.34), the velocity in the physical-space equations,
u(z), needs to be prescribed. In fact, the solution of (3.36) with an assumed form
for u(z) yields a corresponding x(Z). The standard flamelet approach (Peters 1984;
Cook et al. 1997) usually assumes a counterflow configuration with u(x) = —Swz,
where S is the strain rate. While this assumption may be supported by limited
empirical evidence, it cannot be justified physically, as it violates the continuity
equation to suppose that the entire flame surface could be subjected to local coun-
terflow; there must be a proportionate amount of flame surface experiencing local
reverse-counterflow. The counterflow configuration has also been proposed to ac-
count for self-similar thickening of the flame over time with Z, = —(Sxz)Z ., where
in this case S is the thickening rate. However, there is little reason to expect this to
be valid in a turbulent flow, where mixing layers are constantly subjected to varying
strain rates at various Z locations. The counterflow assumption places an undue
bias on the flamelet solutions by imposing very specific u(z) and corresponding
X(Z) profiles. In a turbulent flow, where both the velocity field and dissipation rate
fluctuate strongly, the dissipation rate is usually not correlated with mixture frac-
tion. In the absence of a stochastic description of u(z) or x(Z), the most unbiased

assumption is, u(z) = 0 or x(Z) ~ constant.
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With the assumption u(z) = 0, the flamelet equations can be regarded as
pure diffusion-reaction equations. The length scale of the flame is set by imposing
Dirichlet boundary conditions on species and enthalpy at the ends of a finite domain
of length L. The point z = 0 corresponds to oxidizer stream conditions, while fuel
stream conditions are enforced at x = L. The effect of strain on the flame is
introduced through contraction and expansion of the domain length. Each flamelet
solution is associated with a single, constant value of mixture-fraction diffusive flux,
which shall be denoted by ¢ = paz|VZ|. Solution of (3.36) yields Z , = ¢/paz
and pxy = ?/paz. An average dissipation rate for the flamelet solution can be
defined by xo = ©¥/poL, where pg is a constant reference density for the flamelet.
The parameter y will later be made to correspond with the actual dissipation rate
in the flow. This configuration does give rise to an inconsistency at the endpoints,
x = 0 and = = L, where physically, the fluxes must go to zero as they are absorbed
by unsteady growth of the mixing layer. But in practice, this is not expected to
cause any problems because in the endpoint fringe regions, the chemical state must
approach the fixed inflow stream conditions regardless. A typical flamelet solution
in physical space is shown in Fig. 3.2. Provided that the mixture fraction solution,
Z(z), is a monotonic function of the spatial coordinate, the inverse function x(Z2)
can be obtained and used to remap all of the combustion variables to mixture
fraction.

By varying the domain length, L, a one-parameter family of steady flamelet
solutions is obtained. The entire family of solutions is compiled into a flamelet

library, to yield chemical state relationships of the form,

Yi = 91(27 XO) ) T= T(Z7 XO) ) pP= p(Z’ XO) ’ (337)

where the solution dependence on L has been remapped to the dissipation rate
parameter, xo, which varies monotonically with L. An example of a flamelet library
is depicted in Fig. 3.3, where T'(Z, x¢) is plotted for several values of x¢. Also shown
is the equilibrium temperature curve from Fig. 3.1. It is apparent from the figure

that equilibrium chemistry can be obtained as a special case of the steady flamelet
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Fig. 3.3 A family of solutions for the steady, one-dimensional, diffusion-
reaction equations, mapped to mixture fraction. Methane-air combustion
at the conditions of the experiment in §5.1 (750K air, 300K fuel, 3.8 atm).

model in the limit xo — 0.

Equilibrium Limit

The limiting behavior of the flamelet solutions as xo — 0 (L — o0) is an important
issue. As the domain length is increased, mixing and reaction rates become slower,
and the chemical state moves closer to equilibrium. At some point, however, the
length of the flamelet domain will become greater than the physical dimension of
the combustor, and the flamelet time scale will become greater than the flow resi-
dence time in the combustor. It would seem that the xo — 0 limit has little physical
relevance, yet the flamelet model must provide chemical state information when the
dissipation rate is zero, either instantaneously or in a well-mixed reactant or product
region. This problem is a symptom of the limitations of the steady flamelet approx-
imation and can become serious if one attempts to use the steady flamelet model to
calculate pollutant concentrations in the well-mixed exhaust gases exiting the com-
bustor, where equilibrium chemistry can give notoriously inaccurate predictions.
In many practical problems, slow chemical processes, such as pollutant formation
and thermal radiation, prevent equilibrium states from being reached by the time
mixing is complete. This is an example of where the flamelet /progress-variable ap-

proach of §3.3.4 offers improvement. By using a chemical progress variable instead
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of dissipation rate to parameterize the flamelets, the chemical state in a well-mixed
region need not be at equilibrium but may continue to evolve slowly according to

the chemical kinetics.

Differential Diffusion

Another issue related to the xg — 0 limit is the treatment of differential diffusion.
As noted in §2.2, differential diffusion effects are generally negligible at the larger
scales because of turbulent transport. Thus, as the flamelet domain becomes longer,
turbulence contributes increasingly to species transport inside the flamelet and the
effects of differential diffusion diminish. Furthermore, the correct limiting behavior
to equilibrium chemistry will only be obtained when differential diffusion is ab-
sent. To account for the effects of turbulent transport in the flamelet solutions, an
eddy diffusivity, o, is introduced directly into the flamelet equations. The species,

enthalpy, and mixture fraction equations then become,

PuYi e = (Pt Yiw) x — (PYiVi) z + pwi

puhe = (poiho) e + KTz =3 2pViyihi — 4p) (3.38)

puZ o = (pouZ 3) o + (pazZ z) o -
These equations would then replace (3.35). The value of the eddy diffusivity need
not be specified precisely, because the flamelet solutions are parameterized by the
total dissipation rate, xo = p(ou + az)|VZ|/poL, which will eventually be related
to the actual dissipation rate in the flow. Note that this use of eddy diffusivity can
be thought of as “overlapping” with the eddy diffusivity used in the LES transport
equations. The overall effect of the eddy diffusivity is to provide a smooth transi-
tion between strong differential diffusion effects when L is small (compared to the
turbulence scales) and negligible differential diffusion as L becomes large.

Although a precise determination of the eddy diffusivity is not necessary, some

reasonable method is needed to estimate the relative importance of differential dif-
fusion in a given situation. One approach is to express the eddy diffusivity in terms
of a mixing length model, pa; x pqL, where ¢ is a turbulent velocity scale and L

is the flamelet domain length, and to further assume that as the domain length
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Fig. 3.4 Locus of maximum flame temperatures in the steady flamelet
library. Note the discontinuous jump between burning and extinguished
solutions at the critical point. Methane-air combustion at the conditions of
the experiment in §5.1 (750K air, 300K fuel, 3.8 atm).

changes, pq remains more or less constant, so that pa; oc L. This may be expressed

in a normalized form by,

L
par _ = (3.39)
POm LO
Here, pa,, = fOL pazZ . dx represents an average molecular diffusivity for the

flamelet, and Lg is a turbulence length scale that must be chosen by the user,
based on an estimate of the turbulence length scales in the flow, such that when

L = Ly, turbulent and molecular diffusion are equally important.

Extinction Limit

Another limiting case to consider is the behavior of the flamelet solutions as xg — oo
(L — 0). As the dissipation rate is increased, both the mixing and reaction rates
increase, while the maximum flame temperature gradually decreases, until the flame
temperature becomes so low that chemical reaction rates cannot increase any further
due to the effects of Arrhenius kinetics. Once this critical turning point is reached
(X0 = Xecrit), further increase in yo will cause the flame to extinguish. Although

the behavior of diffusion flames close to extinction is inherently unsteady because

— 38—



2400 A

2100 4

1800 4

1500 - Y

Temperature (K)

1200 +

900 1

600 -

T T T T T
16° 162 10" 10 10" 16 10°
Dissipation Rate (1/s)

Fig. 3.5 Effect of the log-normal distribution on the flamelet library. ——:
maximum temperature locus of the original steady flamelet solutions; —--:
after integration with the log-normal distribution. Methane-air combustion
at the conditions of the experiment in §5.1 (750K air, 300K fuel, 3.8 atm).

of the enormous sensitivity of the steady solutions to small changes in mixing rate
near the critical point, extinction can be represented with steady flamelets by in-
troducing a discontinuous switch between steady burning solutions when xo < Xerit
and the steady extinguished solution for xo > xeit (Fig. 3.4). However, this de-
scription of extinction is rather crude, as exposure of a combustion simulation to
the “naked” discontinuity in Fig. 3.4 can lead to unphysical results and numerical
instability. Only when the flamelet library is filtered with the log-normal distribu-
tion (Fig. 3.5, discussed below) can reasonable behavior be obtained near extinction
with the steady flamelet model. As alluded to at the beginning of this section, the
flamelet /progress-variable approach overcomes this limitation by reparameterizing
the flamelet library in terms of a chemical progress variable, which provides an

unsteady, dynamic response to changes in dissipation rate.

Steady Flamelets in LES

The final step in the steady flamelet model for LES is to develop expressions for the
filtered chemical variables. The steady flamelet solutions are regarded as providing

a map of instantaneous chemical variables to instantaneous mixture fraction. To
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account for subgrid fluctuations in mixture fraction and dissipation rate, filtered
combustion variables are obtained by integrating (3.37) over the joint PDF of subgrid

Z and xo fluctuations. For example,

v = /yi(Z, x0)P(Z,x0) dZ dxq - (3.40)

The joint PDF is modeled by first assuming that Z and x( are independent,

P(Z,x0) = P(Z)P(xo) - (3.41)

Then, ﬁ(Z) is modeled using the assumed beta PDF of §3.2.4, while ﬁ(XO) is modeled

by another type of assumed PDF, the one-parameter log-normal distribution,
P(xo) = LogNormal(xo; X, 1) , (3.42)

where,

1 —1 — 1]?
oxp ) =
xo\ 2 20

The distribution mean and variance are related to the parameters p and o by,

LogNormal(z; p,0) = (3.43)

T =kt ”2, _’2:T2(e"2—1).

[/
8

The log-normal distribution has been found in numerical experiments to provide
an accurate description of gradient magnitude and dissipation rate fluctuations of
conserved scalars in fully developed turbulence (Jiménez et al. 1997), although the
most appropriate value for o is still an open question. For the present study a
value of 0 = 1 was chosen. Figure 3.5 shows the filtering effect of the log-normal
distribution on the flamelet library.

