
•  Delivering expertise, advice, and state of the art UQ tools to SciDAC application 
partnership projects utilizing extreme scale computations on advanced 
computational architectures. 

•  Shepherding forward our repertoire of UQ theory, algorithms, and software, and 
enhancing their robustness/effectiveness for relevant benchmark problems in 
extreme-scale computational settings 

 

Quantification of Uncertainty in Extreme Scale Computations 
H. Najm1, B. Debusschere1, M. Eldred1, C. Safta1, J. Jakeman1, D. Higdon2, J. Gattiker2, R. Ghanem3, O. Knio4, A. Alexanderian5,  

Y. Marzouk6, T. El Moselhy6, J. Li6, P. Conrad6, T. Bui-Thanh7, O. Ghattas7, J. Martin7, R. Moser7, E. Prudencio7, G. Stadler7 
1Sandia National Laboratories, 2Los Alamos National Laboratory, 3University of Southern California, 4Duke University, 5The Johns Hopkins University, 6Massachusetts Institute of Technology, 7The University of Texas at Austin 

This work was supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by the US Department of Energy 
Office of Advanced Scientific Computing Research. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a 
Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. 

www.quest-scidac.org 

SciDAC QUEST Institute 

Key Objectives 

Member Institutions 

Vision 

•  QUEST is a SciDAC institute focused on uncertainty quantification (UQ) in large-
scale scientific computations.  

•  It is a collaboration among six institutions with a history of in-depth collaborations 
on the development, implementation, and use of UQ algorithms/software in 
challenging high-performance computing environments.  

•  Our members have developed and maintain a range of UQ software products that 
have been applied in extreme scale computational environments, with challenging 
scientific application codes, including climate, geophysics, & combustion. 

•  Sandia National Laboratories 
•  Los Alamos National Laboratory 
•  University of Southern California 

•  Duke University 
•  Massachusetts Institute of Technology 
•  University of Texas at Austin 
 

Our vision encompasses all aspects of UQ in computational modeling, namely: 
 

•  Well-founded setup of the UQ problem 
•  Characterization of the input space given available data/information 
•  Local and global sensitivity analysis 
•  Adaptive dimensionality and order reduction 
•  Forward and inverse propagation of uncertainty 
•  Handling of application code failures, missing data, and fault tolerance 
•  Model comparison, validation, selection, and averaging 
 

The nature of the UQ problem requires the seamless combination of data, models, 
and information across this whole landscape in a manner that provides a self-
consistent quantification of requisite uncertainties in predictions from computational 
models. Accordingly, our UQ methods and tools span an interdisciplinary space 
across applied math, information theory, and statistics. 

Key UQ software tools that are included in the QUEST universe are: 
 

•  DAKOTA (SNL) provides a variety of non-intrusive algorithms for design 
optimization, model calibration, uncertainty quantification, global sensitivity 
analysis, solution verification, and parameter studies. (dakota.sandia.gov) 

•  UQTk (SNL) is a lightweight C++ library, offering intrusive/non-intrusive 
Polynomial Chaos UQ tools. (www.sandia.gov/UQToolkit) 

•  QUESO (UT) is an MPI/C++ library that provides statistical algorithms for 
Bayesian inference, model calibration, model validation, and decision making 
under uncertainty.  

•  GPMSA (LANL) focuses on Bayesian inference, using a Gaussian process (GP)  
response surface, trained from an ensemble of forward model runs, to minimize 
the number of forward model calls required in the inference.  

UQ Software Products 

www.scidac.gov 

problems. This infinite dimensionality arises because the inversion parameter(s) are actually fields—for
example when inverting for heterogeneous material properties, initial conditions, source terms, or bound-
ary conditions. When discretized, these lead to very large-scale inverse problems. Critical issues include:
proper framework for Bayesian inverse problems in the infinite dimensional setting, choice of scalable prior
for large-scale inverse problems (the covariance function is taken as the Green’s function of an associated el-
liptic operator, computed through multigrid solves), consistent discretization of prior and noise covariances,
and scalable sampling of the posterior by exploiting the common situation that the data are informative about
the inversion field in only a finite (and typically small) number of dimensions. Recently we have scaled up
our algorithms to solve statistical inverse problems with O(105) parameters on 1000s of processors under
the Gaussian assumption. Figure 2 illustrates the application of these algorithms to an inverse problem in
global seismology [14].