Once the flamelet library is computed and assumed PDF integrals are evaluated,
lookup tables can be generated to provide the filtered chemical variables as functions

of the quantities readily available from LES (namely, Z, 27/’2, and X):

Ui =0(Z,27%), T=T(Z,2"75), p=pZ,2"%), etc. (3.44)
Note that (3.44) includes similar expressions for filtered transport properties such as
7 and az, which are used in solving the large-scale momentum and scalar transport
equations. The computational cost of the steady flamelet model is very modest,

because the functions in (3.44) can be precomputed and tabulated prior to running

a simulation.
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3.3.4 The Flamelet/Progress-Variable Approach

The philosophy underlying the chemical models developed in this work is that the
most effective description of turbulent combustion will map the details of the multi-
component diffusion-reaction processes to a minimum set of transported “tracking”
scalars. Extensive discussion of the mixture fraction’s role as a tracking scalar was
given in §3.3.1. There it was also pointed out that a model based on mixture frac-
tion alone is incomplete, because mixture fraction does not contain any intrinsic
information about chemical reactions and cannot account for chemical variations in
directions perpendicular to its gradient. At least one additional scalar is needed,
and since mixture fraction accounts for transport of conserved scalars, additional
tracking scalars must be nonconserved in order to be independent from mixture frac-
tion. A nonconserved tracking scalar is best characterized as a reaction progress

variable.

Model Derivation

In the present work, addition of a single progress variable, generically denoted by
C, is considered. The set of scalar transport equations carried in a simulation is

then given by,
opZ

rr +V-(puZ) =V - (pazVZ),

(3.45)
opC
% + V- (puC) =V - (pacVC) + pwc .

Complete chemical state information is to be derived from Z and C' through chem-

ical state relationships of the form,

In particular, the chemical source for the progress variable, which is a function of
the chemical state, will be given by we = we(Z, C). The remaining question is how
to determine the best chemical state relationships for a given case. A very simple
approach, developed for the present study and discussed below, is to use the steady

flamelet state relationships (3.37) of §3.3.3.
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Consider a computational experiment, in which a reacting flow is simulated
using the steady flamelet model of §3.3.3. However, suppose that in addition to
mixture fraction, a transport equation is solved for one of the chemical species,
with the reaction source term for the species calculated from the chemical states
predicted by the steady flamelet model. This situation leads naturally to the follow-
ing questions: Would the species concentrations obtained by solving the additional
transport equation be any different from those predicted by the steady flamelet
model alone? And if the transport equation solution were more accurate than the
steady flamelet prediction, could it not be used to constrain or parameterize the
steady flamelet model? To be more specific, suppose that the transported species
in question is actually the previously introduced progress variable. Then, the set of
transport equations being solved is given in (3.45), while the steady flamelet model
(3.37) predicts,

C=0C(Z,xo), (3.47)

giving us two independent equations for the progress variable. If (3.47) is to be
consistent with (3.45), xo can no longer be coupled directly to the local dissipation
rate in the flow, but instead must be constrained by (3.47). Provided that the

progress variable varies monotonically with x¢, (3.47) can be inverted to obtain,
Substituting this into (3.37) yields (3.46).

Unsteady Flamelet Interpretation

The flamelet /progress-variable approach can alternatively be derived by interpreting
it as a type of unsteady flamelet model. Since the dissipation rate parameter, xo,
is determined in (3.48) by the value of the progress variable and does not have
any direct relationship to the actual dissipation rate in the flow, it should not be
regarded as representing a real dissipation rate but rather a ficticious one, which we
denote by x’. Thus, the flamelet equations used in the flamelet/progress-variable
approach are given by

d*y;
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where X' = x'(Z,C) and in general, x’ # x. If we now add and subtract the term
x(d?y;/dZ?) in (3.49), it can be written in the form,

d*y; d*y;
- X' > = : i - 3.50
p(X x)de PX g + P (3.50)
Meanwhile, the unsteady flamelet equations (Peters 1984) are given by:
Ay 02y
= i - 3.51
Por = PXggm TP (3.51)

Comparing (3.50) with (3.51), it is apparent that the left-hand side of (3.50) can

be interpreted as a type of unsteady term in the flamelet equations:

Ayi 42y
— & — .52

where the difference between the actual and ficticious dissipation rates indicates the
degree of unsteadiness. This form for the unsteady term appears as a relaxation
mechanism, evolving the flamelet solution ever closer to the steady flamelet solution
for the given dissipation rate, x. In this sense, x’ can be thought of as a lagging
dissipation rate containing the memory of the flame structure from an earlier time
when y and y’ were equal. This concept, of a ficticious dissipation rate that rep-
resents the history of the evolution of the flamelet, is similar to the “equivalent”
strain rate of Cuenot et al. (2000). It should be noted that the unsteady evolution
suggested by (3.52) is actually embedded in the progress-variable transport equa-
tion, where the reaction and dissipation rates directly affect the evolution of the

progress variable in a manner similar to (3.51).

Application to LES

So far, the derivation of the flamelet /progress-variable approach has been in terms of
fully resolved, instantaneous quantities without consideration of subgrid turbulence
modeling. This is to separate the assumptions involved in the chemistry model
from those used in the turbulence model. When written in terms of filtered LES

quantities, (3.45) becomes,

opZ e N -
AV (puZ) = V- [plaz + o)V,
(3.53)
opC ~ _ —
S+ V- (puC) = V- [p(ac + ) VC] + piic
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where oy is the turbulent diffusivity of §3.2.2. To account for subgrid fluctuations
in the mixture fraction and progress variable, filtered combustion variables are ob-

tained by integrating (3.46) over the joint PDF of Z and C. For example,
i = [ w(z.0P(z,0)dzdc, (3.54)
and,
e = / we(Z,C)YP(Z,C)dZ dC . (3.55)

The joint PDF is modeled by first writing,
P(Z,C) = P(C|2)P(Z) , (3.56)

where ﬁ(Z) is given by the assumed beta PDF of §3.2.4. The conditional PDF,
P (C|Z), is modeled by assuming that each subgrid chemical state is represented by

a single flamelet solution. Mathematically this is described by a delta function,
P(C|z)=8(C - C|2) (3.57)

where the conditional mean, C/'E , is given by one of the steady flamelet solutions
in (3.37),
C|Z = C(Z. xo) . (3.58)

and o is chosen such that the constraint,
C = /C(Z, xo0)P(Z)dZ | (3.59)

analogous to (3.47), is satisfied. The flamelet/progress-variable approach could
benefit from a more sophisticated model for P(C|Z), but as noted in §3.2.4, assumed
PDF modeling of reacting scalars needs to be further researched.

The implementation of the flamelet /progress-variable approach is similar to the
steady flamelet model in that it employs chemical state relationships determined by
a flamelet library and uses assumed PDF’s to represent subgrid fluctuations. The

major difference, of course, is the parameterization by a progress variable instead
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of dissipation rate. Once the flamelet library is computed and assumed PDF inte-
grals are evaluated, lookup tables can be generated to provide the filtered chemical
variables as functions of the quantities readily available from LES (namely, A , ?’2,

and C):
gzzgz(27ﬁ7é) 9 T:T(Zaﬁaé) ) ﬁ:ﬁ(2727//275) ) etc. (360)

Note that (3.60) includes similar expressions for @, az, ac, and we, which are
used in solving the large-scale momentum and scalar transport equations. The
computational cost of the flamelet/progress-variable approach is only marginally
greater than the steady flamelet model, because the functions in (3.60) can be
precomputed and tabulated prior to running a simulation. The major additional

cost comes from solving the transport equation for the progress variable.

Further Discussion

One of the more conspicuous limitations of the steady flamelet model (§3.3.3) is its
inability to properly account for ignition and extinction phenomena. This is ex-
emplified most clearly by the discontinuous jump in flame states in Fig. 3.4, which
indicates that the steady flamelet library is somehow incomplete because it can-
not represent any of the “partially extinguished” intermediate states that should
fill the gap between the critical point and complete extinction. In fact, the steady
flamelet equations do provide a complete and continuous set of solutions rang-
ing from chemical equilibrium to complete extinction, but they are not in general
uniquely parameterized by the dissipation rate.

The complete locus of solutions to the steady flamelet equations is shown in
Fig. 3.6. The shape of this curve, sometimes called the “S-shaped curve” in diffu-
sion flame theory, is determined primarily by the chemical kinetics. With Arrhenius
kinetics, there are typically three solution branches: (1) the steady burning branch,
(2) the unstable branch of partially extinguished states, and (3) the complete ex-
tinction line. On the stable burning branch, maximum flame temperature decreases
with increasing dissipation rate as more rapid mixing increases reactant concen-

trations while diluting product concentrations. When the critical point is reached,
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Fig. 3.6 Locus of maximum flame temperatures from a complete set of
steady flamelet solutions including the unstable branch. This should be
compared with Fig. 3.4.

the flame temperature becomes so low that Arrhenius rate factors in the chemical
kinetics begin to limit reaction rates, even as reactant concentrations continue to
increase. Below the critical point on the unstable branch, dissipation rate must
decrease with decreasing flame temperature in order to keep mixing in balance with
lower reaction rates at colder temperatures. On the complete extinction line, the
effect of chemical kinetics is negligible so that the chemical state is independent of
dissipation rate.

Because the defining characteristic of steady flamelet solutions is that chemical
reaction rates are in balance with molecular diffusion rates, dissipation rate can
be thought of as synonymous with an overall reaction rate when considering the
structure of the locus of steady flamelet solutions. In this case, the significance of
the curve is more easily seen with dissipation rate plotted on the vertical axis as
the dependent variable. This view is depicted in Fig. 3.7, where dissipation rate is
plotted versus maximum flame temperature. At the coldest temperatures on the
left side of the figure, reaction rates are negligible. As the flame temperature rises,

reaction rates steadily increase, until reactants become scarce enough that they
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Fig. 3.7 Locus of maximum flame temperatures viewed as reaction rate
versus temperature.

begin to limit reaction rates. Beyond this point, reaction rates steadily decrease as
the chemical state approaches equilibrium on the right side of the figure.

The use of the unstable branch of steady flamelet solutions in the progress
variable approach has been criticized as unphysical, but as we now demonstrate,
the behavior of the model in this region is very similar to that of an unsteady
flamelet solution. For a given maximum flame temperature on the vertical axis of
Fig. 3.6, the ficticious dissipation rate, x’, corresponds to a point on the curve,
while the actual dissipation rate, y, will correspond to a location either in region
I or in region II, depending on whether x < x’ or x > Y/, respectively. Referring
to (3.52) and noting that d?T/dZ? is negative in the region where temperature is

maximum, we see that in region I, the unsteady term is positive,

oT d*T
2 = (X_X/)ﬁ >0 inregionI,

so that the flame state moves up to the steady burning solution branch, while in

region II, the unsteady term is negative,

aT d*T
5~ (X_X/)ﬁ <0 in region IT,

so that the flame state moves down to the steady extinguished solution branch (or

down to the steady burning branch if it is initially above it). Thus, the unstable
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solution branch is important both physically and in the progress-variable approach
because it delineates the border between regions I and II, between ignition and

extinction of the flame.

The last issue we consider is the definition of the progress variable. For a
one-step chemical mechanism, there is only a single degree of freedom remaining
after mixture fraction is known, so that any species, be it fuel, oxidizer, or product,
uniquely determines the others and can be chosen to serve as the progress variable.
In fact, the progress-variable approach provides an exact description of one-step
chemical systems. But for a large, multistep chemical system, the selection of the
progress variable should be guided by the two following criteria: (1) the progress
variable should be an important, controlling quantity that contains the essential
features of the process it is supposed to represent, and (2) it should provide a unique
mapping of all of the chemical states in the flamelet library. The dissipation rate is
an example of a quantity that clearly does not uniquely determine chemical states
(Fig. 3.6). Similarly, intermediate species that are produced and later consumed are
not expected to be useful indicators of reaction progress. Since the final result of
chemical reactions is to transform reactants into products, a good measure of how
far the transformation has progressed is the product mass fraction. In the present
study, the progress variable defined by C' = yp = yco, + yu,0 is used for the case
of methane-air combustion. However, product mass fraction does not necessarily
satisfy the second criterion of providing a unique mapping of all the states. For
methane-air combustion, there is a significant region of nonuniqueness in fuel-rich
mixtures close to equilibrium, similar to what is seen in the temperature in Fig. 3.3.
In practice, the solution to this problem is to use a “truncated” flamelet library,
in which the nonunique, near-equilibrium states are removed. Unfortunately, this
approximation may break down in regions where hot products mix with unburned
fuel and may explain the discrepancy in the carbon monoxide prediction in Fig. 5.9.
In general, the only chemical property that is guaranteed to vary monotonically
during chemical reactions is the entropy, and so this would be a logical choice

for the progress variable. However, entropy is governed by a significantly more
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complicated equation than (3.45) and includes source terms for both mixing and
chemical reaction. Nevertheless, future studies using a progress-variable approach

should consider using entropy as the progress variable.
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Chapter 4

NUMERICAL METHODS

One of the main objectives of this work was the development of special numerics for large
eddy simulation of variable-density flows with heat release. Typical numerical methods
used in computational fluid dynamics are usually not suitable for LES because they do
not consider the important issue of nonlinear stability. This chapter discusses a staggered
space-time, conservative discretization for the variable-density transport equations, as well
as an efficient, semi-implicit iterative technique for integrating those equations. Details of
the implementation in cylindrical coordinates and the specification of boundary conditions

are also considered.

4.1 Conservative Space-Time Discretization

Large eddy simulations are more vulnerable to numerical errors than most other
types of numerical computation (such as direct numerical simulations) because prac-
tical calculations are always under-resolved. While subgrid-scale models may ac-
count for the effects of unresolved physical scales, they should not be expected to
compensate for numerical errors. Consequently, practical large eddy simulations
can “blow up” when aliasing or other errors contaminate the solution. The typical
remedy is to incorporate some form of artificial dissipation (such as upwind biased
schemes or explicit filtering techniques) to damp instabilities and other numerical
errors. Unfortunately, this approach usually leads to the unwanted damping of
physical processes as well as numerical errors, especially when a broadband range
of nonlinearly interacting scales is simulated. Even if artificial dissipation is care-
fully confined to the smallest scales, larger scales will still be indirectly affected
through nonlinear interactions. Fortunately, stability can be achieved without ar-
tificial damping by designing numerical schemes to satisfy certain conservation re-

quirements.
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4.1.1 The Role of Conservation

Consider the Eulerian transport equation for a conserved quantity 7,

0
%vLV-(pun) =0, (4.1)

and the continutity equation (obtained with n = 1),

ap B
o TV (pw) =0 (4.2)

These equations directly express the (primary) conservation of 7 and of mass, but

together, they also imply conservation of any function, f(n):

Ipf(n
T0) 4 9 - fpust) = 0. (43)
In particular, the function f(n) = %?72 or “p-energy” is also conserved. This is

refered to as secondary conservation. From the point of view of numerical methods,
secondary conservation is what guarantees nonlinear stability.

Because the continuity equation for variable-density flows contains a time
derivative term, one needs to consider both temporal and spatial discretizations
when developing conservative schemes. That is, the temporal and spatial deriva-
tives in the material convection terms must be discretized in a specific relation to
each other and to the time-dependent continuity equation. This is clear from the
steps required to derive (4.3) from (4.1) and (4.2). In the following sections, discrete
analogs of the product rule of differentiation in calculus will be used to show how

both primary and secondary conservation can be achieved in the discrete equations.

4.1.2 Index-Free Notation

Before presenting the discrete equations, we introduce a compact and convenient
notation for writing discretized equations in a form similar to the original partial
differential equations (Piacsek and Williams 1970; Morinishi et al. 1998). This

notation is also very useful for performing algebraic manipulations on the equations.
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Second-order discretizations usually involve the primitive operations of inter-
polation and differencing in a particular coordinate direction. For any pair of coor-
dinate directions x and y having uniform grids with respective spacings ax and Ay

and respective grid indices ¢ and j, we define the interpolation operators,

¢ _ Uit1/2,5 T Ui—1/2,; v _ Ui j+1/2 T Ui j—1/2 (4 4)
ij 2 ’ ij 2 ’
and the differencing operators,
U; P Ui— i U; 4 — Uj i—
533(1,[/) N — +1/27] 1/2’J , 5y(u) N — »]"‘1/2 5] 1/2 . (45)
1,5 AL .7 AY

Note that each of the operators in (4.4) and (4.5) produces a result that is staggered
with respect to the operand in the coordinate direction indicated. For example, u*
is shifted %ALIJ with respect to u in the z direction. We also define the following

nonlinear interpolation operator:
w” = 2u"v" —uw” (4.6)

which will be used in the expressions of secondary conservation.
There are a number of discrete identities, easily proved by substitution of the

above definitions, which will be useful later:

So(ab”) = ady(b)" +bdy(a) (4.7)
8z (ab) = @0, (b) + b 6,(a) , (4.8)
02(@) = b,(a)” (4.9)

o’ =3 . (4.10)

Here, a and b are any two compatible quantities and z and y are any two coordinate
directions. Two quantities are compatible if the locations at which they are defined
have the proper relationship for the expression to make sense. All terms that
multiply or add in a given expression must be defined on the same set of grid

points (not staggered with respect to one another). For example, the product
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uv”® can only make sense if v is staggered with respect to u in the x direction
so that 7* is collocated with w. The first two identities (4.7) and (4.8) are in
the form of the product rule in calculus, creating a discrete calculus that enables
manipulations to be performed on the discrete equations in analogy with the original

partial differential equations.

4.1.3 Fully Discrete Equations

In the present work, velocity components are staggered with respect to density and
other scalars in both space and time (Harlow and Welch 1965). The space-time mesh
is composed of continuity “cells” around which the density and velocity are placed
in their natural positions based on their respective roles in the continuity equation
(Fig. 4.1). All other scalar variables, such as pressure and mixture fraction, are
collocated with the density. By convention, variables defined on cell faces oriented
in a positive coordinate direction are assigned the same indices as the cell. Time
advancing from u™ and p" to u"*! and p"*! completes the continuity cells in the

upper row in the figure.

{ o o tn+1
n—+1
X o X X
t i
J ® tn
n
L n{ X x % %
ey |—e ot tn-i
Ti—1 Z; Ti4+1

Fig. 4.1 A staggered space-time grid.

The mass flux (or momentum per unit volume), which plays an important role
in the descretization of the continuity equation and convective derivatives, is given
the symbol g;. The conversion between u; and g; is accomplished using the following
relations:

=zt =z;t
gi =p"" i, ui =g/ p= - (4.11)
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In direct analogy with (2.20-2.22), we now present the fully discrete equations.
Note that interpolation operators (overbars with superscripts) do not follow the

summation convention.

Continuity:
51(9) + b, (97) = 0 (4.12)
Momentum:
51(9) + 00, (T W) = =00, (p) + 0, () (4.13)
T":{ij [6xj(u_i) m(y)} ]
Y 2000, (W) — 50, (W)di5] i =
Scalar Transport:
=z;t — — —
51(p0) + 02, (9,07 ) = 8, [P 0, (61)] + (8 (4.14)

For clarity we have dropped the scalar index k from the scalar transport equation.
The above compact notation can be expanded into more conventional form. For
example, the continuity equation in two dimensions for the cell above the shaded
one in Fig. 4.1 would be expanded as,

1
iy — Ay, ]

Al 4dAx

[(p?-:_ll,] + pn+1 + pz—|—1,] + pl,j) n+1
(P;I;H + P?+11] + pi 4T Pi—1 g) 7+11,]}

1
+1 +1 +1
+m |:(p2j+1 + pn + pz,j—i—l + pl,j) v

= (R P T+l + ij_l)UZj_lJ =0.
When the above equations are generalized for nonuniform (stretched) grids,

the interpolation and differencing operators are defined as,

Uj41 — Uy
perj = Gt (1 —ci)u; 2(u) 12 T (4.15)

u
where ¢; are linear interpolation weights. These definitions maintain formal second-
order accuracy of the interpolation operator, but they do not satisfy the discrete
product rules exactly so that secondary conservation is only approximately satisfied.
In practice, the simulations are found to be stable on sufficiently smooth grids. A

more robust, but possibly less accurate, approach would be to continue using equal

weighted interpolations.
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4.1.4 Benefits of Staggering

The major benefit of staggering the velocity in space and time is the improved
accuracy and stability of the continuity equation that results from using central
differences based on a stencil width of only A (instead of the usual 2A) for the
time-derivative of density and the spatial derivatives of velocity in (4.12). The
modified wavenumber diagrams (c¢f. Moin 2001, p. 16) for the staggered and non-
staggered cases are compared in Fig. 4.2. The pressure gradient in the momentum
equation is likewise improved because the velocity components are collocated with

the corresponding pressure derivatives.

3.0 1
exact
----- 2nd order central difference, normal stencil width

P 2nd order central difference, half stencil width
@
E
S 204 T
c . ..
g
T
S 15+
ke
Q
g 107 A eI -

0.5 - i

0 :
0 0.5 1.0 15 2.0 25 3.0

wavenumber

Fig. 4.2 Modified wavenumber diagram for second order central differences
based on stencil widths of 2A and A.

However, staggered grids do not improve the accuracy of the first derivatives in
convection terms, such as those in the momentum and scalar transport equations,
because of the extra interpolation required to compute a derivative at the same

location as the variable. For a linear first derivative term, this amounts to

Ui+1 — Uj—1
i 2Ax

Y

which is the standard second-order central difference expression. Thus, the velocity

and scalars are still susceptible to the formation of “wiggles” due to the extreme
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dispersion error at high-wavenumbers (Fig. 4.2). However, because of the constrain-
ing effect of the continuity equation, staggered-grid velocity solutions are typically
less susceptible to the wiggle problem than scalars.