Figure 2: Application of a low-rank based algorithm to the solution of a large-scale statistical inverse problem in
global seismology. The goal is to reconstruct heterogeneous earth properties (compressional wavespeed) from noisy
observations of ground motion at points on earth’s surface (seismometers) and from a model of the propagation of
seismic waves. The left column shows a comparison of a “truth” earth wavespeed field (upper left image, used to
generate synthetic data) with the MAP (maximum a posteriori) estimate of the posterior PDF (lower left image) at a
depth of 67 km. Locations of three earthquake sources are indicated by black dots, and locations of 130 seismometers
in a quarter of the Northern hemisphere are indicated by white dots. The MAP estimate captures the structure of the
truth wavespeed reasonably well in the vicinity of observations. Eight images in the 2nd to 5th columns depict samples
from the prior (top row) and posterior (bottom row) distributions. The difference between the top row and bottom
row reflects the information (about the earth wavespeed field) gained from the observations. The small variability
among posterior samples in the region of receiver coverage reflects the higher confidence in the reconstruction in
those regions; conversely, there is large variability across samples in regions of no coverage, where little information
is gained from the data.

4 Closure

We have outlined a range of ongoing developments of UQ algorithms and software within the SciDAC
QUEST Institute. The continued advance of UQ capabilities will enable enhancement in the understanding
of physical models in extreme-scale computational environments. It will also provide means for estimation
of confidence in computational predictions based on models that are adequately validated with respect to
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•  Quantification of uncertainty in computational predictions/inferences.  
•  Model validation and comparison, hypothesis testing, design optimization, and 

decision support.  
•  Information on global sensitivity of the computational model over the range of 

uncertainty in its parameters. 
•  Extraction of enhanced understanding about a physical system/model from 

computations.  
•  Guiding experimental studies in optimal directions that maximize information gain 

by targeting parameters with maximal contributions to uncertainty in predictions. 
 

Motivation for UQ in Computational Modeling 

•  Pursuing enhanced software interoperability among DAKOTA, QUESO, GPMSA 
•  Pursuing enhanced functionality:  

•  DAKOTA: Generalized sparse grids, adaptive h-refinement; Compressive 
sensing, L1 constraints; random fields. 

•  QUESO: incorporating GP functionalities, improving user support 
•  GPMSA: improving user support and tutorial material 
•  UQTk: adding non-intrusive capabilities, random fields; matlab version. 

 

Software Development 

•  Implementation of Bayesian additive regression trees (BART) for response 
surface/surrogate construction 

•  Development of stochastic preconditioning methods for sparse representation of 
stochastic dynamical system predictions 

•  Development of methods for adaptive iterative data-driven surrogate 
construction targeting the support of the posterior 

•  Parallelization and efficient implementation of optimal map methods for 
Bayesian inference without MCMC 

•  Development of adaptive generalized sparse quadrature methods, with 
application to uncertain ocean dynamics in the Gulf of Mexico 

•  Development of reduced representations of high-dimensional uncertain model 
outputs, adapted to specific quantities of interest 

•  Development of methods for the solution of extreme-scale statistical inverse 
problems, with application in seismic inversion, ice sheet dynamics, mantle 
convection and porous media flows. 

 

Algorithmic Development 

•  Raise awareness of uncertainty in computational models and the need for UQ in 
scientific computations 

•  Lead to closer integration between experimental activities and extreme-scale 
scientific computing 

•  Closer integration and synergies between applied math and statistics in 
computational science 

•  Advance the state of the art in UQ theory, algorithms, and software, targeting  
extreme scale computations 

•  Enable UQ in a number of science application partnership projects 

 

Impact 

Representation of  Random Fields 

The Karhunen-Loeve expansion is used to generate realizations from a Gaussian random field over a 
range of correlation lengths. Two random realizations are shown for fields with correlation lengths of 
0.1, 0.2, and 0.5, as indicated, highlighting the different range of length-scales in each case. 

0.1 0.2 0.5 

Application of a low-rank based algorithm to the solution of a large-scale statistical inverse problem 
in global seismology. The left column shows a comparison of a “truth” earth wave speed field (top) 
with the MAP estimate of the posterior PDF (bottom). Locations of three earthquake sources are 
indicated by black dots, and locations of 130 seismometers in a quarter of the Northern hemisphere 
are indicated by white dots. The MAP estimate captures the structure of the truth wave speed 
reasonably well in the vicinity of observations. Eight images in the 2nd to 5th columns depict samples 
from the prior (top) and posterior (bottom) distributions. The difference between the top and bottom 
rows reflects the information gained from the observations. Support for this work was also provided 
by AFOSR (Computational Math), DOE (ASCR Applied Math), and NSF (CMG and CDI).  
 

 

Statistical Inversion in Global Seismology 

UQ in Chemical Systems 

Non-intrusive Polynomial Chaos UQ application in a surface-reaction ODE model, with uncertainty in 
one chemical rate parameter.  
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