Second derivatives on a staggered grid can be accurately expressed in terms of
repeated application of the first derivative operator,

Dit1 — 2pi + pi—
6m[5x(p)]i: + (az)? 1

This allows, for example, a discretely consistent Poisson equation for pressure to
be derived by applying the discrete divergence operator to the discrete momentum
equation. Attempts to perform the same operation on non-staggered grids lead to

the well-known even-odd decoupling problem.

4.1.5 Discrete Conservation Properties

Using the identities, (4.7-4.10), the discrete equations can be manipulated to show
their conservation properties. Using the discrete product rules (4.7) and (4.8), the
left-hand sides of (4.13) and (4.14) can be expanded to the following equivalent

forms:

t —_—

=t —;t —
pv 0e(ui) + G5 0a, (05")

T =z —z;t
+ 7t [(&(p Zt) + 02, (5" )] = (4.16)

_ =

p'ou(d) +950:,(¢ ) + [0lp) + s, (g)] =+ - (4.17)
The right most group of terms in brackets in each equation will be zero if the
continuity equation (4.12) is satisfied. What remains is the “advective form” of
the left-hand sides of the momentum and scalar transport equations. Multiplying
(4.17) by Et and rearranging with help from the identities, one can derive a discrete

equation for the “scalar energy”:

(50 +0,, (0,360 )

ey I (4.18)
+ 106 [0u(p) + b0, (9)] + 5 (60 =87 ) oulp) =+ .
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A similar equation can be derived for each component of the kinetic energy (there

is no implied summation over the index ):
1=zt 2 —zitl bt

YT [0 + 00, (57| + 4 (W T ) o) =

Exact secondary conservation cannot be achieved with the present scheme due to

(4.19)

the presence of the last term involving d:(p) in the above equations. However, it
is easy to show that this term is O( at?) and numerical experiments have shown
that it is not cummulative in time. Unfortunately, a discretization that obtains
exact secondary conservation without giving up exact primary conservation could
not be found. Note, however, that secondary conservation is exact when §;(p) = 0,
or equivalently d,,(g;) = 0. This is the case for steady flows and constant density

flows.

4.1.6 Spurious Heat Release

A conservative scheme for variable density flows should conserve not only total en-
ergy, but also internal and kinetic energies in the absence of energy transfers, due
to pressure-dilatation work and viscous dissipation, between the two forms. Also,
a consistent accounting of energy transfers is required when they do occur. How-
ever, even if numerical conservation is achieved in this regard, numerical stability
is still not guaranteed because spurious conversion from internal to kinetic energy
can occur, in violation of the second law of thermodynamics. Such a violation can
be characterized as a spurious heat release. The practical consequence of this un-
physical energy transfer is the unbounded growth of the kinetic energy due to the
pressure-dilatation work term.

Spurious heat release is typically caused by dispersion errors in the convection
terms of the scalar transport and continuity equations. Over time, these errors can
cause inconsistencies to develop between changes in density due to scalar transport
(via the equation of state) and changes in density due to simple convection in the
continuity equation. As an example, consider the pure convection of a variable-

density scalar in a divergence-free velocity field. The density determined by the
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equation of state and scalar transport equations,

D¢ _

p=p(®), o = 0>

is not numerically equivalent to the density determined by the continuity equation,

D
because of errors in the numerical approximation of the material derivative oper-
ators. Since in the low Mach number approximation, density is derived from the
equation of state while the continuity equation acts as a constraint on the velocity,
the inconsistency manifests itself as a spurious divergence of the velocity field.
Some numerical schemes that deal with this problem were investigated by
Nicoud (2000). A physically based remedy would be to restore some of the com-
pressibility effects to the low Mach number equations, so that a spurious divergence
of the velicity field causes a decrease in internal energy that feeds back to the equa-
tion of state, thereby increasing the density and halting the divergence. This idea
was not explored further in the present study; instead, the time derivative of density
in the continuity equation was spatially filtered using the test-filter operator of the

dynamic model (§3.2.1), i.e.,

o o
LN Wt
5 olp) = —— (4.20)

This was found to greatly improve, but not completely guarantee, the stability of

the algorithm.

4.2 Iterative Semi-Implicit Scheme

The fully discrete equations as expressed by (4.12-4.14) are fully implicit in time.
While this implicitness provides much of the schemes’s stability and robustness,
it is preferable to adopt a semi-implicit, iterative solution procedure that is much
more economical but also retains most of the stability and accuracy properties of

the fully implicit scheme.
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The time discretization in (4.12-4.14) is similar to the popular Crank-Nicolson
or trapezoidal time-advancement scheme, but the “right-hand-sides” are evaluated
using variables that have been interpolated in time to the midpoint between the
solution at times t" and t"*!. In terms of a single ordinary differential equation,

du

— u

= fw)
the time discretization may be written as,

un—i—l

n

—u
Al

or using the compact notation as,

5¢(u) = f(u') . (4.21)

Note that for linear f(u), this is identical to the trapezoidal scheme. For nonlinear
f(u) the above implicit equation could be solved using Newton-Raphson iterations,
which require the solution of systems of algebraic equations when u and f are
vectors. Let ujt! be the k' iterative approximation to u"*'. Then, applying

Newton-Raphson to (4.21), one obtains,

0
it = ot (B ]+ o | 5] - ).

with initial guess

n+l _ n
'ILO =Uu .

This can also be expressed in “delta” or residual form,

of
{1 — %At %} (u"kfﬁ — uZ“) =u"+ atf [%(u” + u’,’j“)] — uZ“ . (4.22)

An explicit iterative scheme results if the Jacobian, 0f/du, in (4.22) is set
to zero. This scheme has some interesting stability properties that depend on the
number of iterations performed each time step. The linear stability properties of the

explicit scheme using the linear model problem, du/dt = Au, are shown in Fig. 4.3

for 1, 2, and 3 iterations. A minimum of two iterations are required for second order
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Fig. 4.3 Linear stability regions for 1, 2, and 3 iterations. Third-order
Runge-Kutta is also shown for comparison.

accuracy. Additional iterations may improve stability but do not increase the order
of accuracy. When three iterations are used, the method has similar imaginary-axis
stability limits and comparable computational cost to the third-order Runge-Kutta
method. The explicit iterations only converge for sufficiently small time steps, at.
As the number of iterations approaches infinity, the explicit scheme converges to
(4.21) inside the circle of radius |Aat| = 2 and diverges outside it. Thus, linear
stability limits are not significantly increased beyond three iterations. Note that
the main objective of the present iterative scheme is not to increase linear stability
limits but rather, to obtain nonlinear stability and the conservation properties of
the fully discrete equations.

Semi-implicit schemes result if the Jacobian in (4.22) is simplified (e.g. ap-
proximate factorization). The economy of the semi-implicit scheme derives from a
judicious choice of which terms to treat implicity and which to treat explicity. Usu-

ally only the stiffest terms in each equation are treated implicity, such as derivatives
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in a coordinate direction that has a much greater variation in grid spacing than the
other directions. For example, where grid refinement occurs near a wall, only deriva-
tives in the wall-normal direction would be treated implicitly. In the present study,
the following terms are treated implicitly: (1) advection and diffusion in the ra-
dial direction, (2) advection and diffusion in the azimuthal direction, and (3) the
pressure in all directions via a Poisson equation.

The iteration procedure employed in the present study is summarized below.
In the following, the superscript n refers to solution values that are known from
the previous time level, the superscript k refers to the iteration cycle between the
solutions at time step n and n + 1, the superscript 0 indicates the initial guess
for the first iteration when k£ = 0, and a hat placed above a symbol is used for a

provisional value of some quantity.

Step 1: Choose predictors (initial guesses) for the values of the variables at the
next time level. The simplest choice is to use the solution values at the current time
level:

ud = ul ¢0 =", etc.

This choice corresponds to using explicit Euler (or first-order Runge-Kutta) for the
first iteration. Predictors are not essential to the present algorithm in that they do
not affect the final converged solution, but good predictors can speed convergence of
the iterations, and they can affect accuracy and stability when only a small number
of iterations are used. The density predictor is particularly important because it is
related to the conservation properties described in §4.1. Experience has shown that
it is best to ensure that the predictors for density and velocity satisfy the continuity
equation. That is, the predicted rate-of-change of density should correspond to the

predicted mass flux divergence. We therefore choose:

p’ = p" — atd.,(g7) -

With the predictor g? = g, this is equivalent to linear extrapolation in time:



Step 2: We first advance the scalar equation(s) so that a better estimate for the
density can be obtained early in the iteration process. In the present work, each
scalar equation is updated separately, and semi-implicit penta-diagonal equations
(for the QUICK scheme discussed in §4.3) are solved for advection and diffusion in
the radial and azimuthal directions (using approximate factorization) so that grid
refinements in the radial direction near walls or in the azimuthal direction near
the centerline do not limit the time step. Any source terms are treated explicitly.
Time advancing (4.14) yields (p¢)**1, from which a provisonal estimate for ¢¥*1 is

obtained using the current density predictor:
¢ = (pp) T/ p" .

Boundary conditions are enforced on ¢.

Step 3: The density is updated from the equation of state, using the provisonal

scalar values:

~

P =1(9) .
Note that it may be possible in some cases to obtain p¥*! directly as a function
of (pg)**1. However, this was found to be less accurate because (p¢)*+1 implicitly

contains p*, which is based on information from the previous iteration.

Step 4: Re-update the scalar(s) based on the new density:

PFT = (pp)* T/ pt

This is required to preserve primary scalar conservation. Boundary conditions are

applied to ¢F*1,

Step 5: Time advance the momentum equations (4.13) to yield provisional es-
timates for the mass flux components, g;. In the present work, semi-implicit tri-
diagonal equations are solved separately for each velocity component for advection
and diffusion in the radial and azimuthal directions using approximate factoriza-

tion. The current best estimate for pressure is included on the right-hand-side.
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Provisional velocity components are computing using:
~ ~ =zt k41
U =g/ (p™ ).
Boundary conditions are applied to u;.

Step 6: A Poisson equation is solved to determine the adjustment to the pressure
field required to ensure that the continuity equation is satisfied. We first consider

additive corrections, dg; and dp, to the mass flux and pressure such that,
gt =gi+0g, P =p"+0p.

We then substitute these expression into the momentum equations. To focus on the
pressure, we group all other terms into a generic right-hand-side term, R;,

gi +90g; — g;"

_ _ k .

Next, we “time split” this equation into a predictor part and a corrector part:

gi — g7
At

dg; = — At g, (0p) . (4.24)

= —0,,(0") + Ri , (4.23)

Equation (4.23) is the same as the equation that was solved in Step 5. Taking the

divergence of (4.24) leads to a Poisson equation:

53% [53% (5]?)] = _6903' (5gj)/At

= —0,, (g —g;)/ at (4.25)
1 R pk—l—l o pn

— — |6, (3; :
At L (95) + At

*1). The mass

where the continuity equation was used to substitute for o, (gj
flux correction, dg;, is assumed to be zero on the boundaries so that the boundary-
normal component of (4.24) implies that the appropriate boundary condition for the
Poisson equation is the Neumann condition, ¢, (dp) = 0. Note that the source for
this Poisson equation is simply the residual of the continuity equation for the next
time step, which approaches zero as the iterations converge. Thus, errors associated
with classical time splitting or fractional steps disappear with the present iterative

approach.
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Step 7: The velocity and pressure are updated:

gitt =G, — atd,, (0p) ,

k+1 — gz +1/( )k—|—1

P =pF +dp .

The continuity equation based on the density determined in Step 3 is now satisfied
exactly. This completes one full cycle of the iterative process. If more iterations are
desired the process would continue with Step 2.

While only two iterations are required to ensure second-order accuracy in time,
in practice more iterations may be needed to ensure stability, particularly in reacting
flows with high heat release. Experience has shown that flows with weak density
variations require only 2 or 3 iterations, while reacting flows with large density

ratios may require 4 or 5 iterations.

4.3 Scalar Advection

It is well known that linear advection of a scalar with central difference schemes
is vulnerable to the formation of spatial oscillations or “wiggles” due to dispersion
errors. Though the discretization of §4.1.3 is conservative and leads to numerically
stable solutions even in the absense of diffusion, problematic oscillations can still
arrise. While some tolerance for such oscillations can be built into the algorithm,
central differences can cause scalars to disperse in disastrously unphysical ways,
such as the propagation of oscillations into regions where the scalar is supposed to
be uniform.

Figure 4.4 illustrates the problem for linear advection of a Gaussian bump,

which is governing by the equation,

oo~ 0¢
3t+8x 0,

with constant advection velocity, c. The exact dispersion relation for this equa-

tion is w(k) = ck, where w is the angular frequency of a Fourier mode and k is
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Fig. 4.4 Numerical dispersion of a Gaussian bump after being advected
to the right a distance of one unit. ---: second-order central difference;
------ : QUICK scheme; —— : exact. Periodic boundary conditions and 64
grid points were used.

the wavenumber. If we use a finite-difference scheme to approximate the spatial
derivative and assume that time integration remains exact, the numerical disper-
sion relation becomes w(k) = ck’(k), where k/'(k) is the modified wavenumber of
the finite-difference scheme (see Fig. 4.2). Thus, the modified wavenumber can be
interpreted as a numerical dispersion relation for linear advection. For wavenum-
bers higher than the peak in the modified wavenumber diagram, the group velocity,

dw/dk, is actually negative, so that wiggles can, in fact, propagate upstream.

To combat the severe problems that can arise due to dispersion error in finite-
difference schemes, an upwind biased scheme was adopted for scalar advection only.
It can be argued that, while upwind schemes are detrimental when used for compu-
tation of turbulent velocity fields due to their damping effect on turbulence spectra
(Mittal and Moin 1997), their deleterious effects on scalar advection are relatively
minor, because scalar transport is linear (no scale interaction), and thus, the damp-
ing of small scales does not affect the dynamics of the large scales. While many
schemes have been developed for the scalar advection problem (SUPG, TVD, etc.), for

simplicity, the present study uses the QUICK scheme (Leonard 1979), which replaces
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Fig. 4.5 Staggered grid with cylindrical coordinates. Only the u, velocity
component is located at the centerline. ®: p, p, @, uy; x : up; O: Up.

the two-point interpolation of §4.1.3 with an upwinded, three-point interpolation to
the cell face when computing scalar advective fluxes, resulting in a five-point sten-
cil overall. Accordingly, when scalar advection is treated implicitly, penta-diagonal
algebraic equations must be solved. For further details, see Akselvoll and Moin
(1995). The effect of the QUICK scheme on the linear advection problem is also
shown in Fig. 4.4, where it can be seen that the QUICK scheme reduces but does

not eliminate the appearance of wiggles.

4.4 Cylindrical Coordinates

The governing equations are solved in cylindrical coordinates in order to take ad-
vantage of symmetries in the coaxial jet combustor of §5.1. The coordinates x, r,

and 6 correspond to the axial, radial, and azimuthal directions respectively.

4.4.1 Discrete Equations in Cylindrical Coordinates

The fully discrete equations of §4.1.3, when expressed in cylindrical coordinates,

take the following form. A schematic of the grid is shown in Fig. 4.5 for reference.

Mass Fluxes:

—zt =7t -y
gz = P Ug , gr = P Uy, go = p- Ug
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Velocity Divergence:
1 1
© =0, (ug) + ;5r(rur) + ;59(1@)

Continuity:
1 1
61(p) + 05(9z) + ;(L(?"gr) + ;59(99) =0

Momentum:

51&(93:) - 6:c(fmm) + %&"(war) + %59(](‘:1}9)

5t(97~) - 5:C(frm) + %57“(70]07"7") + %50(](7'0) - f&%
01(90) = 0z (fou) + %5r(7’f9r) + %%(fee) + fe;

t t

— =t — ==

Jrz = 2#[5w(uwt) - %6 | = 0" " —p
1
3

Jrr = 2#[5r(u_rt) -

1. Uy —t ;1 S—":1
foo = 2 ;50(U9t) + :ﬂ -6 } — 3y Uy —D
—r [ — — —gt—t
fCL‘T‘ - Nmr 5x(urt) + 5T(umt)] - grx Uy
—r - . —t—t
fro =T |8.(@") + 6,(@") | — 5 T
t
— 0T 1 ug" —t t
fro =T [0,(0") + —b0 (i) = == | — 57" "
t
—0T 1 g t t
for =T |8:(T5") + S 00(a") — | — 5
_—9 i - 1 —_ _—t_ t
foo = 7" |8:(70") + ~00(W")| - 70"
— 1., —gt—xt
e = i + s

Scalar Transport:

5(p9) = Be(42) + 0,(ra) + Golao) + puw

we ot =zt
Qe = PO 0z(¢ ) — g2 ¢

—_’I"t

qr = p_ar&"(gt) - grgb
1 = 5t
g0 = pae;%(ﬁbt) — 9o
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Note that the pressure has been included in the momentum flux tensor, f;;, rather
than written as a separate gradient term. In the radial momentum equation, pres-
sure contributes to both the radial flux and curvature terms, which combine to yield

an equivalent gradient term:

4.4.2 Centerline Treatment

The centerline treatment used in this work differs considerably from that used by
Akselvoll and Moin (1995). Referring to Fig. 4.5, it is clear that all quantities
except u, are staggered in the radial direction with respect to the centerline (i.e.,
they are located at Ar/2 from the centerline), while u, itself is collocated with the
centerline. An analysis of the discrete equations reveals that centerline conditions
are actually not needed for any of the variables, except for u, and fy,. Derivatives
of quantities that are staggered with respect to the centerline can be obtained by
differencing opposing values across the centerline, accounting for reversals in the
directions of the radial and azimuthal unit vectors through the centerline (Mohseni
and Colonius 2000). Centerline boundary conditions for u, and fy, are obtained by

averaging corresponding values across the centerline (Akselvoll and Moin 1995):
ur(r=0,0) = [u.(ar,0) +u,(ar,0 + )] . (4.26)

The approach is designed to allow radial flow communication through the centerline
without undue influence to or from points at neighboring 6 locations. The angular
distribution of u, at the centerline does not necessarily conform to a single-valued
centerline velocity vector.

Grid quality was found to be important near the centerline in order to main-
tain solution stability. Although derivatives in radial direction are treated implicitly,
the scheme is in fact explicit in the radial direction at the centerline itself because
tri-diagonal equations are not coupled through the centerline. Thus, excessive re-

finement of the radial grid at the centerline can create stiffness. Also, excessive
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grid stretching at the centerline was found to promote the formation of unstable

“wiggles” in the radial velocity component near the centerline.
4.4.3 Exact Representation of Uniform Flow

A uniform velocity field is represented in Cartesian coordinates as a vector with
constant components:

w=(U,V, W) .

However, in cylindrical coordinates the components are not constant but vary with
0:
u = (U, Vcosf+ Wsin#, —V sin + W cos?) .

When derivatives in the r and # momentum equations are calculated using finite
differences, the discrete equations are not necessarily statisfied by the above uniform
flow solution. The discrepancies are particularly noticeable near the centerline,
where errors can be magnified by the 1/r factor.

It is usually desireable that a discrete representation of the governing equa-
tions satisfy exactly certain trivial flow situations, the case of uniform flow being
the simplest. This was achieved in the present formulation by “tweaking” cer-
tain differencing and interpolation operators in the discrete momentum equations
with multiplicative correction factors, so that a uniform flow satisfies the equations
exactly, while second-order accuracy is maintained. Specifically, derivatives and
interpolations in the # direction are modified according to

5o () —> %59(@ L cos(a0)2)T . (4.27)

The above modifications can be thought of as accounting for the finite angular
spacing of the computational grid. Note that as a@ — 0, the correction factors

approach unity.
4.5 Boundary Conditions

Staggered grids can be problematic when boundary conditions need to be applied,

because some of the variables may not be properly located with respect to the
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Fig. 4.6 Staggered grid at a wall boundary. When Dirichlet conditions
need to be applied, staggered variables are relocated to the wall. ¢ : p, p,

G5 %t Ug; O Uy
boundary. Figure 4.6 depicts a typical boundary in two dimensions, to illustrate
some of the issues encountered when applying boundary conditions on staggered
grids. For Dirichlet conditions, it is desirable for a variable to be located on the
boundary itself, while for Neumann conditions, the more natural arrangement would
be to have the variables staggered with respect to the boundary. Wall boundaries
can be difficult because they require the enforcement of boundary conditions at
specific physical locations, while inflow, outflow, and “open” boundaries are not
subject to this problem because boundary conditions can be applied to variables at

their staggered locations.

4.5.1 Wall Boundaries

The wall boundary conditions used in the present study are Neumann conditions for
all scalars and pressure, and no-slip Dirichlet conditions for velocity. As discussed
above, the Neumann conditions are easy to apply because pressure and scalars are
naturally staggered with respect to the boundary. Likewise, Dirichlet conditions
are easy to apply to the normal component of velocity because it is collocated with
the wall. However, the no-slip condition for wall-tangential components of velocity
is more difficult to enforce. One solution to the problem is to “de-stagger” the
tangential velocity components in order to locate them at the wall (Fig. 4.6), so that

the no-slip condition can be directly applied. However, an undesirable side effect of
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this grid redefinition is to create a discontinuity in the wall-normal grid spacing at
the boundary, which causes the wall-normal difference operator to become only first
order accurate. This has led other investigators (Caruso 1985; Akselvoll and Moin
1995) to consider three-point, one-sided difference operators for computing the wall
stress. However, giving special treatment to the numerical method on boundaries
was considered undesireable for code generality, and for simplicity, the wall stress
was computed using the standard two-point difference operator even though the

accuracy is degraded to first order.

4.5.2 Inflow Conditions

Turbulent inflow conditions for LES must reflect the three-dimensional, unsteady
nature of turbulence. In principle, the computational domain should be extended
to include all the upstream geometry and flow conditioning devices (such as swirl
vanes) that may influence flow properties farther downstream. But because this is
usually not practical, approximate inflow conditions must be considered. In many
cases, the inflow condition is a developing turbulent duct flow that can be approxi-
mated as fully developed. The unsteady inflow conditions can then be generated by
simulating a spatially periodic section of the duct. Generalization of this approach
to generate swirling inflow conditions is discussed by Pierce and Moin (1998b).

In the present study, a separate inflow generation code was used to create
an “inflow database”. The inflow generator simulates a spatially periodic, fully
developed, parallel duct flow. Every few time steps, a cross section of velocity data
is saved to the inflow database, until sufficient inflow data have been accumulated to
provide converged turbulence statistics. In the main simulation, planes of velocity
data are read from the inflow database in succession and applied to the inflow
boundary. Linear interpolation in both space and time is performed when the
inflow database grid and time step do not exactly match the grid and time step of
the main simulation. If the end of the database is reached before the simulation
is completed, inflow sampling returns to the beginning of the database, thereby

recycling turbulent inflow conditions when necessary. This is not expected to cause
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any problems when the database contains sufficient samples to produce converged
statistics and when the main simulation contains flow time scales longer than the

inflow recyling interval.

When the inflow conditions cannot be approximated as fully developed, their
specification becomes significantly more difficult. Usually, some specified mean ve-
locity or turbulence statistics profiles are known from an experiment or a Reynolds-
average calculation, and it is desired to have the same statistics profiles applied to
the inflow boundary of the LES. However, as stated in the beginning of this section,
LES requires instantaneous turbulence data, not merely their statistical properties.
Previous approaches to this problem (Le and Moin 1994; Akselvoll and Moin 1995)
involved the specification of statistically constrained random numbers at the inflow
boundary, which was followed by a development section that allowed the random
numbers to develop into realistic turbulence. Although random numbers are easy
to synthesize, they do not make a very attractive boundary condition because of
the need for a costly development section and because of the fact that initial ran-
dom numbers that are constrained to have the proper statistics do not necessarily
develop into turbulence having the desired statistics. In fact, extreme changes in
the flow are observed to occur within the first few grid points downstream of the

imposed boundary condition.

A more attractive approach is to generalize the “fully developed” approxima-
tion described above to include the larger class of parallel flows having arbitrarily
specified velocity statistics profiles. This type of flow is created by simulating a
spatially periodic, parallel duct flow and constraining it using a corrective “forc-
ing” technique. The resulting flow has the desired statistical properties, and it
provides realistic turbulence data that are in “equilibrium” with the specified mean
statistics. In the following, = is the streamwise coordinate direction, y and z are
cross-stream directions, and u(x,y, z,t) is the instantaneous streamwise velocity
component. Assume that a desired mean velocity profile, U(y, z), and fluctuation
intensity profile, U’(y, z) are given. The forcing technique then proceeds as follows.

At each time step, the streamwise-averaged velocity, u(y, z,t), and fluctuation vari-
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ance, u'2(y, z,t), are computed:
u(y, z,t) = (u(z,y,2,1)), ,

W2y, z,t) = (u(z,y, 2,1)%) —(y, z,t)* .

Then, the instantaneous velocity field is rescaled and shifted so that is has the

specified mean and fluctuating velocity profiles:

U'ly, 2)
u2(y, z,t)

u(z,y,z,t) — [u(@,y, 2, t) = uly, z, )] + U(y, 2) . (4.28)
This would be equivalent to adding an appropriately defined body force to the u-
component momentum equation. If only the mean velocity profile is constrained,

then (4.28) would be replaced by the simpler procedure,
u(z,y,z,t) — u(z,y,2,t) —u(y, 2,t) + U(y, 2) . (4.29)

The above approach appears to be an attractive alternative for generating real-
istic turbulent inflow conditions having specified mean statistical properties and
was considered in this study when fully developed conditions were deemed to be

inadequate.

4.5.3 Outflow Conditions

The convective condition is used for all “outflow” boundaries, which may also in-
clude “open” boundaries where the flow may actually enter the domain, as occurs
for example, when ambient fluid is entrained into a free jet. Mathematically, this
condition is written,

op 09 _

o teg =0 (4.30)

where ¢ is any scalar variable or velocity component, c is the convection velocity,
and n is the coordinate in the direction of the outward normal at the boundary.
In non-Cartesian coordinates, the normal component of velocity satisfies a slightly

modifed form of the convective condition to account for changes in flow area in
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the direction normal to the boundary. Instead of du,,/0n, the corresponding term
from the continuity equation is used. For example, in cylindrical coordinates, the
convective condition for the radial component of velocity at a radially oriented
outflow boundary satisfies,

ou, N larur
at v or

0. (4.31)

This ensures that the time-average of the ouflow mass flux is the same as the mass
flux at the first interior point away from the boundary.

Normal derivatives at the outflow boundary are evaluated using one-sided, first-
order differences, and the convection velocity is taken to be constant over the outflow
boundary. Flow structures that approach the boundary at speeds higher than c are
forced to slow and compress in a manner similar to a stagnation point, often with
the formation of unphysical “wiggles” that can propagate upstream (§4.3), while
structures that move slower than ¢ will be stretched and “pulled” out of the domain
without wiggle formation. If ¢ is too large, however, the CFL restriction may limit
the time step, and in the limit ¢ — oo, the convective condition approaches a
Neumann condition. Based on these observations, a good choice for ¢ will be just
large enough to prevent structures from stagnating at the boundary. Thus, c¢ is
changed at each time step to equal the maximum outflow velocity over the outflow
boundary, ¢ = max(uy,).

Global mass conservation is satisfied if the total outflow mass flux balances the
total inflow mass flux plus the net change in mass storage in the interior of the
domain. This is enforced at each time step by adding a corrective constant to the
outflow velocity (except at the walls in the boundary plane), to mimic the physical
response to a uniform pressure gradient at the outflow boundary. Thus, changes in
the inflow mass flow rate, as well as heat release fluctuations in the interior domain,

are balanced by adjustments to the outflow mass flow rate.

—75—



—76—



Chapter 5

APPLICATION TO A
COAXIALJET COMBUSTOR

The models and numerical methods described in previous chapters were tested against ex-
perimental data for a methane fueled coaxial jet combustor. Simulations were performed
using all three chemistry models presented in §3.3 under otherwise identical conditions and
were compared with each other and with experimental data. In addition, the importance
of accounting for differential diffusion effects with the progress-variable approach was ex-
amined. The results show that only the progress-variable approach predicts a lifted flame
and gives satisfactory agreement with experimental data in the region close to the inlet. If
unity Lewis numbers are assumed and differential diffusion is neglected, the results for the
progress-variable approach are significantly worse when compared to experimental data in
the region close to the inlet, where the interaction between chemical kinetics and mixing

is important.

5.1 Experimental Configuration

The experimental study used for the validation of the simulation methodology was
the coaxial jet combustor configuration of Owen et al. (1976). This experiment
was chosen for its relatively simple geometry and boundary conditions yet complex
flow patterns resembling those in a gas turbine combustor, and for the availability of
detailed measurements that map the species, temperature, and velocity fields within
the combustor. The experimental study consisted of eight test cases conducted
under various operating conditions and geometric modifications. The particular
case used for the present validation, referred to as “Test 1”7 in the laboratory report
(Spadaccini et al. 1976), is depicted in Fig. 5.1.

The configuration had a relatively large diameter, low velocity central fuel
port, with higher velocity, nonswirling air in a surrounding annulus. The air was
preheated to 750K, and the combustor was pressurized to 3.8 atm. Porous-metal

discs were installed in the fuel injector and air entry section to provide uniform inlet
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Fig. 5.1 Schematic of the coaxial jet combustor experiment.

flows. The walls of the combustor were water-cooled to maintain a constant wall
temperature of roughly 500K. The dimensions and flow conditions specified in the

experiment are summarized below:

central pipe radius (R;): 3.157 cm
annular inner radius (Rg): 3.175 cm
annular wall thickness (Ry — R1): 0.018 cm
annular outer radius (R3): 4.685 cm = R
combustor radius (R4): 6.115 cm
combustor length: 100.0 cm
mass flow rate of fuel: 0.00720 kg/s
mass flow rate of air: 0.137 kg/s
bulk velocity of fuel (V1): 0.9287 m/s
bulk velocity of air (V2): 20.63 m/s = U
overall equivalence ratio: 0.9
temperature of fuel: 300 K

temperature of air: 750 K

combustor pressure: 3.8 atm

The fuel used in the experiment was natural gas but for the present investigation was
assumed to be pure methane. Also, dry air was assumed. The experimental data

include radial profiles taken at usually four axial stations, of selected species concen-
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trations (measured using a traversing gas sampling probe), temperature (measured
by a traversing thermocouple), and axial velocity (measured by laser Doppler ve-
locimetry).

Figure 5.1 also shows a schematic of the flame configuration observed in the ex-
periment. Because of the high air/fuel velocity ratio, a strong central recirculation
zone is formed directly in front of the fuel port, which appears to the surrounding
air stream almost as a bluff body. The recirculating combustion products provide
a continuous ignition source for the relatively cold incoming reactants, thereby sta-
bilizing the flame. The flame location, shown as a thick convoluted line in Fig. 5.1,
was observed in the experiment to lift off from the burner and reattach intermit-
tently, in a highly unsteady manner. The length of the flame extended beyond
the experimental test section, as well as the computational domain used for the
simulations.

The experimentally reported species concentrations were post-processed in or-
der to facilitate comparison with the simulation results. The mole fractions re-
ported in the laboratory report were converted to mass fractions, and mixture
fraction and product mass fraction were computed. The following procedure was
used: Data were reported for the mole fractions of O, CH4, CO5, CO, and
NO. Mole fractions for the species HoO and Hy were assumed to follow stoi-
chiometric relationships: zu,0 = 2zco, and zg, = 2xco. An estimate of the
nitrogen mole fraction was obtained from the total oxygen atom mole fraction:
N, = 1.88(2z0, + 2zco, + TH,0 + co). Then, mass fractions were computed
by neglecting NO and all other species. Mixture fraction was computed based on
the total carbon and hydrogen atom mass fractions, and product mass fraction was
computed from yp = yco, +ym,0. The six data points for the CH4 mole fraction in
the fuel-rich region at the first measurement station were not provided because the
concentrations were higher than the maximum calibration range of the gas analyzer.
These missing data were filled in using the above assumptions and the requirement

that mole fractions should sum to unity.
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5.2 Computational Setup

A picture of the grid used for all of the simulations is shown in Fig. 5.2. The
distribution of grid points was not determined by any systematic rules, but rather
by experience and trial-and-error, although general requirements are that the grid be
smooth and be refined near solid boundaries and in particular in the axial direction
at the jet orifice. The thinness of the annular wall separating fuel and air required
that especially fine radial resolution be used there. The size of the grid was 256 x
150 x 64 points in the axial, radial, and azimuthal directions, respectively, and was
determined by cost considerations as the largest grid on which the simulations could

be completed in a reasonable amount of time.

Fig. 5.2 Schematic of the grid used for the simulations. Only half of the
points in the axial and radial directions are shown for clarity.

The simulations were computed using length (R), velocity (U), and time (R/U)
scales normalized by the injector radius (R = R3) and the inlet bulk velocity of the
air (U = V3). All simulation results are presented and compared with the experi-
mental data using these units. The computational domain started at a distance of
1R upstream of the combustor, where fully developed turbulent inflow conditions
were specified using the method of §4.5.2, even though the experimental inflow
conditions were probably not fully developed. The computational domain contin-
ued until a combustor length of 8 R was reached, at which point convective outflow
boundary conditions (§4.5.3) were specified. All of the solid boundaries were as-
sumed to be adiabatic and impermeable, including the annular splitter plate, even

though the combustor walls in the experiment were isothermal.
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To initialize a new simulation, the velocity and scalar fields are initially set
to zero everywhere. Pressure impulsively starts the flow as inlet conditions are
applied, initially producing a potential low. The Reynolds number is temporarily
reduced for the first few time steps to avoid problems with initial sharp gradients.
A starting vortex forms at the jet orifice, convects downstream, and eventually
leaves the domain. Turbulence from the inlet gradually fills the domain, eventually
becoming fully developed. All future simulations of the same configuration, for
example after adjusting the grid or changing the chemistry model, are initialized
by interpolating previous fully-developed solutions. Fully developed incompressible
velocity and mixing fields are obtained before the chemistry model is turned on.
For the progress-variable approach (§3.3.4), the initial progress scalar field is set
to its maximum allowed value determined from fast chemistry, so that initially the
flame is fully ignited.

Solutions to the flamelet equations (3.35) were computed using GRI-MECH 3.0
and multicomponent mass diffusion, including Soret and Dufour effects for com-
pleteness. The parameter Ly in (3.39) was chosen to be 2 cm. Additional flamelet
libraries were computed using other mass diffusion models for the results of §5.3.2.
For the progress-variable approach, product mass fraction (yp = yco, + yu,0) was
chosen to serve as the progress variable. The log-normal distribution for dissipation
rate was used with the steady flamelet model. When the steady flamelet model
was used in the simulation, a type of feedback instability was observed: A sudden
increase in the dissipation rate can cause a sudden increase in density, which dur-
ing the following time step can cause the dissipation rate to increase even further.
Likewise, a sudden decrease in dissipation rate can cause the density to decrease,
further decreasing the dissipation rate at the next time level. In order to avoid the
instability, a time filtering was applied, in which the computed dissipation rate, Y,
was averaged with the dissipation rate computed at the previous time step (not the

previous average) before it was used to determine a new density field.
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The computational time step was was selected by computing a generalized CFL

number,

At At
CFL= =2 4 2=
AT AT

(5.1)
based only on axial convection and diffusion. Radial and azimuthal convection
and diffusion are not included in the CFL estimate because these terms are treated
implicitly. A time step of 0.005 R/U was used for all of the simulations and cor-
responded to a CFL number that varied within a range of about 0.5 — 1.0. For
the progress-variable approach, the maximum progress-variable reaction rate in the
flamelet library was sufficiently small that no stiffness was caused by the chemical
source term.

All of the statistical results obtained from the simulations are based on simple
averages of the resolved fields in time and in the azimuthal direction. No attempt
was made to account for subgrid contributions to the statistics or to account for
any effects due to the implicit Favre filtering described in §3.1. Because of the long
time scales present in the combustor, a large number of time steps was required to
integrate the flow long enough to obtain reasonably converged statistics. The total
time needed for initial flow development as well as statistical sampling was about
500 R/U time units or 100,000 time steps for each simulation. The simulations
were run on the ASCI Red platform (Sandia National Laboratory, Albuquerque,
New Mexico) using 512 processors, yielding a sustained aggregate performance of
10 Gflops, or about 3.7 seconds per time step. Thus, about 50,000 processor-hours

were used per simulation.

5.3 Results

A total of four large eddy simulations of the coaxial jet combustor described in §5.1
were performed, each configured with exactly the same computational parameters,
but using a different chemistry model: (1) fast chemistry, (2) steady flamelets, (3)
progress-variable approach, and (4) progress-variable approach with unity Lewis
numbers. The first three simulations are compared in §5.3.1, where it is found that

both the fast chemistry and steady flamelet models fail to account for extinction
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and flame lift-off close to the burner, while the progress-variable approach predicts
a lifted flame and obtains favorable agreement with the experimental data. The
third and fourth simulations are compared in §5.3.2 to demonstrate that inclusion
of differential diffusion effects is necessary to obtain good agreement with the ex-

perimental data.

5.3.1 Chemistry Model Comparison

In this section, results for the three chemistry models described in §3.3 are examined
and compared to each other and to experimental data. The most important ques-
tion to be answered is whether the simulation methodology is capable of accurately
capturing the gross characteristics and behavior of the flame, such as the rate of
product formation and heat release, flame lift-off, ignition, and extinction. Char-
acteristics that depend on the details of the combustion process, such as pollutant
formation, are not a target of the present effort. The primary quantities that are
used to examine the characteristics of each simulation are the mixture fraction (Z)
and product mass fraction (yp = yco, + Yn,0)-

Figure 5.3 compares instantaneous, planar snapshots of mixture fraction for
each of the chemistry models: (a) fast chemistry, (b) steady flamelet, and (c)
progress variable approach. Since the three simulations are configured identically
except for the chemistry model, and since mixture fraction is a conserved scalar,
which does not participate in chemical reactions, one might expect the mixture frac-
tion results for the three cases to be very similar. But scalar mixing can be strongly
influenced by heat release, which depends directly on the chemistry model. This is
because heat release causes flow dilatation to occur within the thin mixing layers
between fuel and oxidizer, thereby pushing apart fuel and oxidizer when they try to
mix. In general, the rate of mixing is found to decrease with higher rates of chemical
heat release, so that mixture fraction can be used as an indicator of whether the
location and rate of chemical reactions are accurately predicted by the chemistry
model. The effect of heat release on mixing is clearly visible when comparing the

mixing characteristics in the initial thin mixing layers just after the annular splitter
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plate in Fig. 5.3(a,b), where mixing appears weak, and in Fig. 5.3(c), where small
rollers are visible. The general conclusion to be drawn from Fig. 5.3 is that, of
the three chemistry models tested, the fast chemistry model has the lowest rate
of mixing, the progress-variable approach has the highest, and the rate of mixing
with the steady flamelet model lies somewhere between the other two, all due to

the resulting heat release rate.

Corresponding pictures of product mass fraction are shown in Fig. 5.4. Flame
location is identified by the regions of highest product concentration, typically ap-
pearing as thin corrugated white lines. Both the fast chemistry and steady flamelet
models clearly have attached flames, while the progress variable approach shows a
much more complicated and asymmetric pattern: At the particular instant shown,
the flame is lifted on the upper side of the injector and is intermittently attached on
the lower side. This behavior is highly unsteady and must be viewed as an anima-
tion to be fully appreciated. Because of the extinction occurring on the upper side,
unburned reactants are able to penetrate into the interior of the flame as indicated
by the darker areas in the center of Fig. 5.4(c). The small amounts of product
visible in the inlet region of the fuel port are due to occasional recirculation of hot
products inside the inlet. In Fig. 5.4(a), the fast chemistry model always predicts
the theoretical maximum product mass fraction for the given mixture fraction. The
highest product mass fraction possible is approximately yp = 0.275 and occurs at
the stoichiometric mixture fraction, Zg; = 0.0552, when all fuel and oxidizer have
been converted into product. In Fig. 5.4(b), the steady flamelet model predicts sig-
nificantly lower product mass fractions than the theoretical maximum. This is due
to the “quenching” effect that scalar dissipation rate has on diffusion flame struc-
ture. The steady flamelet model also shows numerous small-scale, wavy structures
throughout the central region. These variations should be considered unphysical
and a defect of the steady flamelet model, because they are due solely to local fluc-
tuations in dissipation rate in a region where there is mixing between product and
fuel but little or no reaction. In flamelet theory, it is the dissipation rate occurring

at the flame surface (the “stoichiometric” dissipation rate) that controls the flame
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structure. Accordingly, the description of chemical states in regions away from the
flame is not well defined because the steady flamelet model has no way of creat-
ing a nonlocal connection between a given physical location of arbitrary mixture
fraction and a particular physical location of stiochiometric mixture fraction. In
the progress variable approach, this type of nonlocal interaction is mediated by the

progress-variable transport equation.

Mixture Fraction

Figure 5.5 shows quantitatively what is observed qualitatively in Fig. 5.3, that the
fast chemistry and steady flamelet models lead to lower mixing rates because of
faster heat release, especially in the thin mixing layers close to the annular splitter
plate. The steady flamelet model clearly offers substantial improvement over the fast
chemistry model, but because it is also incapable of properly accounting for flame
lift-off, the mixing profiles remain far above the experimental data. Note that all the
profiles tend toward agreement as the profile station is moved farther downstream,
due to the fact that they all must reach the same uniform profile once mixing
is complete. Since most chemical quantities are correlated with mixture fraction,
it is usually important to accurately predict mixture fraction profiles in order to
accurately predict other chemical quantities. The scatter of the experimental data
points in this and the following figures is due to the reflection about the centerline

of data points taken on the opposite side of the combustor.

Product Mass Fraction

The quantitative picture corresponding to Fig. 5.4 is shown in Fig. 5.6. The first
station clearly shows the similarity between the fast chemistry and steady flamelet
models and their essential difference with the progress variable approach. Both the
fast chemistry and steady flamelet models predict large product formation in the
thin mixing layers near the annular splitter plate, what would be expected from
an attached flame, while the progress variable approach has no such spike: The
product concentration found at this station is due mainly to recirculation of prod-

ucts from reactions occurring farther downstream. At the remaining stations, the
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fast chemistry model consistently overpredicts the levels of product concentration,
while the steady flamelet model and progress variable approach both achieve good
agreement with the experimental data, though it is difficult to say whether one is

more accurate than the other because of the scatter in the experimental data.

Temperature

Comparison of predicted temperature profiles with experimental data is shown in
Fig. 5.7. Temperature is a quantity that is derived from the mixture fraction and
progress variable (mixture fraction alone in the fast chemistry and steady flamelet
models) by assuming adiabatic walls and neglecting thermal radiation. Where these
assumptions are valid, the temperature can be expected to behave very similarly to
product mass fraction, but where the assumptions break down, an overprediction
of temperature is expected. Therefore, if product mass fraction predictions are in
good agreement with experimental data, discrepancies between predicted and mea-
sured temperature profiles must be due to the breakdown of these assumptions or to
experimental error, which owing to differences in measurement technique between
species concentrations and temperature can be significant. One of the investigators
involved with the experiment has stated that the temperature data, having been
measured using a rather large, invasive, and dynamically unresponsive thermocou-
ple probe, are in fact subject to considerable experimental uncertainty, especially
in regions with large temperature fluctuations (C. T. Bowman, private communi-
cation, 2001). It could also be the case that thermal radiation is nonnegligible in
some regions of the flow, particularly in fuel-rich, slow moving regions where soot
formation is likely and residence times are long enough for radiative effects to ac-
cumulate. It is also important to note that the axial measurement stations used
for temperature are different from those used for species concentrations. In par-
ticular, the first two temperature stations are located between the first and second
species measurement stations. Thus, the discrepancy between the progress vari-
able approach and experimental data in the first two temperature stations may in

fact reflect an underlying overprediction of product concentration as well, but since

— 86—



species data are not available in this region, it is difficult to draw any definitive

conclusions.

Another source of uncertainty is the effect of the assumption of adiabatic walls
in the simulations. Since the experiment had isothermal, water-cooled walls at
roughly 500K, thermal boundary layers would be expected to develop, affecting the
temperature close to the wall. However, note that in Fig. 5.4, the annular air stream
(at 750K) tends to create an insulating sheath between the hot combustion products
and the wall, although it appears that the flame in Fig. 5.4(c) does occasionally
brush up against the wall. These factors should account for the good agreement
of the fast chemistry and steady flamelet models, and the overprediction of the

progress variable approach near the wall at the last two stations in Fig. 5.7.

Velocity

Time-averaged axial velocity and axial fluctuation intensity results are shown in
Fig. 5.8. While scalar mixing was found to be sensitive to the heat release charac-
teristics of the chemistry model, surprisingly the time-averaged velocity field data
are rather insensitive. In fact, the velocity data for the fast chemistry and steady
flamelet models were found to be nearly indistinguishable. As the effects of heat
release on the velocity field tend to be cumulative, velocity field differences be-
tween the three models can be expected to increase with axial distance. Indeed, the
only significant difference between the fast chemistry, steady flamelet, and progress
variable velocity fields appears at the final measurement station, where the progress-

variable approach achieves significantly better agreement with the experiment.

The general level of agreement between simulation and experiment is satisfac-
tory but not quite as good as what has been achieved with LES of incompressible
turbulent flows. A significant part of the disagreement may be due to the fact
that fully developed pipe and annular inflow conditions were assumed in the sim-
ulations, whereas in the experiment, flow conditioning devices were located only a

short distance upstream of the jet orifice.

Finally, it should be noted that the axial location of the third measurement
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station was reported to be “0.187 X/D” (0.49 x/R), where “D” is the diameter of
the combustor. But based on the plausible rate of change of the flow patterns in
the axial direction and other information contained in the report, this value was

suspected of being a typographical error and was corrected to its most probable

value of “0.487 X/D” (1.27 z/R).

Carbon Monoxide

Figure 5.9 presents the CO results for the steady flamelet model and progress vari-
able approach. Note that the fast chemistry model with the major products as-
sumption predicts zero carbon monoxide concentrations. The results clearly show
that the progress variable approach has room for improvement, and that in this case,
the steady flamelet model significantly outperforms the progress variable approach
at the last station. Carbon monoxide is a significant species in the fuel-rich interior
region of the flame. Because dissipation rates are low in this region, the steady
flamelet model picks out near-equilibrium flamelet solutions, which have low tem-
peratures and high concentrations of CO in fuel-rich mixtures. But this part of the
flamelet library is not uniquely mapped by the progress variable, so that such high-
CO chemical states cannot be accessed. One possible improvement is to consider
using entropy as the progress variable, as entropy always increases monotonically

as reactions progress towards equilibrium.

5.3.2 Importance of Differential Diffusion

One of the advantages of flamelet models is their ability to easily incorporate the
effects of complex mass diffusion as well as complex chemical kinetics. Since the
flamelet model provides a spatial variation to the flame structure, the effects of dif-
ferential transport of species can be combined with the effects of differential reaction
rates to compute a detailed, complex flame structure. Surprisingly, differential dif-
fusion effects have often been ignored in classical flamelet models.

To demonstrate the strong effects that mass diffusion can have on flamelet
models, flamelet libraries were computed using four different mass diffusion models

and compared. The four flamelet libraries were computed with: full multicompo-
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nent mass diffusion (2.7), approximate mixture diffusivities (2.10), the unity Lewis
numbers assumption, and a constant and equal diffusivity for all species (indepen-
dent of temperature and mixture fraction). The results (Fig. 5.10) show a dramatic
difference in peak dissipation rate (and therefore maximum reaction rate) between
the two differential diffusion models and the two equal diffusion models. This result
can be understood by noting that the global reaction rate is set by the concen-
trations of radicals in the reaction zone, and radicals such as H, O, and OH can
have significantly higher diffusivities than larger species such as CH4 and COs. The
conclusion to be inferred is that accurate treatment of differential diffusion can be
just as important as accurate modeling of chemical kinetics.

An additional simulation of the coaxial jet combustor was performed using the
progress variable approach with the unity Lewis numbers flamelet library. The effect
of differential diffusion is not quite as dramatic in most regions, because much of the
flow is governed by large-scale mixing instead of chemical kinetics and small-scale
mixing. However, in the region close to the inlet, where flame lift-off and ignition are
occurring, the effects are more pronounced. In Fig. 5.10, the peak dissipation rate in
the unity Lewis numbers flamelet library is about 2.5 times the peak dissipation rate
in the differential diffusion flamelet library, so that one should expect the maximum
reaction rate of the unity Lewis numbers flame to be about 2.5 times that of the
differential diffusion flame. Therefore, the unity Lewis numbers flame has a greater
tendency to stay attached to the lip of the burner. This is clearly seen in the results
in Fig. 5.11 and Fig. 5.12. With faster kinetics, the flame becomes more attached
to the burner, and thus more heat release occurs in the initial thin mixing layers,

causing reduced fuel/air mixing.
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Fig. 5.3 Snapshot of mixture fraction in a meridional plane. (a) fast chem-
istry; (b) steady flamelets; (c) progress variable approach.
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Fig. 5.4 Snapshot of product mass fraction in a meridional plane. (a) fast
chemistry; (b) steady flamelets; (c) progress variable approach.
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Fig. 5.6 Radial profiles of time-averaged product mass fraction. ---
fast chemistry; ------ : steady flamelets; —— : progress variable approach;
® : experiment.
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istry; - : steady flamelets; —— : progress variable approach; e
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Chapter 6

CONCLUSIONS AND
FUTURE DIRECTIONS

6.1 Conclusions

Large eddy simulation was shown to be a promising technique for prediction of com-
plex turbulent reacting flows. In the present work, a new algorithm was developed
for large eddy simulation of variable density reacting flows in simple combustor con-
figurations. Particular attention was given to both the primary conservation (mass,
momentum, scalar) and secondary conservation (kinetic energy, scalar “energy”)
properties of the method. The algorithm uses the primitive variables, which are
staggered in both space and time.

Motivated by the inability of existing chemistry models to predict lifted diffu-
sion flames, such as those occurring in gas turbine combustors, a new two-scalar
approach involving mixture fraction and a reaction progress variable was developed.
This is combined with a steady flamelet model that incorporates detailed chemical
kinetics and multicomponent mass diffusion.

The calculations were compared with detailed experimental data from the
United Technologies Research Center. Excellent agreement was obtained between
computations and the experiment in both the mean and fluctuating velocity profiles,
mean mixture fraction profiles, and mean product concentration. This agreement is
particularly significant because no adjustable parameters were available for tuning,
owing to the use of the dynamic procedure in the parameterization of turbulence.

Three chemistry models were tested in the present study: fast chemistry, steady
flamelet, and the progress-variable approach. The results show that the progress-

variable approach significantly outperforms both the fast chemistry and steady
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flamelet models with only a marginal increase in computational cost. The progress-
variable approach appears to be an effective method for capturing basic realistic
flame behavior such as flame lift-off. However, the present formulation cannot ac-
curately predict details of the combustion process such as pollutant formation and
thermal radiation, and thus, future improvements will be necessary.

The present study has also shown that the inclusion of differential diffusion
effects is crucial, at least at the subgrid-scale level, for the prediction of the dynamics
of the near-field, where chemical kinetics and transport of radicals, which have a

broad range of diffusivities, are important.

6.2 Recommendations for Future Work

While the progress-variable approach presented in this study adds much capabil-
ity to the steady flamelet model, it is by no means a complete combustion model,
but rather a first step towards a more general approach. In its present form, the
progress-variable approach cannot account for convective heat transfer to bound-
aries, effects of radiation, premixed flame fronts, slow chemical processes such as
those involved in pollutant formation, and instabilities due to acoustic interactions.

The progress-variable approach can be extended to account for heat transfer to
boundaries by solving an additional transport equation for the total enthalpy, along
with the mixture fraction and progress variable. Total enthalpy would then become
an additional parameter in the flamelet chemistry tables. In this way, the effects
of the isothermal wall boundary conditions that were present in the experiment of
Owen et al. could be accounted for. A first step to account for radiation and soot
formation is to incorporate them directly into the calculation of the flamelet library.
A radiative loss term could also be added to the enthalpy transport equation.

An improvement in the choice of progress variable should also be considered.
The best candidate would be the entropy, because it is guaranteed to vary mono-
tonically with reaction progress and it should provide a better parameterization of
slowly evolving, near-equilibrium chemical states. However, entropy is governed by

a significantly more complicated equation than product mass fraction and includes
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source terms for both mixing and chemical reaction.

To better model the formation of pollutants, the addition of secondary progress
variables, having significantly slower time scales than the primary progress variable,
should be considered. This may require further development of the chemical tab-
ulation procedures for the efficient calculation, storage, and retrieval of chemical
states.

The assumed PDF for the progress variable used in the present study does
not account for the effects of subgrid fluctuations is scalar dissipation rate or for
reaction front propagation in premixed and partially premixed combustion. Future
improvements to the this model should include both the effects of dissipation rate
and the chemical source term on the assumed shape of the PDF.

The numerical scheme for variable-density flows presented here can be extended
to include compressibility effects to account for low Mach number acoustics using a
Helmholtz equation for pressure. The special feature of this extension is that acous-
tic waves relevant to combustion instabilities can be accounted for at a considerable

savings in computer resources.
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